秦源 郭永紅 王亞寧 賈戰(zhàn)生 張穎
?
鐵調素調控與肝臟疾病引起的鐵代謝紊亂
秦源郭永紅王亞寧賈戰(zhàn)生張穎
710038西安第四軍醫(yī)大學唐都醫(yī)院全軍感染病診療中心(秦源,王亞寧,賈戰(zhàn)生,張穎);西安交通大學醫(yī)學院第二附屬醫(yī)院感染科(郭永紅)通信作者:賈戰(zhàn)生,Email:jiazsh@fmmu.edu.cn;張穎,Email:zyfmmu@hotmail.com
機體鐵代謝涉及鐵離子的吸收、轉運、利用、循環(huán)和儲存等過程。多種肝臟疾病可引起機體鐵代謝紊亂,包括病毒性肝炎和酒精性肝病等。鐵離子可通過芬頓(Fenton)反應促進細胞活性氧簇水平升高造成細胞損傷,因此組織中的鐵含量需維持在正常生理水平[1, 2]。2000年和2001年,Krause[3]和Park[4]等分別從人血清和尿中分離得到鐵調素。該分子是一種肝臟分泌的抗菌短肽,由25個氨基酸組成[5, 6]。鐵調素作為負性調控分子在維持鐵代謝穩(wěn)態(tài)中起著關鍵性作用, 并與多種鐵代謝疾病發(fā)病機制有關[7]。本文就相關肝臟疾病對鐵調素調控的影響及其與鐵代謝紊亂的關系作出如下綜述。
一、機體鐵代謝穩(wěn)態(tài)
人體缺乏有效的鐵離子排出途徑,小腸吸收的鐵離子和巨噬細胞釋放的鐵離子共同決定了血清鐵離子水平。食物中的Fe3+在胃和十二指腸酸性環(huán)境下溶解,由十二指腸細胞色素還原為可溶性Fe2+并與腸黏膜細胞頂端的二價鐵離子轉運體1(Divalent Metal Transporter1,DMT1)結合進入小腸上皮細胞。小腸上皮細胞中的一部分鐵離子與細胞內去鐵蛋白結合生成鐵蛋白,另一部分通過與基底膜側膜鐵轉運蛋白(Ferroportin,F(xiàn)PN)結合進行跨細胞質運輸,鐵離子穿過細胞基底膜進入血漿[8]。血漿中的鐵離子與轉鐵蛋白(Transferrin,Tf)結合后綁定于細胞膜表面轉鐵蛋白受體(Transferrin Receptor,TfR)形成Tf-TfR復合物,通過受體介導的內吞作用進入細胞。胞漿中的Tf-TfR復合物進入內涵體,其內環(huán)境pH約為5.5,酸化的環(huán)境使Tf和TfR發(fā)生構象改變釋放鐵離子,Tf和TfR則循環(huán)至細胞膜表面[9]。
當機體鐵離子水平高于閾值時,肝臟分泌鐵調素循環(huán)至小腸。鐵調素通過作用于B2微球蛋白/組織相融性復合物/轉鐵蛋白受體1復合物(B2-Microglobulin/ Hemochromatosis Gene/Transferrin Receptor,B2M/HFE/TfR1)降低鐵調蛋白(Iron Regulatory Proteins,IRP)活性抑制鐵運輸?shù)鞍妆磉_,減少小腸上皮細胞對鐵離子吸收。同時鐵調素也可使小腸上皮細胞膜表面FPN內化降解,從而減少小腸上皮細胞鐵離子的輸出。對于巨噬細胞,研究發(fā)現(xiàn)上調鐵調素表達會直接抑制巨噬細胞輸出鐵離子導致胞內鐵離子積累[10]。Nemeth[11]和Lim[12]等人研究表明阻斷鐵調素受體FPN表達可抑制巨噬細胞中鐵離子釋放到血漿。因此鐵調素偶聯(lián)鐵轉運蛋白在維持機體鐵穩(wěn)態(tài)中發(fā)揮重要作用。
二、鐵調素調控機制
研究表明鐵調素表達受到多種外源性和內源性因素調控,包括炎癥因子、低氧及其他機體信號通路[13]。骨形態(tài)發(fā)生蛋白/SMAD (Bone Morphogenetic Protein/Small Mother Against Decapentaplegic Homolog,BMP/SMAD)通路是調控鐵調素表達的重要途徑。BMP分子與鐵調素調節(jié)蛋白 (Hemojuvelin,HJV)共同結合于細胞表面BMP受體導致SMAD磷酸化并形成復合體。SMAD復合體轉入細胞核與鐵調素啟動子區(qū)BMP反應元件結合調節(jié)鐵調素HAMP基因轉錄[14]。BMP分子如:BMP2、BMP4、BMP9和BMP6都參與了鐵調素表達調控。
細胞炎癥因子白介素-6(Interleukin-6,IL-6)在固有免疫中發(fā)揮作用。研究表明IL-6可通過激活信號轉化器及轉錄激活因子3 (Signal Transducer and Activator of Transcription 3,STAT3)通路完成對鐵調素調控。磷酸化的STAT3與HAMP基因啟動子區(qū)域STAT應答元件結合增強HAMP基因轉錄活性,促進鐵調素表達[15]。也有研究顯示在機體炎癥反應中白介素-22(Interleukin-22,IL-22)和I型干擾素(Interferon,IFN)等細胞因子可通過STAT3信號通路激活鐵調素啟動子增加鐵調素表達[16]。
最近的研究表明,維生素D是肝細胞和單核細胞中潛在鐵調素調控因子。在維生素D缺乏的環(huán)境中肝臟促進鐵調素合成,細胞內和機體中的鐵調素水平升高并抑制細胞膜表達FPN。1,25-二羥維生素D通過綁定維生素D受體介導的鐵調素啟動子區(qū)抑制鐵調素mRNA翻譯[17]。鐵調素調控也受到胞內信號影響,在內源性介質中CO發(fā)揮了重要作用。CO可阻斷STAT-3磷酸化和內質網(wǎng)應激,抑制鐵調素表達[18]。此外有研究報道低氧環(huán)境可抑制鐵調素表達,低氧誘導因子能間接的通過促進HJV分解抑制鐵調素表達增強小腸對鐵離子的吸收、攝取和血紅素合成,保證充足的鐵離子用于紅細胞生成[19]。
三、肝臟疾病引起的鐵代謝紊亂
肝臟是儲存鐵離子的主要器官,為新陳代謝提供鐵離子。慢性丙型肝炎、乙型肝炎及酒精性肝病均可引發(fā)機體鐵代紊亂。
慢性丙型肝炎患者常出現(xiàn)輕到中度的肝鐵過載癥狀,對肝臟造成損害。已有研究證實,慢性丙型肝炎患者的肝鐵離子平均含量接近0.50 g至0.69 g,是健康人肝鐵離子含量的2~5倍。一些臨床研究報道慢性丙型肝炎患者鐵過載主要集中在網(wǎng)狀內皮組織系統(tǒng),而Fiel等[20]研究表明慢性丙型肝炎患者鐵過載主要存在于肝細胞中。Fujita等[7]認為慢性丙型肝炎患者肝臟鐵調素mRNA水平與血清鐵蛋白濃度及肝臟鐵沉積的程度均有關聯(lián)性。Miura等[21]發(fā)現(xiàn),丙型肝炎病毒(Hepatitis C Virus,HCV)誘導的活性氧簇(Reactive Oxygen Species,ROS)通過增加組蛋白乙酰基轉移酶活性(Histone Deacetylase,HDAC)抑制了CCAAT/增強子綁定蛋白α(CCAAT/Enhancer-Binding Protein α,C/EBPα)與鐵調素啟動子綁定活性。鐵調素表達隨著ROS水平增加而下調[22, 23]。已有研究證實,肝細胞中STAT3磷酸化與IFN誘導的抗HCV效率有關[31]。慢性丙型肝炎患者血清IL-6水平升高增加了STAT3促進鐵調素表達的可能性,但HCV誘導ROS引起的鐵調素轉錄抑制作用更為明顯[24]。
乙型肝炎患者血清鐵調素水平與鐵代謝密切相關。潘衛(wèi)華等[25]對不同類型的乙型肝炎患者血清鐵、鐵蛋白、鐵調素及炎性因子指標相關性研究表明,乙型肝炎患者鐵蛋白含量與病情嚴重程度呈正相關。乙型肝炎引起的炎癥反應會抑制鐵調素表達,重型乙型肝炎患者血清鐵水平顯著升高。Yonal[26]和Jaroszewicz[27]等研究表明,乙型肝炎患者鐵調素水平隨病情不同發(fā)展階段波動,肝硬化階段患者血清鐵調素前體顯著降低且與肝功能損害程度呈負相關。在肝癌患者癌組織中鐵調素表達顯著下調[7]。Olmez等[28]發(fā)現(xiàn)與健康志愿者和丙型肝炎患者相比,乙型肝炎患者血清中的鐵調素前體水平明顯下調,并與肝纖維化程度呈負相關。也有研究顯示,乙型肝炎、丙型肝炎患者體內鐵調素水平都下調并導致FPN表達增多引起血清鐵水平升高及肝鐵過載, 但丙型肝炎患者肝鐵過載癥狀更顯著[29-31]。IL-6可激活STAT3通路促進鐵調素表達,羅光成[32]和朱濤[33]等研究表明慢性乙型肝炎非活動組和活動組IL-6水平均高于對照組,患者血清IL-6水平隨著病情加重顯著升高,提示慢性乙型肝炎患者機體鐵調素表達受到抑制可能是包括STAT3和BMP/SMAD在內的多種信號通路共同調控結果。這與慢性丙型肝炎患者血清IL-6水平升高但鐵調素表達仍受到抑制的現(xiàn)象一致。此外鐵離子對乙型肝炎病毒(Hepatitis B Virus,HBV)持續(xù)感染有重要作用,HBV更容易感染鐵含量高的肝細胞[34],抗病毒治療可顯著促進鐵調素表達從而減輕肝臟鐵過載癥狀。
酒精性肝病患者常伴有肝臟鐵過載癥狀[35],鐵離子和酒精對肝臟損傷具有協(xié)同作用[36]。研究發(fā)現(xiàn)酒精代謝可促進活性氧化簇生成,氧化應激反應抑制了鐵調素表達從而導致腸上皮細胞攝取鐵離子增加和肝臟鐵過載[37]。Harrison等[38]發(fā)現(xiàn),酒精代謝介導氧化應激反應產(chǎn)生的活性氧化簇可通過C/EBPα抑制鐵調素轉錄,而酒精代謝酶抑制劑可阻斷酒精代謝介導的肝臟鐵調素變化,如乙酰半胱氨酸和維生素E等抗氧化劑。因此對于通過抑制C/EBPα活性干擾鐵調素轉錄而言,慢性丙型肝炎引起的肝鐵過載和酒精性肝病導致的肝鐵過載內在機制有一定的相似性。
四、總結與展望
綜上所述,慢性丙型肝炎、乙型肝炎及酒精性肝病患者均存在不同程度的鐵代謝紊亂,而鐵調素調控與這些肝臟疾病密切相關,且慢性丙型肝炎與乙型肝炎之間、慢性丙型肝炎與酒精性肝病之間對鐵調素表達的抑制機制有一定關聯(lián)和相似性??傊?,闡明鐵調素表達和相關信號通路之間的關系將促進病毒性肝炎和酒精性肝病的控制和治療。
參考文獻
[ 1 ]Brissot P, Loreal O. Iron metabolism and related genetic diseases: a cleared land, keeping mysteries. J Hepatol, 2016,64:505-515.
[ 2 ]Gardi C, Arezzini B, Fortino V, et al. Effect of free iron on collagen synthesis, cell proliferation and MMP-2 expression in rat hepatic stellate cells. Biochem Pharmacol, 2002, 64: 1139-1145.
[ 3 ]Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett, 2000, 480:147-150.
[ 4 ]Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 2001, 276: 7806-7810.
[ 5 ]Hunter HN, Fulton DB, Ganz T, et al. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem, 2002,277:37597-37603.
[ 6 ]Michels K, Nemeth E, Ganz T, et al. Hepcidin and Host Defense against Infectious Diseases. PLoS Pathog, 2015, 11: e1004998.
[ 7 ]Fujita N, Sugimoto R, Takeo M, et al. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol Med, 2007, 13: 97-104.
[ 8 ]Graham RM, Reutens GM, Herbison CE, et al. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol, 2008, 48: 327-334.
[ 9 ]Giannetti AM, Snow PM, Zak O, et al. Mechanism for multiple ligand recognition by the human transferrin receptor. PLoS Biol, 2003, 1: E51.
[10]Fillebeen C, Pantopoulos K. Hepatitis C virus infection causes iron deficiency in Huh7.5.1 cells. PLoS One, 2013, 8: e83307.
[11]Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306: 2090-2093.
[12]Lim JE, Jin O, Bennett C, et al. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet, 2005, 37: 1270-1273.
[13]Ashby DR, Gale DP, Busbridge M, et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int, 2009, 75: 976-981.
[14]Babitt JL, Huang FW, Wrighting DM, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet, 2006, 38: 531-539.
[15]Pietrangelo A, Dierssen U, Valli L, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology, 2007, 132: 294-300.
[16]Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood, 2006, 108: 3204-3209.
[17]Brechard S, Tschirhart EJ. Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol, 2008, 84: 1223-1237.
[18]Shin D-Y, Chung J, Joe Y, et al. Pretreatment with CO-releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways. Blood, 2012, 119: 2523-2532.
[19]Evstatiev R, Gasche C. Iron sensing and signalling. Gut, 2012, 61: 933-952.
[20]Fiel MI, Schiano TD, Guido M, et al. Increased hepatic iron deposition resulting from treatment of chronic hepatitis C with ribavirin. Am J Clin Pathol, 2000, 113: 35-39.
[21]Miura K, Taura K, Kodama Y, et al. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology, 2008, 48: 1420-1429.
[22]Foka P, Dimitriadis A, Kyratzopoulou E, et al. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cell Mol Life Sci, 2014, 71: 4243-4258.
[23]Ma L, Zou T, Yuan Y, et al. Duodenal ferroportin is up-regulated in patients with chronic hepatitis C. PLoS One, 2014, 9: e110658.
[24]秦源, 郭永紅, 張穎, 等. 慢性丙型肝炎鐵代謝的失調機制. 臨床肝膽病雜志, 2015, 31: 291-294.
[25]潘衛(wèi)華, 黎映芹, 朱平安, 等. 乙型肝炎病毒攜帶者鐵代謝與血清鐵調素相關性研究. 海南醫(yī)學院學報, 2014, 10: 20-23.
[26]Yonal O, Akyuz F, Demir K, et al. Decreased prohepcidin levels in patients with HBV-related liver disease: relation with ferritin levels. Dig Dis Sci, 2010, 55: 3548-3551.
[27]Jaroszewicz J, Rogalska M, Flisiak R. Serum prohepcidin reflects the degree of liver function impairment in liver cirrhosis. Biomarkers, 2008, 13: 478-485.
[28]Olmez OF, Gurel S, Yilmaz Y. Plasma prohepcidin levels in patients with chronic viral hepatitis: relationship with liver fibrosis. Eur J Gastroenterol Hepatol, 2010, 22: 461-465.
[29]余琳娜, 呂佳珺, 朱云珍, 等. 慢性乙型, 丙型肝炎患者肝臟鐵調素表達的下調. 世界華人消化雜志, 2015, 23: 3366-3373.
[30]Wang XH, Cheng PP, Jiang F, et al. The effect of hepatitis B virus infection on hepcidin expression in hepatitis B patients. Ann Clin Lab Sci, 2013, 43: 126-134.
[31]Armitage AE, Stacey AR, Giannoulatou E, et al. Distinct patterns of hepcidin and iron regulation during HIV-1, HBV, and HCV infections. Proc Natl Acad Sci USA, 2014, 111: 12187-12192.
[32]羅光成, 易婷婷, 閆惠平, 等. 慢性乙型肝炎患者不同疾病階段的血清細胞因子水平研究. 免疫學雜志, 2012, 28: 1065-1068.
[33]朱濤, 陶志華, 陳曉東, 等. 乙型肝炎患者外周血中IL-6和sIL-2R含量變化及其意義. 肝膽胰外科雜志, 2006, 18: 228-229.
[34]Lustbader ED, Hann HW, Blumberg BS. Serum ferritin as a predictor of host response to hepatitis B virus infection. Science, 1983, 220: 423-425.
[35]肖楠, 莊輝. 酒精性肝病分子發(fā)病機制的研究進展. 肝臟, 2010, 4:299-302.
[36]Ohtake T, Saito H, Hosoki Y, et al. Hepcidin is down-regulated in alcohol loading. Alcohol Clin Exp Res, 2007, 31: S2-8.
[37]Harrison-Findik DD, Klein E, Evans J, et al. Regulation of liver hepcidin expression by alcohol in vivo does not involve Kupffer cell activation or TNF-alpha signaling. Am J Physiol Gastrointest Liver Physiol, 2009, 296: G112-118.
[38]Harrison-Findik DD, Schafer D, Klein E, et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem, 2006, 281: 22974-22982.
(本文編輯:張苗)
基金項目:國家自然科學基金(81273218)
(收稿日期:2015-12-25)