• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于第二原子鍵連通指數(shù)

    2016-03-01 11:21湯自凱侯耀平
    關(guān)鍵詞:頂點(diǎn)刻畫原子

    湯自凱 侯耀平

    摘 要 設(shè)G=(V,E)是簡單連通圖,第二原子鍵連通指數(shù)是一種的新的原子鍵連通指數(shù)ABC2,即

    ABC2 = ABC2(G)=∑uv∈E(G)nu+nv-2nunv,

    其中nu(nv)表示圖中到邊e=uv的頂點(diǎn)u(v)距離比到頂點(diǎn)v(u)距離小的頂點(diǎn)數(shù).本文刻畫了具有第一小、第二小與第一大、第二大第二原子鍵連通指數(shù)的樹及具有最小第二原子鍵連通指數(shù)的單圈圖.

    關(guān)鍵詞 第二原子鍵連通指數(shù);樹;單圈圖

    All graphs in this article are simple and finite. The vertex and edge sets of a graph G are V(G) and E(G), respectively. The degree of a vertex u in G is denoted by degG(u) or du: The number of vertices of G is denoted by n(G) and is called the order of G. The distance dG(u,v) between vertices u and v∈V(G) is the number of edges on a shortest path connecting u and v in G. Molecular descriptors play a significant role in chemistry, pharmacology, etc, Among which, topological indices have a prominent place[1]. There are numerous topological descriptors that were applied in theoretical chemistry, especially in QSPR/QSAR research[2-5].

    The atom-bond connectivity index is a novel topological index ABC and was conceived by Estrada, Torres, Rodriguez and Gutman[6], defined as

    References:

    [1] TODESCHNI R, CONSONNI V. Handbook of molecular descriptors[M]. Weinheim: Wiley-VCH, 2000.

    [2] WIENER H. Structural determination of paraffin boiling points[J]. J Am Chem Soc,1947,69(1):17-20.

    [3] HOSOYA H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bull Chem Soc Jpn, 1971,44(9):2332-2339.

    [4] DAS K C, GUTMAN I. Estimating the Szeged index[J]. Appl Math Lett, 2009,22(11):1680-1684.

    [5] LIU B, GUTMAN I. On a conjecture on Randic indices[J]. MATCH Commun Math Comput Chem, 2009,157(8):1766-1772.

    [6] ESTRADA E, TORRES L, RODR L, et al. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes[J]. Indian J Chem, 1998,37(10):849-855.

    [7] ESTRADA E. Atom-bond connectivity and the energetic of branched alkanes[J].Chem Phys Lett, 2008,463(4):422-425.

    [8] FURTULA B, GRAOVAC A, VUKICEVIC D. Atom-bond connectivity index of trees[J]. Discrete Appl Math, 2009,157(13):2828-2835.

    [9] XING R, ZHOU B, DU Z. Further results on atom-bond connectivity index of trees[J]. Discrete Appl Math, 2010,158(14):1536-1545.

    [10] DAS K C. Atom-bond connectivity index of graphs[J]. Discrete Appl Math, 2010,158(11):1181-1188.

    [11] GRAOVAC A, GHORBANI M. A new version of atom-bond connectivity index[J].Acta Chim Slov, 2010,57(3):609-612.

    [12] GUTMAN I. A formula for the wiener number of trees and its extension to graphs containing cycles [J]. Graph Theory Notes New York, 1994,27(9):9-15.

    [13] KHADIKAR P V, KARMARKAR S, AGRAWAL V K. A novel PI index and its applications to QSPR/QSAR studies[J]. J Chem Inf Comput Sci, 2001,41(4):934-949.

    (編輯 胡文杰)

    猜你喜歡
    頂點(diǎn)刻畫原子
    一類無理函數(shù)的動力系統(tǒng)刻畫
    原子究竟有多小?
    原子可以結(jié)合嗎?
    帶你認(rèn)識原子
    流逝的歲月 流淌的歌聲
    “圖形的認(rèn)識”復(fù)習(xí)專題
    細(xì)致刻畫,突顯至愛
    刪繁就簡三秋樹
    數(shù)學(xué)問答
    一個(gè)人在頂點(diǎn)
    山西省| 宣武区| 泰州市| 新津县| 宜君县| 东辽县| 安义县| 新丰县| 伊川县| 阳山县| 东明县| 平舆县| 卢氏县| 上高县| 巴彦淖尔市| 罗山县| 宁津县| 绍兴市| 和林格尔县| 溧阳市| 桓仁| 永安市| 辽宁省| 河东区| 太保市| 南丹县| 绍兴市| 石首市| 义马市| 平凉市| 蓬安县| 城口县| 临沂市| 平利县| 广东省| 金川县| 美姑县| 彭山县| 谢通门县| 陈巴尔虎旗| 湖州市|