陳冬茹 吳莉萍
中山大學(xué)光華口腔醫(yī)學(xué)院·附屬口腔醫(yī)院正畸科;廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室 廣州 510055
低氧誘導(dǎo)因子-1α和反義低氧誘導(dǎo)因子-1α的研究進(jìn)展
陳冬茹吳莉萍
中山大學(xué)光華口腔醫(yī)學(xué)院·附屬口腔醫(yī)院正畸科;廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室廣州 510055
低氧誘導(dǎo)因子(HIF)-1α是細(xì)胞感受氧體積分?jǐn)?shù)高低并作出生物反應(yīng)的關(guān)鍵性分子,具有促進(jìn)血管生成、調(diào)節(jié)pH、誘導(dǎo)自吞噬和程序性細(xì)胞死亡以及促進(jìn)間質(zhì)干細(xì)胞自我更新及分化作用。HIF-1α還參與正畸牙移動及牙周炎過程中牙周組織的修復(fù)與改建,促使細(xì)胞適應(yīng)低氧環(huán)境,完成牙槽骨成骨與吸收過程。反義低氧誘導(dǎo)因子(aHIF)-1α是一種自然反義轉(zhuǎn)錄因子,對HIF-1α具有反義調(diào)控作用;而HIF-1α對aHIF-1α亦可能存在反饋調(diào)節(jié)機(jī)制。HIF-1α表達(dá)于大多數(shù)常見的癌組織及其轉(zhuǎn)移灶中,是腫瘤的一個標(biāo)志性因子,越來越多的研究將其作為治療各類腫瘤的靶點(diǎn)。研究并明確HIF-1α與aHIF-1α的作用及其精確的調(diào)控機(jī)制,可為尋找治療各種疾病的靶點(diǎn)和調(diào)控生理過程提供新的契機(jī)。
低氧誘導(dǎo)因子;反義低氧誘導(dǎo)因子;長鏈非編碼RNA;調(diào)控機(jī)制
This study was supported by the Natural Science Foundation of Guangdong Province(2015A030313083).
[Abstract]Hypoxiainducible factor(HIF)-1α is an important molecule that responds to hypoxia,promotes angiogenesis,modulates pH,induces cell autophagy or programmed cell death,and facilitates the differentiation and self-renewal of mesenchymal stem cells. HIF-1α is also involved in reparation and remolding of periodontal tissues as well as in helping cells to adapt to hypoxia and promote the formation and resorption of the alveolar bone. Antisense hypoxiainducible factor(aHIF)-1α is a natural antisense transcript that negatively controls HIF-1α. HIF-1α may have a feedback effect on aHIF-1α. HIF-1α is an important biomarker expressed in primary and metastasis sites in several types of for cancers. HIF-1α is regarded as target for treating cancers. Understanding the functions and regulatory mechanisms of HIF-1α and aHIF-1α provides new opportunity to discover targets for treatment of different diseases and modulate physiological processes.
[Key words]hypoxia inducible factor;antisense hypoxia inducible factor;long non-coding RNA;regulatory mechanism
低氧誘導(dǎo)因子(hypoxia inducible factor,HIF)-1α是細(xì)胞感受氧體積分?jǐn)?shù)高低并作出生物反應(yīng)的關(guān)鍵分子,參與低氧狀態(tài)下多種生命調(diào)節(jié)過程。鑒于HIF-1α的重要性,其表達(dá)調(diào)控也備受關(guān)注。反義低氧誘導(dǎo)因子(antisense hypoxia inducible factor,aHIF)-1α是一種自然反義轉(zhuǎn)錄因子(natural antisense transcript,NAT),屬于長鏈非編碼RNA(long non-coding RNA,LncRNA),對HIF-1α具有反義調(diào)控作用;同時,HIF-1α對aHIF-1α亦存在反饋調(diào)節(jié)機(jī)制。明確HIF-1α與aHIF-1α的功能及其調(diào)控機(jī)制,不僅可以對疾病治療提供新的思路,而且可以進(jìn)一步了解生命的精確調(diào)控機(jī)制。
Semenza等[1]發(fā)現(xiàn)在低氧的肝癌細(xì)胞株中存在著一種蛋白質(zhì)可特異性地結(jié)合于促紅細(xì)胞生成蛋白(erythropoietin,EPO)基因啟動子區(qū)域的寡核苷酸序列他們將其被命名為HIF-1。在低氧條件下,HIF-1廣泛存在于哺乳動物與人體細(xì)胞中。HIF-1是由α和β兩個亞基組成的異二聚體,HIF-1α是主要的氧調(diào)節(jié)亞基,在常氧狀態(tài)下易經(jīng)遍在蛋白(俗稱泛素)酶體途徑降解,表達(dá)水平較低;而HIF-1β在常氧和低氧狀態(tài)下都穩(wěn)定表達(dá),不受氧體積分?jǐn)?shù)的影響[2]。HIF-1α轉(zhuǎn)位到細(xì)胞核內(nèi)與HIF-1β形成異二聚體后,可結(jié)合到一些特定基因的低氧反應(yīng)元件(hypoxia response element,HRE)部位,激活其下游多種低氧反應(yīng)性因子的表達(dá),例如EPO、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、核心結(jié)合因子-α1(core binding factor α1,CBFA1)、堿性磷酸酶(alkaline phosphatase,AKP)、地諾前列酮(舊稱前列腺素E2)、微小RNA(microRNA,miRNA A)等[3-6],從而維持氧穩(wěn)態(tài),使細(xì)胞避免或適應(yīng)低氧環(huán)境。
HIF-1α具有促進(jìn)血管生成、能量代謝、pH調(diào)節(jié)、誘導(dǎo)自吞噬和程序性細(xì)胞死亡作用[3]。此外,HIF-1α對間質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)自我更新及分化有調(diào)節(jié)作用。Wagegg等[7]發(fā)現(xiàn),低氧可上調(diào)人MSC中HIF-1α及其下游因子的表達(dá),促進(jìn)其成骨向分化,抑制其成脂向分化;抑制HIF-1α的表達(dá)則促進(jìn)人MSC成脂向分化。Zhou等[8]亦發(fā)現(xiàn),低氧通過細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)1/2和P38途徑促進(jìn)人MSC成骨分化及血管生成,HIF-1α和AKP的表達(dá)量明星升高。CBFA1也可穩(wěn)定HIF-1α,進(jìn)一步增強(qiáng)低氧促成骨分化作用[9];然而,HIF-1α可啟動下游因子扭曲基因(twist),結(jié)合E-盒位點(diǎn),下調(diào)CBFA1,抑制低氧下人MSC成骨分化[10]。Park等[11]則發(fā)現(xiàn)HIF-1α穩(wěn)定表達(dá),可提高M(jìn)SC自我更新能力并保持其未分化狀態(tài)。可見,低氧引起HIF-1α表達(dá)升高,但其促M(fèi)SC分化作用仍存在爭議。
HIF-1α也參與正畸牙移動及牙周炎過程中牙周組織的修復(fù)與改建。陳彬等[12]發(fā)現(xiàn),在大鼠正畸牙移動過程中,張力側(cè)和壓力側(cè)牙周膜血供減少,氧水平下降,誘導(dǎo)HIF-1α高表達(dá),促使細(xì)胞適應(yīng)低氧環(huán)境,增加存活率,完成牙槽骨成骨與吸收的過程,HIF-1α可能是促骨生成及吸收的雙效因子。另外在人牙周膜干細(xì)胞中,低氧激活ERK-促絲裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)和P38MAPK信號級聯(lián)信號轉(zhuǎn)導(dǎo)通路的信號轉(zhuǎn)導(dǎo),刺激CBFA1和成骨細(xì)胞特異性轉(zhuǎn)錄因子(osterix,Osx)表達(dá)并上調(diào)AKP 和VEGF,促進(jìn)骨生成及血管生成,其中ERK1/2磷酸化較緩慢和持久,而P38信號以相對較快和瞬間形式被激活[8,13]。對于牙周炎的牙周膜細(xì)胞模型,HIF-1α可增強(qiáng)牙齦卟啉單胞菌的脂多糖誘導(dǎo)促炎因子的生成,加快牙周組織的破壞[14]。
HIF-1α表達(dá)受低氧體積分?jǐn)?shù)、時間和細(xì)胞類型的影響。HIF-1α降解依賴于遍在蛋白-蛋白連接酶(ubiquitin-protein ligating enzyme,E3)復(fù)合體,包括VHL(von Hippel-Lidau disease gene)、延伸蛋白B及C、cullin-2及位于HIF-1α上的氧依賴性降解區(qū)域(ODD)等[2-3]。此外,一些生長因子、炎癥因子、癌基因等可通過磷脂酰肌醇-3-激酶/蛋白激酶B及ERK信號轉(zhuǎn)導(dǎo)通路的信號轉(zhuǎn)導(dǎo),調(diào)節(jié)HIF-1α蛋白的穩(wěn)定性[15-17]??梢娨酝鶎IF-1α基因表達(dá)調(diào)控的研究多集中在翻譯和翻譯后水平,較少針對轉(zhuǎn)錄水平的研究。Thrash-Bingham等[18]則發(fā)現(xiàn)長期低氧,HIF-1α基因表達(dá)下降,主要由自然aHIF-1α調(diào)控HIF-1α mRNA水平所致。
aHIF-1α可調(diào)控HIF-1α mRNA,aHIF-1α起源于HIF-1α基因的3'端,即3'aHIF-1α。Baranello等[19]于HIF-1α基因的5'端發(fā)現(xiàn)的一種新的反義HIF-1α轉(zhuǎn)錄子,即5'aHIF-1α,亦可能對HIF-1α有反義調(diào)控作用。NAT通常指自然情況下生物體內(nèi)生成的反義RNA,與其互補(bǔ)RNA通過堿基互補(bǔ)配對,引起靶基因的降解或翻譯抑制。它們具有一些共同特征,大多數(shù)NAT來源于與正義轉(zhuǎn)錄子相同的基因組位點(diǎn),由編碼正義轉(zhuǎn)錄子的相對鏈編碼,稱為順式編碼NAT(cis-NAT),cis-NAT與靶基因序列可完全互補(bǔ),而來源于與靶基因不同基因組位點(diǎn)的NAT則稱為反式編碼NAT(trans-NAT)。多數(shù)NAT不編碼蛋白質(zhì),通過與正義因子雜交而起調(diào)控作用,但也可能通過RNA剪接、RNA編輯、轉(zhuǎn)錄干擾等途徑起作用[20]。在諸多的RNA中皆存在NAT,其中包括HIF-1α、乙酰膽堿酯酶[21]和紅細(xì)胞生成蛋白受體[20]等。
3'aHIF-1α和5'aHIF-1α基因的轉(zhuǎn)錄長度均大于200 nt,屬于LncRNA。LncRNA沒有或很少有蛋白質(zhì)編碼功能,在哺乳動物其基因組普遍被轉(zhuǎn)錄[22-23]。依據(jù)它們距離蛋白質(zhì)編碼基因的距離可將其分為順式反義型、雙向型、重疊型和內(nèi)含子型等LncRNA[24-25]。LncRNA參與表觀遺傳、轉(zhuǎn)錄以及轉(zhuǎn)錄后調(diào)控等多種重要的調(diào)控過程,通過基因印記、染色質(zhì)重塑、調(diào)節(jié)細(xì)胞周期、剪接過程、mRNA失活及轉(zhuǎn)錄后調(diào)節(jié)等機(jī)制完成其生物學(xué)作用[22]。3'aHIF-1α因發(fā)現(xiàn)較早,研究也相對較多。3'aHIF-1α RNA大小為1.8~1.9 kb,與HIF-1α mRNA 3' 非翻譯區(qū)嚴(yán)格互補(bǔ),互補(bǔ)區(qū)約1 027 bp,在此互補(bǔ)區(qū)尚有一個未命名的區(qū)域,富含AU堿基,可能影響HIF-1α mRNA的穩(wěn)定,加快HIF-1α mRNA的降解[26]。5'aHIF-1α具有5'帽結(jié)構(gòu)和3'多聚A尾,而3'aHIF-1α沒有這兩種結(jié)構(gòu)[27]。3'aHIF-1α在人體的大多數(shù)組織中都有表達(dá),尤其是在胎兒組織中表達(dá)量高于成人組織[26]。3'aHIF-1α在嚙齒類動物間具有保守型,大鼠及小鼠的3'aHIF-1α 的3'端與HIF-1α互補(bǔ)的特點(diǎn)與人類相似,而5'端在種屬間存在差異[28]。
aHIF-1α作為HIF-1α的自然反義轉(zhuǎn)錄因子,對HIF-1α起關(guān)鍵性的負(fù)調(diào)節(jié)作用。在常氧狀態(tài)下,3'aHIF-1α、HIF-1α表達(dá)均較低。3'aHIF-1α在巨噬細(xì)胞中低氧24 h內(nèi)表達(dá)持續(xù)升高,當(dāng)恢復(fù)到正常氧體積分?jǐn)?shù)時表達(dá)量迅速下降;采用腺病毒轉(zhuǎn)染方式使3'aHIF-1α基因高表達(dá),低氧條件下HIF-1α mRNA下調(diào),而常氧條件下HIF-1α mRNA表達(dá)無明顯下調(diào),可能因?yàn)?'aHIF-1α蛋白在常氧下被迅速降解所致[29]。3'aHIF-1α與HIF-1α的表達(dá)變化具有組織特異性,3'aHIF-1α可能與組織氧體積分?jǐn)?shù)關(guān)系更密切,而HIF-1α mRNA的表達(dá)可能更多地與組織對糖的需求量有關(guān)[28]。Bertozzi等[27]運(yùn)用RNA熒光原位雜交技術(shù)發(fā)現(xiàn),HIF-1α mRNA位于核內(nèi)和細(xì)胞質(zhì)內(nèi),5'aHIF-1α和3'aHIF-1α僅位于核內(nèi),5'aHIF-1α和核孔復(fù)合體Nup62共聚集于核膜周圍,可能具有調(diào)控膜轉(zhuǎn)運(yùn)功能并影響HIF-1α表達(dá)。張學(xué)翠等[30]發(fā)現(xiàn)在低氧的人成骨細(xì)胞MG63中有5'aHIF-1α表達(dá),其表達(dá)量隨著氧體積分?jǐn)?shù)的減少而逐漸下降;與5'aHIF-1α相反,HIF-1α蛋白則隨著氧體積分?jǐn)?shù)的下降而逐漸升高。由于LncRNA可識別互補(bǔ)序列,對轉(zhuǎn)錄后mRNA的剪接、編輯、翻譯和降解過程等均有調(diào)節(jié)作用,反義LncRNA能與mRNA的關(guān)鍵順式序列形成互補(bǔ)的雙鏈,干預(yù)該段序列的剪接并進(jìn)一步影響該序列有效翻譯和蛋白質(zhì)表達(dá)[31];因此,推測5'aHIF-1α可能在轉(zhuǎn)錄或轉(zhuǎn)錄后抑制MG63細(xì)胞中HIF-1α的表達(dá),且隨低氧程度的增加其抑制作用逐漸降低。
研究顯示,HIF-1α也可調(diào)控3'aHIF-1α的表達(dá)。短期低氧,3'aHIF-1α及HIF-1α表達(dá)均較高;長期低氧,3'aHIF-1α表達(dá)仍較高,此時HIF-1α mRNA表達(dá)降低,進(jìn)而影響HIF-1α蛋白,最終恢復(fù)到基本水平[28-29]。人類的3'aHIF-1α基因啟動子區(qū)域可能存在HRE序列,此序列為HIF-1α蛋白的結(jié)合位點(diǎn),故推斷3'aHIF-1α也是HIF-1的下游反應(yīng)因子,存在反饋調(diào)節(jié)作用[26]。在低氧狀態(tài)下,HIF-1可調(diào)節(jié)3'aHIF-1α,使其表達(dá)升高,因而長期低氧高表達(dá)的3'aHIF-1α可下調(diào)HIF-1α的表達(dá)。在低氧條件下,HIF-1α蛋白表達(dá)在HIF-1β基因敲除的細(xì)胞中上調(diào),但不能與HIF-1β組合成功能性HIF-1,此時3'aHIF-1α表達(dá)不上調(diào),支持3'aHIF-1α可能是功能性HIF-1α下游因子[32]。
在不同的刺激作用下,5'aHIF-1α與3'aHIF-1α反應(yīng)不同;在腫瘤抑制劑喜樹堿作用的HCT116細(xì)胞中,HIF-1α mRNA表達(dá)降低,5'aHIF-1α和3' aHIF-1α表達(dá)均上調(diào);然而,低氧模擬劑去鐵胺只能上調(diào)3'aHIF-1α的表達(dá)。此外,5'aHIF-1α與3' aHIF-1α的表達(dá)還具有細(xì)胞特異性,海拉細(xì)胞中,5'aHIF-1α表達(dá)上調(diào),而3'aHIF-1α表達(dá)不上調(diào)[27]。他們推測,這兩種aHIF-1α具有不同的調(diào)控作用。
HIF-1α蛋白過表達(dá)存在于大多數(shù)常見癌組織及其轉(zhuǎn)移灶中,成為腫瘤的一個標(biāo)志性因子,如胰腺癌、肝癌、乳腺癌和頭頸部鱗狀細(xì)胞癌[33-34]等。迄今,越來越多的研究將HIF-lα作為治療各類腫瘤的靶點(diǎn)。HIF-1α在其他疾病,如牙周炎、骨折、心肌梗死和腦梗死[35-36]等中均有明顯的變化,提示HIF-1α在這些疾病中發(fā)揮著重要的作用。利用上調(diào)HIF-1α活性治療局部低血低氧疾病的研究也在進(jìn)行中。
關(guān)于aHIF-1α與疾病方面的研究主要集中在腫瘤領(lǐng)域,aHIF-1α的表達(dá)量可能與腫瘤預(yù)后有關(guān)。有研究[18]顯示,aHIF在非乳頭狀腎癌中呈高表達(dá)狀態(tài)。在嗜鉻細(xì)胞瘤中,3'aHIF-1α表達(dá)越高,腫瘤轉(zhuǎn)移的風(fēng)險(xiǎn)越大[37]。在乳腺癌細(xì)胞中,3'aHIF-1α高表達(dá)是其標(biāo)志性危險(xiǎn)因素,較HIF-1α更具有意義。5'aHIF-1α與3'aHIF-1α則均在腎癌中有表達(dá)[27]。在慢性心臟衰竭性疾病中,3'aHIF-1α表達(dá)上調(diào)[37]。Neckers[32]認(rèn)為,3'aHIF-1α可能是HIF-1α 與VHL之間重要的聯(lián)系因子。VHL是一種腫瘤抑制基因,也是影響HIF-1α蛋白穩(wěn)定的關(guān)鍵調(diào)節(jié)因子,編碼pVHL蛋白,主要是通過調(diào)節(jié)HIF-1α mRNA的產(chǎn)生等途徑抑制腫瘤發(fā)生。想常氧條件下,pVHL可抑制HIF-1α表達(dá);在低氧條件下,在缺少功能性pVHL的細(xì)胞中,3'aHIF-1α不作出反應(yīng)。Neckers[32]推測,3'aHIF-1α可能是對VHL反應(yīng)的基因。
[1]Semenza GL,Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol,1992,12(12):5447-5454.
[2]Hellwig-Bürgel T,Stiehl DP,Wagner AE,et al. Review: hypoxia-inducible factor-1(HIF-1): a novel transcription factor in immune reactions[J]. J Interferon Cytokine Res,2005,25(6):297-310.
[3]Wang XJ,Si LB. Advances on hypoxia inducible factor-1[J]. Chin Med J,2013,126(18):3567-3571.
[4]Jian C,Li C,Ren Y,et al. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells[J]. Inflammation,2014,37 (5):1413-1423.
[5]Nallamshetty S,Chan SY,Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity[J]. Free Radic Biol Med,2013,64:20-30.
[6]Mace TA,Collins AL,Wojcik SE,et al. Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells[J]. J Surg Res,2013,184(2):855-860.
[7]Wagegg M,Gaber T,Lohanatha FL,et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxiainducible factor-1 dependent manner[J]. PLoS ONE,2012,7(9):e46483.
[8]Zhou Y,Guan X,Wang H,et al. Hypoxia induces osteogenic/angiogenic responses of bone marrowderived mesenchymal stromal cells seeded on bonederived scaffolds via ERK1/2 and p38 pathways[J]. Biotechnol Bioeng,2013,110(6):1794-1804.
[9]Lee SH,Che X,Jeong JH,et al. Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein(pVHL)and stimulates angiogenesis in growth plate hypertrophic chondrocytes[J]. J Biol Chem,2012,287 (18):14760-14771.
[10]Yang DC,Yang MH,Tsai CC,et al. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST [J]. PLoS ONE,2011,6(9):e23965.
[11]Park IH,Kim KH,Choi HK,et al. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state[J]. Exp Mol Med,2013,45:e44.
[12]陳彬,李琥,穆超,等. 大鼠正畸牙移動中HIF-1α的表達(dá)[J]. 口腔生物醫(yī)學(xué),2011,2(2):78-81. Chen B,Li H,Mu C,et al. Expression of hif-1α in periodontal tissue during orthodontic tooth movement[J]. Oral Biomed,2011,2(2):78-81.
[13]Wu Y,Yang Y,Yang P,et al. The osteogenic differentiation of PDLSCs is mediated through MEK/ ERK and p38 MAPK signalling under hypoxia[J]. Arch Oral Biol,2013,58(10):1357-1368.
[14]Kim YS,Shin SI,Kang KL,et al. Nicotine and lipopolysaccharide stimulate the production of MMPs and prostaglandin E2by hypoxia-inducible factor-1α up-regulation in human periodontal ligament cells[J]. J Periodont Res,2012,47(6):719-728.
[15]Zeng D,Wang J,Kong P,et al. Ginsenoside Rg3 inhibits HIF-1α and VEGF expression in patient with acute leukemia via inhibiting the activation of PI3K/ Akt and ERK1/2 pathways[J]. Int J Clin Exp Pathol,2014,7(5):2172-2178.
[16]柳永蕾,宋現(xiàn)讓. 乏氧誘導(dǎo)因子結(jié)構(gòu)、表達(dá)及調(diào)控[J]. 中國生物化學(xué)與分子生物學(xué)報(bào),2006,22(1):1-8. Liu YL,Song XR. Structure,expression and regulation of hypoxia-inducible factor[J]. Chin J Biochem Mol Biol,2006,22(1):1-8.
[17]Lee SH,Jee JG,Bae JS,et al. A group of novel HIF-1α inhibitors,glyceollins,blocks HIF-1α synthesis and decreases its stability via inhibition of the PI3K/ AKT/mTOR pathway and Hsp90 binding[J]. J Cell Physiol,2015,230(4):853-862.
[18]Thrash-Bingham CA,Tartof KD. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia[J]. J Natl Cancer Inst,1999,91(2):143-151.
[19]Baranello L,Bertozzi D,F(xiàn)ogli MV,et al. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase Ⅱ from promoter-proximal pause site,antisense transcription and histone acetylation at the human HIF-1alpha gene locus[J]. Nucleic Acids Res,2010,38(1):159-171.
[20]Werner A,Sayer JA. Naturally occurring antisense RNA: function and mechanisms of action[J]. Curr Opin Nephrol Hypertens,2009,18(4):343-349.
[21]Xi Q,Gao N,Zhang X,et al. A natural antisense transcript regulates acetylcholinesterase gene expression via epigenetic modification in hepatocellular carcinoma[J]. Int J Biochem Cell Biol,2014,55:242-251.
[22]Gibb EA,Brown CJ,Lam WL. The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer,2011,10(1):38.
[23]Gallagher PG. Long noncoding RNAs in erythropoiesis[J]. Blood,2014,123(4):465-466.
[24]Mercer TR,Dinger ME,Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet,2009,10(3):155-159.
[25]Gibb EA,Vucic EA,Enfield KS,et al. Human cancer long non-coding RNA transcriptomes[J]. PLoS ONE,2011,6(10):e25915.
[26]Rossignol F,Vaché C,Clottes E. Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues[J]. Gene,2002,299(1/2):135-140.
[27]Bertozzi D,Iurlaro R,Sordet O,et al. Characterization of novel antisense HIF-1α transcripts in human cancers[J]. Cell Cycle,2011,10(18):3189-3197.
[28]Rossignol F,de Laplanche E,Mounier R,et al. Natural antisense transcripts of HIF-1alpha are conserved in rodents[J]. Gene,2004,339:121-130.
[29]Poitz DM,Augstein A,Hesse K,et al. Regulation of the HIF-system in human macrophages—differential regulation of HIF-α subunits under sustained hypoxia[J]. Mol Immunol,2014,57(2):226-235.
[30]張學(xué)翠,金小嵐,郎紅梅,等. 低氧條件下人成骨細(xì)胞長鏈非編碼RNA5'aHIF-1α的表達(dá)[J]. 中華骨質(zhì)疏松和骨礦鹽疾病雜志,2013,6(3):246-250. Zhang XC,Jin XL,Lang HM,et al. Expression of long non-coding rna(5'aHIF-1α) in human osteoblast cells under hypoxic conditions[J]. Chin J Osteoporosis Bone Mineral Res,2013,6(3):246-250.
[31]Wilusz JE,Sunwoo H,Spector DL. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes Dev,2009,23(13):1494-1504.
[32]Neckers LM. aHIF: the missing link between HIF-1 and VHL[J]. J Natl Cancer Inst,1999,91(2):106-107.
[33]Huang GW,Yang LY,Lu WQ. Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in hepatocellular carcinoma:impact on neovascularization and survival[J]. World J Gastroenterol,2005,11(11):1705-1708.
[34]Liu ZJ,Semenza GL,Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. J Zhejiang Univ Sci B,2015,16(1):32-43.
[35]Lee JY,Hirota SA,Glover LE,et al. Effects of nitric oxide and reactive oxygen species on HIF-1α stabilization following clostridium difficile toxin exposure of the Caco-2 epithelial cell line[J]. Cell Physiol Biochem,2013,32(2):417-430.
[36]Li L,Yin X,Ma N,et al. Desferrioxamine regulates HIF-1 alpha expression in neonatal rat brain after hypoxia-ischemia[J]. Am J Transl Res,2014,6(4):377-383.
[37]Span PN,Rao JU,Oude Ophuis SB,et al. Overexpression of the natural antisense hypoxia-inducible factor-1alpha transcript is associated with malignant pheochromocytoma/paraganglioma[J]. Endocr Relat Cancer,2011,18(3):323-331.
(本文采編王晴)
Research progress on hypoxia inducible factor-1α and antisense hypoxia inducible factor-1α
Chen Dongru,Wu Liping. (Dept. of Orthodontics,Guanghua School of Stomatology,Hospital of Stomatology,Sun Yat-sen University;Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055,China)
Q 51
A
10.7518/gjkq.2016.05.021
2015-12-10;[修回日期]2016-05-24
廣東省自然科學(xué)基金(2015A030313083)
陳冬茹,碩士,Email:979254235@qq.com
吳莉萍,副教授,博士,Email:wuliping218@gmail.com