• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于Copula函數(shù)的風(fēng)電場風(fēng)速建模分析

      2016-02-24 00:39:18劉文霞何向剛鐘以林李雪凌
      現(xiàn)代電力 2016年2期
      關(guān)鍵詞:概率密度

      劉文霞,何向剛,鐘以林,李雪凌

      (貴州電網(wǎng)有限責(zé)任公司電網(wǎng)規(guī)劃研究中心,貴州貴陽 550003)

      Modelling Analysis on Wind Speed of Farm Based on Copula FunctionLIU Wenxia, HE Xianggang, ZHONG Yilin, LI Xueling

      (Grid Planning & Research Center, Guizhou Power Grid Co., LTD, CSG., Guiyang 550003, China)

      ?

      基于Copula函數(shù)的風(fēng)電場風(fēng)速建模分析

      劉文霞,何向剛,鐘以林,李雪凌

      (貴州電網(wǎng)有限責(zé)任公司電網(wǎng)規(guī)劃研究中心,貴州貴陽550003)

      Modelling Analysis on Wind Speed of Farm Based on Copula FunctionLIU Wenxia, HE Xianggang, ZHONG Yilin, LI Xueling

      (Grid Planning & Research Center, Guizhou Power Grid Co., LTD, CSG., Guiyang 550003, China)

      0引言

      風(fēng)能是一種綠色清潔能源,做好風(fēng)速建模及風(fēng)速預(yù)測工作,可為分析風(fēng)速特性對電網(wǎng)安全穩(wěn)定影響、風(fēng)電消納、風(fēng)電場規(guī)劃選址等問題提供有力的幫助及相關(guān)技術(shù)支撐。當前風(fēng)速建模預(yù)測方法可分為基于物理模型和基于歷史數(shù)據(jù)這兩種。前者一般采用數(shù)值天氣預(yù)報數(shù)據(jù)進行風(fēng)速預(yù)測,后者是利用歷史風(fēng)速進行外推預(yù)測。風(fēng)力資源分布具有一定地域特性,但現(xiàn)階段風(fēng)速建模研究中大多未考慮同一風(fēng)場內(nèi)部不同位置風(fēng)速的相關(guān)性,而是假設(shè)風(fēng)場內(nèi)各風(fēng)機所處位置的風(fēng)速在同一時刻相等[1-2]。對于大型風(fēng)電場或山區(qū)風(fēng)電場(如貴州畢節(jié)赫章的韭菜坪風(fēng)電場),該假設(shè)顯然沒有反映出風(fēng)場內(nèi)部風(fēng)速具有相關(guān)性這一特點。由于風(fēng)場內(nèi)部風(fēng)速相關(guān)性直接影響風(fēng)場出力,進而影響系統(tǒng)電量分配及安全運行,因此要做好風(fēng)電場規(guī)劃選址、風(fēng)電消納工作、含風(fēng)電場電力系統(tǒng)的安全穩(wěn)定性分析及經(jīng)濟性分析,就必須要建立擬合度較好的風(fēng)電場風(fēng)速相關(guān)性模型。

      目前常用來處理風(fēng)速相關(guān)性的方法主要有3種。一是基于自回歸滑動平均模型和時移技術(shù)法建立時間序列相關(guān)性的風(fēng)速序列[3];二是基于線性相關(guān)系數(shù)矩陣的Cholesky分解的正交變換法[4-6];三是考慮風(fēng)速線性相關(guān)矩陣與標準正態(tài)分布變量線性相關(guān)矩陣關(guān)系的Nataf變換方法[7-10]。這3種方法都假設(shè)具有相關(guān)性的風(fēng)速序列滿足同參數(shù)的分布,例如假設(shè)都滿足同樣的威布爾分布參數(shù)。但實際風(fēng)場的風(fēng)速常呈現(xiàn)不同的分布,即使建模認為分布類型相同,分布參數(shù)也不一樣。Copula函數(shù)的秩相關(guān)度量方法能夠很好地解決上述問題。Copula函數(shù)在金融問題研究方面已得到應(yīng)用[11-12]。在電力系統(tǒng)方面,文獻[13-14]基于Copula函數(shù)提出了電力線和鐵塔冰荷載、風(fēng)荷載的聯(lián)合概率分布計算模型;文獻[15]應(yīng)用Copula函數(shù)建立了相依概率性序列運算理論和方法,并將該運算用于多個風(fēng)電場總出力概率分布分析中;文獻[16-17]分別基于實測多個風(fēng)電場風(fēng)速及負荷水平的相關(guān)性,采用Copula函數(shù)建立了計及風(fēng)場間風(fēng)速相關(guān)性的風(fēng)速樣本及具有相關(guān)性的負荷需求樣本。文獻[18]采用混合Copula函數(shù)建立了山區(qū)風(fēng)電場出力模型。

      本文基于正態(tài)Copula函數(shù),對韭菜坪風(fēng)電場內(nèi)部風(fēng)速的分布特性及所具有的相關(guān)性進行建模預(yù)測,即通過歷史風(fēng)速的累積概率分布函數(shù)建立正態(tài)Copula函數(shù),再用秩相關(guān)理論建立風(fēng)場內(nèi)部風(fēng)速秩相關(guān)矩陣,根據(jù)正態(tài)Copula函數(shù)及風(fēng)速秩相關(guān)矩陣建立了該風(fēng)電場風(fēng)速預(yù)測模型。通過對比風(fēng)速建模預(yù)測模型與歷史統(tǒng)計風(fēng)速數(shù)據(jù)的累積概率分布曲線和概率密度曲線,得知所采用的正態(tài)Copula函數(shù)能較好地預(yù)測韭菜坪風(fēng)電場相關(guān)風(fēng)速。據(jù)此,可以將Copula函數(shù)建立風(fēng)電場風(fēng)速模型推廣應(yīng)用到工程實際中,以指導(dǎo)規(guī)劃風(fēng)電場的風(fēng)速預(yù)測、站址選擇,也可以應(yīng)用到在運行的風(fēng)電場出力建模及安全穩(wěn)定運行分析中。

      1基于Copula函數(shù)的風(fēng)場聚合模型

      1.1Copula函數(shù)及其基本理論

      1.1.1Copula函數(shù)

      1959年Sklar將一個n維聯(lián)合分布函數(shù)分解為n個邊緣分布函數(shù)和一個Copula函數(shù)。Copula函數(shù)可以用來描述變量的相關(guān)性,它把隨機向量X1,X2,…,Xn的聯(lián)合分布函數(shù)F(x1,x2,…,xn)與各自的邊緣分布函數(shù)FX1(x1),…,FXn(xn)連接在一起,即函數(shù)C(u1,u2,…,un),使:

      (1)

      假設(shè)隨機向量U1,U2,…,Un服從[0,1]之間的均勻分布,則隨機向量X1,X2,…,Xn的邊緣分布函數(shù)FX1(x1),…,FXn(xn)可記為[16-17]:

      (2)

      式中:ui為向量Ui中的元素。對邊緣概率分布函數(shù)(累積概率分布函數(shù))FXi(xi)作等概率逆變換:

      (3)

      則式(1)可寫為

      (4)

      1.1.2多元正態(tài)Copula函數(shù)

      以下基于多元正態(tài)Copula函數(shù)建立風(fēng)場內(nèi)部相關(guān)風(fēng)速模型,n元正態(tài)Copula分布函數(shù):

      (5)

      1.2Spearman秩相關(guān)系數(shù)

      度量隨機變量相關(guān)性的方法有很多種,線性相關(guān)度是常用的指標之一,其定義為

      (6)

      式中:ρRL表示隨機變量X1、X2之間的線性相關(guān)度;cov(?)表示求協(xié)方差;var(?)表示求方差。

      線性相關(guān)度僅反映了隨機變量之間的線性相關(guān)性,如果對隨機變量進行單調(diào)性相同的線性變換,則其線性相關(guān)度不變,但若對其進行單調(diào)的非線性變換,則其線性相關(guān)度將發(fā)生改變。為了避免對風(fēng)速作非線性變換時采用線性相關(guān)來度量相關(guān)性出現(xiàn)偏差,本文將采用Spearman秩相關(guān)的方法來計算風(fēng)場內(nèi)部風(fēng)速的相關(guān)性。

      隨機向量X、Y的Spearman秩相關(guān)系數(shù)ρRr定義如下,設(shè)有隨機變量(xj,yj|j=1,2,…,m)是隨機向量X、Y中的元素,對X、Y中的元素進行排序,得到隨機向量中元素(xj,yj|j=1,2,…,m)的秩(XRj,YRj),則:

      (7)

      假設(shè)有風(fēng)速序列(采樣時間間隔是1min,采樣總時間10min)vS1、vS2;風(fēng)機出力特性分段擬合函數(shù)式為(8),切入風(fēng)速是3m/s,切出風(fēng)速是25m/s,額定風(fēng)速為14m/s;將風(fēng)速序列帶入風(fēng)機出力特性擬合函數(shù)得到風(fēng)機出力Pw1、Pw2,該過程實際是對風(fēng)速序列做單調(diào)非線性變換。

      (8)

      vwi、vwo為切入、切出風(fēng)速;vr是額定風(fēng)速;Pr是風(fēng)機額定出力(本文為1.5MW);t為風(fēng)速-功率系數(shù),本文取為3。

      表1顯示了風(fēng)速序列vS1、vS2及其秩R1、R2,風(fēng)機出力Pw1、Pw2及其秩r1、r2,對表1中風(fēng)速序列求得線性相關(guān)度為0.872 6,風(fēng)機出力線性相關(guān)度為0.859 8;對風(fēng)速序列求得秩相關(guān)度為0.818 2,風(fēng)機出力秩相關(guān)度也為0.818 2,可見,風(fēng)速與風(fēng)機出力的秩相關(guān)度相等?;谏鲜鼋Y(jié)論,本文利用Spearman秩相關(guān)這一優(yōu)良特性度量風(fēng)場內(nèi)部風(fēng)速相關(guān)性。

      表1 風(fēng)速及風(fēng)機出力的秩

      2基于Copula函數(shù)及秩相關(guān)理論的風(fēng)速建模

      本文根據(jù)韭菜坪風(fēng)電場2012年8月~2013年7月間每月典型日的各臺風(fēng)機歷史風(fēng)速實測數(shù)據(jù),采用Copula函數(shù)建立其相關(guān)風(fēng)速模型。該風(fēng)場共56臺風(fēng)機,單機容量1.5MW,總裝機84MW,本次建模將按照該風(fēng)電場風(fēng)機編號8組,每組風(fēng)機群包含7臺風(fēng)機。

      建模時對風(fēng)電場歷史記錄風(fēng)速作非線性變換,即設(shè)風(fēng)速為服從威布爾分布,將此樣本通過風(fēng)速的累積分布函數(shù)變換到均勻分布空間,然后用式(5),通過多元正態(tài)Copula函數(shù)將均勻分布空間變換到標準正態(tài)分布空間,建立起風(fēng)場內(nèi)部的相關(guān)風(fēng)速模型。

      圖1 正態(tài)Copula函數(shù)變換過程示意圖

      3個樣本空間變換關(guān)系如圖1所示[19],圖中VS表示風(fēng)速樣本,W-1(?)為威布爾分布函數(shù)的逆函數(shù),N為多元標準正態(tài)分布的隨機變量。

      3計算流程

      計算過程如下:首先對韭菜坪風(fēng)電場2012年8月~2013年7月一年內(nèi)的歷史風(fēng)速進行采樣,并求得歷史記錄風(fēng)速的秩相關(guān)矩陣及威布爾分布參數(shù);其次采用多元正態(tài)Copula函數(shù)建立風(fēng)場內(nèi)部各機群的相關(guān)風(fēng)速樣本,最后對比分析歷史風(fēng)速和預(yù)測建模風(fēng)速的概率統(tǒng)計信息(風(fēng)速累積概率分布曲線和概率密度曲線),以驗證所采用多元正態(tài)Copula函數(shù)的實用性。計算過程詳見圖2。

      圖3 各風(fēng)機群歷史風(fēng)速分布秩相關(guān)矩陣

      4算例分析

      本文對韭菜坪風(fēng)電場的風(fēng)速進行預(yù)測建模。首先對歷史風(fēng)速樣本空間求取Spearman秩相關(guān)矩陣,如圖3為該風(fēng)電場8個機群之間歷史記錄風(fēng)速的秩相關(guān)矩陣圖,對角線子圖顯示各個風(fēng)機群風(fēng)速所服從的威布爾分布(秩相關(guān)矩陣的對角元素一定為1,表示各個機群的風(fēng)速與自身的秩相關(guān)度為1),非對角元素表示每兩個風(fēng)機群之間的風(fēng)速秩相關(guān)度,例如第一行第二列表示風(fēng)機群1與風(fēng)機群2的秩相關(guān)為0.81,可見,風(fēng)場內(nèi)部各風(fēng)機群的風(fēng)速具有一定的相關(guān)性。

      圖2 計算流程圖

      在擬合該風(fēng)電場8個風(fēng)機群的歷史記錄風(fēng)速樣本分布時,假設(shè)風(fēng)速服從威布爾分布[20-23],如式(9),并通過矩量估計法[22]得到威布爾分布參數(shù),如表2所示。

      (9)

      式中:vw是風(fēng)速;cw和kw分別為尺度參數(shù)和形狀參數(shù);cw反映所描述地區(qū)的年平均風(fēng)速大小。

      圖4 各風(fēng)機群預(yù)測風(fēng)速分布秩相關(guān)矩陣

      采用多元正態(tài)Copula函數(shù),建立韭菜坪風(fēng)電場風(fēng)速預(yù)測模型,設(shè)風(fēng)速預(yù)測樣本為10 000,得到所建模預(yù)測的相關(guān)風(fēng)速秩相關(guān)矩陣如圖4所示,對比圖3可以看出,所建模預(yù)測的風(fēng)速與韭菜坪風(fēng)電場歷史記錄風(fēng)速的秩相關(guān)矩陣基本相等。

      表2 韭菜坪風(fēng)電場風(fēng)速威布爾分布參數(shù)

      圖5顯示了建模預(yù)測風(fēng)速與歷史記錄風(fēng)速的累計概率分布曲線,圖6為概率密度曲線。顯然,歷史記錄風(fēng)速的累積概率分布與預(yù)測建模風(fēng)速的累積概率分布曲線基本重合,顯示了所采用多元正態(tài)Copula函數(shù)建模的較高準確度。在風(fēng)速概率密度曲線中,歷史記錄風(fēng)速分布較預(yù)測風(fēng)速概率曲線略微“陡峭”,實際上是由于歷史風(fēng)速取的是每個月的典型日風(fēng)速,所以風(fēng)速分布會顯得相對“集中”。

      綜合對比歷史記錄風(fēng)速和建模預(yù)測風(fēng)速秩相關(guān)矩陣和概率統(tǒng)計曲線,可以看出本文所采用的方法有較高的擬合預(yù)測精度。

      圖5 風(fēng)速累積概率分布曲線

      圖6 風(fēng)速概率密度曲線

      5結(jié)束語

      建模分析結(jié)果顯示,秩相關(guān)矩陣能夠較好地描述風(fēng)電場內(nèi)部機組之間風(fēng)速的相關(guān)特性,通過多元正態(tài)Copula函數(shù)建模預(yù)測的風(fēng)速與歷史風(fēng)速的概率統(tǒng)計特性比較貼近,體現(xiàn)了該方法的較高準確度。進而可以考慮將本方法推廣應(yīng)用到貴州電網(wǎng)大型風(fēng)電場及山區(qū)風(fēng)電場的風(fēng)速建模計算中,以進一步提高風(fēng)速預(yù)測的精度,從而為貴州省風(fēng)電場規(guī)劃選址、電網(wǎng)安全穩(wěn)定及經(jīng)濟運行提供一定的技術(shù)支持。

      參考文獻

      [1]孫元章,吳俊,李國杰,等.基于風(fēng)速預(yù)測和隨機規(guī)劃的含風(fēng)電場電力系統(tǒng)動態(tài)經(jīng)濟調(diào)度[J].中國電機工程學(xué)報,2009,29(4):41-47.

      [2]葉林,劉鵬.基于經(jīng)驗?zāi)B(tài)分解和支持向量機的短期風(fēng)電功率組合預(yù)測模型[J].中國電機工程學(xué)報,2011,31(31):102-108.

      [3]范榮奇,陳金富,段獻忠,等.風(fēng)速相關(guān)性對概率潮流計算的影響分析[J].電力系統(tǒng)自動化,2011,35(4):18-22.

      [4]Edwin Haesen,Cindy Bastiaensen,Johan Driesen,et al.A Probabilistic Formulation of Load Margins in Power Systems With Stochastic Generation[J].IEEE Trans. on Power Systems,2009,24(2):951-958.

      [5]張粒子,凡鵬飛,麻秀范,等.考慮調(diào)峰適應(yīng)性風(fēng)險的風(fēng)電場群時序規(guī)劃方法[J].中國電機工程學(xué)報,2012,32(7):14-22.

      [6]鮑海波,韋化.考慮風(fēng)電的電壓穩(wěn)定概率評估的隨機響應(yīng)面法[J].中國電機工程學(xué)報,2012,32(13):77-85.

      [7]潘雄,周明,孔曉民,等.風(fēng)速相關(guān)性對最優(yōu)潮流的影響[J].電力系統(tǒng)自動化,2013,37(6):37-41.

      [8]Juan M Morales,Antonio J Conejo,Juan Pérez-Ruiz.Simulating the Impact of Wind Production on Locational Marginal Prices[J].IEEE Trans. on Power Systems,2011,26(2):820-828.

      [9]Juan M Morales,L Baringo,Antonio J Conejo,et al.Probabilistic power flow with correlated wind sources [J].IET Generation, Transmission & Distribution,2010,4(5):641-651.

      [10]潘雄,劉文霞,徐玉琴,等.基于SRSM和Nataf方法的含風(fēng)場群電力系統(tǒng)暫態(tài)穩(wěn)定分析[J].中國電機工程學(xué)報,2013,33(16):56-62.

      [11]Umberto Cherubini,F(xiàn)abio Gobbi,Sabrina Mulinacci,et al.Dynamic Copula Methods in Finance [M].Chichester:Wiley,2011.

      [12]Umberto Cherubini,Elisa Luciano,Walter Vecchiato.Copula Methods in Finance [M].Chichester:Wiley,2004.

      [13]徐文軍,楊洪明,趙俊華,等.冰風(fēng)暴災(zāi)害下電力斷線倒塔的概率計算[J].電力系統(tǒng)自動化,2011,35(1): 13-17.

      [14]楊洪明,黃拉,何純芳,等.冰風(fēng)暴災(zāi)害下輸電線路故障概率預(yù)測[J].電網(wǎng)技術(shù),2012,36(4): 213-218.

      [15]張寧,康重慶.風(fēng)電出力分析中的相依概率性序列運算[J].清華大學(xué)學(xué)報:自然科學(xué)版,2012,52(5):704-709.

      [16]George Papaefthymiou,Dorota Kurowicka.Using Copulas for Modeling Stochastic Dependence in Power System Uncertainty Analysis [J].IEEE Trans. on Power Systems,2009,24(1):40-49.

      [17]Alicja Lojowska,Dorota Kurowicka,George Papaefthymiou,et al.Stochastic Modeling of Power Demand Due to EVs Using Copula [J].IEEE Trans. on Power Systems,2012,27(4):1960-1968.

      [18]潘雄,王莉莉,徐玉琴,等.基于混合Copula函數(shù)的風(fēng)電場出力建模方法[J].電力系統(tǒng)自動化,2014,38(14):17-22.

      [19]王俊,蔡興國,季峰.基于Copula理論的相關(guān)隨機變量模擬方法[J].中國電機工程學(xué)報,2013,33(22):75-82.

      [20]Bowden G J,Barker P R,Shestopal V O,et al.The Weibull distribution function and wind power statistics[J].Wind Engineering,1983,7:85-98.

      [21]雷亞洲,王偉勝,印永華,等.基于機會約束規(guī)劃的風(fēng)電穿透功率極限計算[J].中國電機工程學(xué)報,2002,22(5):32-35.

      [22]Feijoo A E,Cidras J.Modeling of wind farms in the load flow analysis [J].IEEE Trans. on Power Systems,2000,15(1):110-115.

      [23]吳義純,丁明,張立軍.含風(fēng)電場的電力系統(tǒng)潮流計算[J].中國電機工程學(xué)報,2005, 25(4):36-39.

      劉文霞(1987—),女,碩士,助理工程師,主要從事電力系統(tǒng)規(guī)劃設(shè)計、分析計算等方面的工作,E-mail: liuwenxia_csggz@126.com;

      何向剛(1982—),男,碩士,工程師,主要從事電力系統(tǒng)規(guī)劃、電力系統(tǒng)可靠性分析工作,E-mail:525153231@qq.com;

      鐘以林(1971—),男,本科,工程師,主要從事電力系統(tǒng)規(guī)劃、分析工作,E-mail:310319040@qq.com;

      李雪凌(1981—),女,碩士,工程師,主要從事電力系統(tǒng)規(guī)劃設(shè)計、分析計算等方面的工作,E-mail:lixuelinglxl@126.com。

      (責(zé)任編輯:楊秋霞)

      摘要:韭菜坪風(fēng)電場為貴州省的一個大型山區(qū)風(fēng)電場,風(fēng)電場內(nèi)各機組的風(fēng)速具有一定相關(guān)性。本文采用多元正態(tài)Copula函數(shù)及秩相關(guān)矩陣度量的方法來量化分析該風(fēng)電場內(nèi)風(fēng)速的相關(guān)性,以建立更能反映該風(fēng)電場特性的風(fēng)速模型。多元正態(tài)Copula函數(shù)能有效地將威布爾分布的風(fēng)速序列、風(fēng)速累積概率分布序列及標準正態(tài)分布序列連接起來,實現(xiàn)相關(guān)風(fēng)速變量的轉(zhuǎn)換及建模預(yù)測。該方法為今后分析韭菜坪風(fēng)電場風(fēng)速特性對該地區(qū)電網(wǎng)安全穩(wěn)定性的影響提供一定的技術(shù)支持,也可為山區(qū)及大型風(fēng)電場規(guī)劃選址提供參考。

      關(guān)鍵詞:Copula函數(shù);風(fēng)速相關(guān)性;秩相關(guān);概率密度

      Abstract:Jiucaiping wind farm of Guizhou province locates in a large mountainous area, and the wind speed of each wind turbine in wind farm is always correlative. In this paper, multivariate normal Copula function and rank correlation matrix are used to quantify the coherence of wind speed in the wind farm so as to build the wind speed model which can reflect the wind speed characteristics of the wind farm. The Weibull wind speed distribution, cumulative distribution function of wind speed and multivariate normal distribution sequences can be joined by multivariate normal Copula function effectively, which realizes the transform and modeling prediction of relative wind speed. Furthermore it can provide certain technical support for analyzing the influence of wind speed of Jiucaiping wind farm on the stability of power grid security in this region. It also can provide some references to the planning and development of wind farms in the mountainous area and large wind farms as well.

      Keywords:Copula function; wind speed correlation; rank correlation; probability density

      作者簡介:

      收稿日期:2015-05-10

      基金項目:國家高技術(shù)研究發(fā)展計劃(863計劃)項目(2014AA051902);中國南方電網(wǎng)公司重點科技項目(K-GZ2013-468)

      中圖分類號:TM743

      文獻標志碼:A

      文章編號:1007-2322(2016)02-0070-07

      猜你喜歡
      概率密度
      連續(xù)型隨機變量函數(shù)的概率密度公式
      計算連續(xù)型隨機變量線性組合分布的Laplace變換法
      基于GUI類氫離子中電子概率密度的可視化設(shè)計
      物理與工程(2019年1期)2019-03-22 03:12:10
      隨機部分可積擬哈密頓系統(tǒng)的概率密度追蹤控制*
      一維連續(xù)隨機變量概率密度估計
      電子測試(2016年8期)2016-07-29 08:36:44
      Hunt過程在Girsanov變換下的轉(zhuǎn)移概率密度的表示公式
      隨機變量線性組合的分布的一個算法
      氫原子的概率密度分布
      隨機結(jié)構(gòu)-TMD優(yōu)化設(shè)計與概率密度演化研究
      連續(xù)隨機變量函數(shù)概率密度的輔助隨機變量解法
      乌拉特后旗| 兴宁市| 焦作市| 张北县| 汝城县| 靖州| 株洲市| 南昌市| 错那县| 南充市| 昔阳县| 邵阳市| 枣强县| 鲁山县| 宿州市| 黔西县| 株洲县| 思南县| 绥芬河市| 江西省| 太仆寺旗| 古田县| 鄱阳县| 彰武县| 芦山县| 铁岭县| 青岛市| 新兴县| 扶风县| 淮安市| 青浦区| 佛教| 浑源县| 靖边县| 隆化县| 扎囊县| 怀集县| 天祝| 盘锦市| 博湖县| 葫芦岛市|