• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      晚中新世以來帕米爾高原生長過程及其與塔里木盆地氣候變化可能的聯(lián)系

      2016-03-13 03:18:52李樂意劉向東賀寧強宋院利
      地球環(huán)境學(xué)報 2016年4期
      關(guān)鍵詞:谷地塔什庫爾干帕米爾高原

      張 飚,李樂意,劉向東,賀寧強,杜 彪,宋院利,常 宏

      (1. 陜西省地質(zhì)調(diào)查中心,西安 710068;2. 中國科學(xué)院地球環(huán)境研究所黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061;3. 中國科學(xué)院大學(xué),北京 100049)

      晚中新世以來帕米爾高原生長過程及其與塔里木盆地氣候變化可能的聯(lián)系

      張 飚1,李樂意2,3,劉向東1,賀寧強1,杜 彪1,宋院利1,常 宏2

      (1. 陜西省地質(zhì)調(diào)查中心,西安 710068;2. 中國科學(xué)院地球環(huán)境研究所黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061;3. 中國科學(xué)院大學(xué),北京 100049)

      帕米爾高原是我國極端干旱區(qū) —— 塔里木盆地的西部邊界,也是青藏高原西部構(gòu)造結(jié)所處的位置,所以,它的構(gòu)造演化過程對于研究青藏高原生長過程及塔里木盆地的干旱化歷史具有重要的意義。本文通過帕米爾高原東北部正斷裂活動的空間展布、活動性質(zhì)及運動時代的分析,結(jié)合最近構(gòu)造觀測結(jié)果,提出帕米爾高原在晚中新世已經(jīng)隆升到了能夠影響西風(fēng)氣流通過的高度。盡管高原在晚中新世已經(jīng)存在東西向的拉張應(yīng)力,木吉-塔什庫爾干谷地可能最終形成于早-中更新世。這一事件奠定了作為喜馬拉雅山到南天山之間過渡的帕米爾高原的現(xiàn)今地貌形態(tài)及塔里木盆地的氣候特征背景。本文結(jié)合西昆侖北部及南天山的古地理演化及構(gòu)造運動證據(jù)分析,提出帕米爾高原晚中新世以來的構(gòu)造地貌演化可能是塔里木盆地晚中新世干旱化加劇的主要原因,中更新世氣候代用指標(biāo)解釋復(fù)雜性可能也與此密切相關(guān),全球變冷和特提斯海西退可能對晚中新世以來的氣候變化也有一定的貢獻(xiàn)。

      帕米爾高原;谷地;正斷裂;走滑斷裂;構(gòu)造隆升;干旱化

      帕米爾高原位于青藏高原的西北部,北部以主帕米爾逆沖斷裂與西南天山相接,東西分別是塔里木盆地和塔吉克盆地(圖1),它的構(gòu)造運動與應(yīng)力傳遞不僅決定了自己的生長過程,同樣是天山隆起與變形的重要應(yīng)力來源(張培震等,1996)。它的最后形成也是新生代全球海平面下降背景下副特提斯海完全退出塔里木盆地的最重要原因之一(Savostin et al,1986;郝詒純等,2002;Bosboom et al,2011;An et al,2014)。副特提斯海從塔里木盆地最后退出的年代為始新世-漸新世(孫東懷等,2013;Sun and Jiang,2013),這一時期與青藏高原在42 — 34 Ma的生長有時間上的一致性(An et al,2014),而且印度板塊西北部與歐亞板塊的匯聚速率在~40 —45 Ma降低了45%左右,這被理解為平均海拔高度的提高造成了匯聚速率的減?。∕olnar and Stock,2009)。帕米爾高原東北部新生代沉積物中~40 Ma的鋯石年齡峰值揭示了發(fā)生于始新世的生長事件(Bershaw et al,2012)。這些均說明了晚始新世帕米爾高原的隆升是副特提斯海向西退出的重要原因之一,盡管其在中始新世和中中新世可能也發(fā)生了海退事件(Ritts et al,2008)。由于帕米爾高原及青藏高原西部的隆起造成西風(fēng)環(huán)流分為南北兩支而影響了西風(fēng)降水在這一區(qū)域的再分配(Liu and Yin,2001;Wu et al,2007),這一過程與青藏高原的屏障作用一起導(dǎo)致了我國西北廣大區(qū)域極端干旱氣候的形成(Sun et al,2008;Chang et al,2012;Liu et al,2015)。 這些地質(zhì)事件和氣候變化的相關(guān)性揭示了它們之間的密切關(guān)系。

      圖1 帕米爾及周邊地區(qū)構(gòu)造地貌簡圖MPT:帕米爾主逆斷裂,CPT:中帕米爾逆斷裂,SKT:Shyok逆斷裂,MBT:主前緣逆斷裂, MKT:Maidan-Karatieke逆斷裂:KTT:柯坪塔格逆斷裂,KTF:Kindytash斷裂,TFF:達(dá)拉斯-費爾干納斷裂,KLF:昆侖斷裂,KKF:喀喇昆侖斷裂,WKT:西昆侖逆斷裂Fig.1 Simplifi ed morphotectonic map of the Pamirs and suurounding areas MPT: Main Pamirs Trust, CPT: Central Pamirs Trust, SKT: Shyok Trust, MBT: Main Boundry Trust, MKT: Maidan-Karatieke Trust, KTT: KepingTagh Trust, KTF: Kindytash Fault, TFF: Talas-Fergana Fault, KLF: Kunlun Fault, KKF: Karakorum Fault, WKT: West Kunlun Trust.

      塔里木盆地新生代沉積物中介形蟲研究顯示(圖2),早更新世的干旱環(huán)境有所好轉(zhuǎn),由之前的上新世基本沒有介形蟲到出現(xiàn)種類較少的介形蟲,晚更新時種屬增加,顯示氣候逐漸濕潤,湖盆擴大(Sun et al,1999)。而根據(jù)沉積物中孢粉組合恢復(fù)的降水信息卻顯示中-晚更新世盆地干旱化明顯加劇,年降水量由654 — 1031.3 mm降低為361 — 368.2 mm(Hao et al,2012)。環(huán)境磁學(xué)指標(biāo)特別是磁化率在早-中更新世沒有明顯的變化,而晚更新時稍有增大(Chang et al,2012;常秋芳和常宏,2013)。這些指標(biāo)之間對氣候特征指示的差異,不僅與不同指標(biāo)在一定氣候背景下物理意義的解讀有聯(lián)系,同時與盆地的古地理格局變化有重要的關(guān)聯(lián)。由于塔里木盆地主要受西風(fēng)氣候影響,而帕米爾高原位于盆地的上風(fēng)向位置,其地貌形態(tài)改變對西風(fēng)環(huán)流的影響可能是造成盆地內(nèi)氣候特征變化的重要因素。

      圖2 晚中新世以來塔里木盆地氣候變化特征Fig.2 Climatic changes in the Tarim Basin since Late Miocene

      根據(jù)歐亞和岡瓦納大陸原始碎塊古生代的縫合帶在帕米爾高原東西兩側(cè)的位置、高原西部和北緣邊緣白堊紀(jì)-古近紀(jì)沉積物古地磁分析、沉積相突然變化帶位置變化及高原北部地殼縮短量等綜合估算,高原在新生代向北匯聚了300 — 700 km(Burtman and Molnar,1993;Burtman,2000;Negredo et al,2007;Schmidt et al,2011)。盡管有研究指出,帕米爾高原構(gòu)造隆升在晚始新世-早中新世之間開始(Burtman and Molnar,1993;Yin et al,2002),新生代沉積相變化、裂變徑跡年代學(xué)與熱模型分析、地層變形等特征綜合研究顯示,高原外部主要縮短發(fā)生在25 Ma到14 Ma之間,縮短量可達(dá)250 — 280 km,而在晚始新世之前和中中新世之后縮短量較少,高原內(nèi)部的變形在晚中新世更為明顯(Sobel and Dumitru,1997;Cowgill,2010)?,F(xiàn)在GPS速度場研究顯示,印度板塊西北角到亞洲之間的匯聚速率為~30 mm · a-1,其中有10 — 15 mm · a-1的匯聚量被帕米爾高原北部邊界的阿萊斷裂帶吸收,另外有10 — 15 mm · a-1的匯聚量被白沙瓦盆地北部的斷裂帶吸收,帕米爾高原中部南北向縮短幾乎可以忽略,但東西向的拉伸運動速率可達(dá)到5 — 10 mm · a-1(Mohadjer et al,2010;Ischuk et al,2013)。這顯示了帕米爾高原北部邊界是重要的構(gòu)造運動場所,吸收了青藏高原西構(gòu)造結(jié)縮短量的三分之一多。顯然,高原中部到北部在中新世就已經(jīng)隆升到較高的位置。由于這一地區(qū)是控制塔里木盆地氣候特征的北半球中緯度西風(fēng)直接進(jìn)入盆地的必經(jīng)之路,這一地貌變化很可能影響了塔里木盆地氣候變化過程。所以,高原隆升到現(xiàn)今位置的時代限定是分析塔里木盆地氣候變化的重要信息。

      本文擬通過帕米爾高原北部大范圍野外地質(zhì)調(diào)查,特別是新生代地層分析,結(jié)合高原構(gòu)造運動信息,探討高原達(dá)到現(xiàn)今高度的時代及其對塔里木盆地氣候特征的影響。

      1 區(qū)域地質(zhì)特征

      帕米爾高原是青藏高原構(gòu)造帶西構(gòu)造結(jié)所在位置,在印度與歐亞板塊碰撞過程中形成(Burtman and Molnar,1993)。盡管高原東北部古地磁研究結(jié)果顯示始新世以來,高原整體相對歐亞大陸發(fā)生了明顯的逆時針旋轉(zhuǎn)(孫知明等,2013),南帕米爾西部的變質(zhì)鋯石年代為35 — 19 Ma也揭示了其漸新世以來已經(jīng)存在地殼加熱加厚的過程(李羿芃等,2013)。但是,地震剖面分析顯示,高原北部新生代變形主要沿著向南傾的MPT和前緣的MAT發(fā)生(Fan et al,1994;Negredo et al,2007)。阿萊盆地西部構(gòu)造與地層揭示的碰撞作用開始于中新世-上新世(Pavlis et al,1997),阿萊峽谷平衡剖面解析提出縮短可能始于漸新世-中新世而且持續(xù)至今(Coutand et al,2002),高原東部快速剝蝕的年代揭示快速運動可能發(fā)生于早中新世(Sobel and Dumitru,1997)。通過帕米爾與天山之間巴克斯布雷克新生代沉積物磁化率各向異性分析,Tang et al(2015)提出構(gòu)造應(yīng)力加強始于26 Ma。高原東北部烏依塔格剖面沉積物鋯石年齡譜分析顯示,早中新世開始沉積物源發(fā)生了明顯的變化(Bershaw et al,2012)。構(gòu)造帶變質(zhì)巖特征與年代學(xué)分析指出,高原東部的喀喇昆侖斷裂活動自27 Ma開始,這也提示高原向北運動可能在晚漸新世已經(jīng)開始(李海兵等,2007)。這些證據(jù)均顯示,帕米爾高原向北的運移及隆起在晚漸新世-早中新世于不同部位發(fā)生。不僅不同部位構(gòu)造運動發(fā)生的時代存在差異,不同部位的構(gòu)造運動特征也存在差異。

      帕米爾高原西部主要為左行走滑斷裂與放射狀逆沖斷裂,塔吉克盆地在這些構(gòu)造特征裹挾下發(fā)生逆時針的旋轉(zhuǎn)(Bazhenov et al,1994;Burtman,2000)。高原北部主要自中新世以來一直處于擠壓應(yīng)力背景,逆沖作用明顯,逆沖體可能發(fā)生了300 — 600 km的逆沖(Burtman and Molnar,1993;Negredo et al,2007;Cowgill,2010)。高原東側(cè)的塔里木盆地邊緣主要為喀喇昆侖右行走滑斷裂及傾向西-西南的逆沖斷裂(潘家偉等,2009;Mohadjer et al,2010)。盡管高原北部斷裂性質(zhì)基本如此,但是在不同地區(qū)會有不同性質(zhì)斷裂的出現(xiàn)。如在高原東北部也存在左行走滑斷裂,特別是在和西昆侖相接的部位(劉棟梁等,2011),高原上存在正斷裂(Arnaud et al,1993;李文巧等,2011)等。與現(xiàn)在喜馬拉雅山向青藏高原塊體俯沖造成的總體擠壓應(yīng)力場形成鮮明對比的是帕米爾高原的東部存在一個張性凹陷 —— 吉木-塔什庫爾干谷地。Molnar et al(1993)提出正斷層的出現(xiàn)是山體隆起到一定高度重力失穩(wěn)造成的。所以,通過對高原構(gòu)造演化過程及正斷裂系統(tǒng)的研究,能獲得判定高原地質(zhì)時期高度變化的證據(jù)。

      2 木吉-塔什庫爾干谷地

      木吉-塔什庫爾干谷地屬帕米爾構(gòu)造結(jié)東部拉張系部分(圖3),是谷地北部的木吉斷裂、東側(cè)的公格爾斷裂、慕士塔格斷裂及西南側(cè)塔什庫爾干斷裂等晚新生代運動的結(jié)果(李文巧等,2011;劉棟梁等,2011;李文巧,2014)。木吉斷裂是谷地右行走滑斷裂,是喀喇昆侖右行走滑斷裂北段分支,呈北西 — 南東方向。山前到盆地地貌特征突變,現(xiàn)代溝谷與河流在斷裂附近發(fā)生明顯的轉(zhuǎn)向,這些顯示了其右行走滑運動的性質(zhì)。野外地質(zhì)調(diào)查發(fā)現(xiàn)有非常明顯的斷層三角面(圖4a),分析認(rèn)為沿斷裂有正斷層活動性質(zhì)(劉棟梁等,2011;本研究)。木吉斷裂東南與公格爾正斷裂相接,再往南與慕士塔格正斷裂(圖4b)相連。正斷裂的活動造成了公格爾山和慕士塔格與谷地之間3000 m左右的高差。谷地北部由于分支斷裂(塔合曼斷裂等)分為次級地貌單元。谷地北部主要是正斷裂形成的半地塹,而南部受到正斷層與右行走滑斷裂的共同作用。

      野外調(diào)查中發(fā)現(xiàn)谷地東側(cè)山前正斷裂發(fā)育明顯,特別是在溝口位置往往能夠看到多級正斷層形成的臺地。布倫口與蘇巴什出現(xiàn)了正斷層與新生代地層切割關(guān)系非常明顯的地質(zhì)剖面。

      布倫口附近由線狀斷陷帶和單斜式隆起帶組成(圖5),其間發(fā)育有正斷裂。隆起帶位于北側(cè)及東側(cè),沿斷裂地表出露線東側(cè)為公格爾等高大山峰。斷裂帶內(nèi)出現(xiàn)沿斷裂的串珠狀泉眼,顯示了其至今持續(xù)的構(gòu)造活動。帶內(nèi)不對稱發(fā)育了早-中更新世—全新世湖積、冰磧和沖洪積層。小區(qū)域形成了半地塹構(gòu)造類型,斷層錯段的最老地層為早-中更新世的礫巖層。斷層活動活躍,1950年以來發(fā)生4級以上地震45次。最近一次為2003年9月2日布倫口5.9級地震。由于受到喀喇昆侖斷裂北部延伸部分及塔什庫爾干斷裂等兩個右行斷裂的影響,斷層表現(xiàn)出具有一定右行走滑的性質(zhì)。右行走滑與正斷裂早-中更新世以來的共同作用是現(xiàn)在拉分盆地形成的主要地質(zhì)作用。

      圖3 木吉-喀什庫爾干谷地構(gòu)造地貌簡圖Fig.3 Simplifi ed morphotectonic map of the Muji-Kashikurgan Valley

      圖4 a 木吉斷裂照片,b慕士塔格斷裂照片F(xiàn)ig.4 Photos showing faults in the Muji-Kashikurgan Valley

      圖5 阿克陶縣布倫口活動斷裂示意圖Fig.5 Sketch map of active fault in Bulunkou in the County Aketao

      蘇巴什東側(cè)的正斷層出露特征與布倫口相近(圖6)。斷層?xùn)|側(cè)為隆起的高大山脈,斷層錯斷了至少中更新世以來的地層(斷層向下錯斷的地層沒有出露)。正斷層同時具有右行走滑的運動性質(zhì)。

      通過資料厘定與野外調(diào)查,1895年的新疆塔什庫爾干大地震震中位于谷地南側(cè)的塔合曼鄉(xiāng),地震使得慕士塔格和塔合曼正斷裂發(fā)生破裂,形成27 km走向NNE的地表破裂帶。根據(jù)地表破裂帶寬度、單條陡坎垂直位移等信息估算的地質(zhì)矩陣級也可達(dá)到7級以上(李文巧等,2011)。此次地震后的余震也曾達(dá)到6級以上。

      這些正斷層的活動對谷地的形成至關(guān)重要,是青藏高原西構(gòu)造結(jié)東側(cè)應(yīng)力持續(xù)作用與巖石特性共同作用的結(jié)果。盡管慕士塔格斷裂下盤變質(zhì)巖中鋯石年齡及巖體鋯石低溫?zé)崮甏鷮W(xué)揭示的快速隆升可能在晚中新世就已經(jīng)存在(Robinson et al,2012;Thiede et al,2013),根據(jù)正斷裂錯斷的地層分析,正斷層至少在早-中更新世已經(jīng)非?;钴S。磷灰石裂變徑跡年代學(xué)及鋯石低溫年代學(xué)同時發(fā)現(xiàn)公格爾山和慕士塔格在早更新世也發(fā)生了非常顯著的隆起(Arnaud et al,1993;Robinson et al,2012)。木吉-塔什庫爾干谷地可能就是其東側(cè)山脈早更新世以來快速隆起造成重力失穩(wěn)而形成正斷裂開始發(fā)育,之后在右行走滑斷裂共同作用下形成了現(xiàn)在的地貌特征。

      圖6 阿克陶縣蘇巴什一帶正斷裂示意圖Fig.6 Sketch map of active fault in Subash in the County of Aketao

      3 晚新生代以來帕米爾生長過程及其與塔里木盆地干旱化加劇的關(guān)系

      塔里木盆地鉆探巖芯研究顯示,晚中新世到早上新世盆地干旱化明顯加劇,這一氣候變化過程可能與Messinian Salinity Crisis有聯(lián)系(Sun et al,2008;Chang et al,2012),盆地周邊山體隆起可能對這一變化同樣具有重要的意義(Chang et al,2013;Liu et al,2014)。因為:(1)根據(jù)現(xiàn)在GPS速度場數(shù)據(jù)顯示的帕米爾高原最北部逆沖斷裂吸收的縮短量為10 — 15 mm · a-1(Mohadjer et al,2010;Ischuk et al,2013),那么在6 Ma以來沿斷裂可能縮短了60 — 90 km的距離。以平均縮短量75 km、現(xiàn)在帕米爾高原南北300 km計算,當(dāng)時的高原南北大約375 km,根據(jù)物質(zhì)量的計算,晚中新世之前有部分高原及阿萊谷地的高度可能在3000 m之下。這種高度還不足以影響西風(fēng)氣流的通過。之后可能由于高原繼續(xù)向北逆沖造成地殼增厚與地表隆起,使得高原的高度超過了3000 m甚至達(dá)到更高的高度,造成到達(dá)高原的西風(fēng)氣流明顯分為南北兩個分支,將其攜帶的水汽帶到了高原南部和東部,而塔里木盆地干旱化就會明顯加?。↙iu and Yin,2001;Wu et al,2007)。(2)根據(jù)磷灰石裂變徑跡及鋯石(U-Th)/He年代學(xué)分析獲得帕米爾高原東部的公格爾山和慕士塔格峰在最近5 Ma以來的垂向生長速率為(0.4 — 0.5)± 0.1 mm · a-1(Robinson et al,2012),以現(xiàn)在高原的高度為4000 — 7000 m計算,5 Ma以來它們應(yīng)該生長了2000 — 2500 m,如果整個帕米爾高原在印度板塊與歐亞板塊碰撞過程中處于同一應(yīng)力場作用下,那么帕米爾高原的垂向生長速率應(yīng)該接近,考慮到現(xiàn)在高原的高度,在晚中新世之前高原大部分區(qū)域的高度應(yīng)該小于3000 m,對西風(fēng)氣流直接進(jìn)入塔里木盆地不造成明顯的影響。隨著高原高度的進(jìn)一步增長,其對塔里木盆地氣候變化的影響和強迫更加明顯,最終在晚中新世-早上新世造成西風(fēng)氣流不能直接進(jìn)入盆地,西風(fēng)氣流通過天山中的較低位置進(jìn)入塔里木盆地,這會使得盆地干旱化的趨勢明顯加強。在全球新生代以來變冷趨勢過程中,北半球冰量增加強迫西風(fēng)環(huán)流南移(Jansen and Sj?holm,1991;Wolf and Thiede,1991;Thiede et al,1998; Luo et al,2009;Chang et al, 2012)及副特提斯海西退(Popov et al,2004;Sun et al,2013)造成到達(dá)這一位置的西風(fēng)攜帶的水汽減少,可能對塔里木盆地干旱化加劇也有一定的影響。

      木吉-塔什庫爾干谷地正斷裂揭示的下盤公格爾山和慕士塔格在早-中更新世快速的隆起與低溫?zé)崮甏鷮W(xué)指示這些區(qū)域在2 — 1 Ma以來的快速冷卻(Arnaud et al,1993;Robinson et al,2012)相一致。昆侖山黃土在0.88 Ma大范圍出現(xiàn),揭示了帕米爾高原和南部天山可能發(fā)生了又一次隆升(Fang et al,2002)。柴達(dá)木盆地古生物地層學(xué)揭示,青藏高原周邊山地持續(xù)隆升造成整個高原在中更新世出現(xiàn)了冰川(Sun et al,1999),冰緣作用提供的風(fēng)塵物質(zhì)明顯增多也支持大量的黃土堆積在昆侖山前出現(xiàn)。塔里木盆地中更新世氣候變化研究結(jié)果的矛盾,可能與塔里木盆地周邊山地有冰川活動相關(guān)。盡管孢粉組合揭示降水量可能高于實際情況,但是其反映的降水量在中更新世的減小可能是一種實際存在的事實(Hao et al,2012)。這一氣候事件可能是由于全球冰量增加和帕米爾高原生長共同作用的結(jié)果。由于塔里木盆地周邊特別是昆侖山和帕米爾高原的冰川活動,使得盆地周邊存在季節(jié)性或者是永久性河流。這些河流滋潤了盆地中零星分布的湖泊,造成了介形蟲在這些湖泊中的再次出現(xiàn)與繁盛。而周邊山地冰川的出現(xiàn)和全球冰量增加的共同作用也會使得盆地的溫度降低,這會造成蒸發(fā)量的顯著減少,這一過程會提高土壤水分。土壤水分的提高是造成其中磁化率升高的關(guān)鍵因素(Hu et al,2015)。但反映大范圍內(nèi)氣候特征的孢粉組合顯示,盆地在這一時期降水明顯減少(Hao et al, 2012)。綜上所述,帕米爾高原在早-中更新世的隆升促使塔里木盆地周邊山體出現(xiàn)冰川活動,認(rèn)識這一地貌變化過程能夠?qū)λ锬九璧夭煌瑲夂虼弥笜?biāo)指示的氣候意義給與合理的解釋。

      4 結(jié)論

      通過帕米爾高原GPS速度場、低溫?zé)崮甏鷮W(xué)資料分析及木吉-塔什庫爾干谷地正斷層活動特征研究,獲得了以下認(rèn)識:

      (1)帕米爾高原漸新世-中新世以來就開始了明顯的生長,高原內(nèi)部及周邊的多列構(gòu)造帶活動明顯。中新世晚期的強烈隆升是塔里木盆地在這一時期干旱化加劇的原因之一。

      (2)木吉-塔什庫爾干谷地東部一系列正斷層可能是帕米爾高原東北部進(jìn)一步隆升的表現(xiàn),特別是公格爾山和慕士塔格的快速生長造成的重力失穩(wěn)形成正斷裂,谷地于早-中更新世開始形成。這期構(gòu)造運動使得帕米爾高原接近現(xiàn)今的地貌特征。

      (3)帕米爾高原在中-晚更新世早期的高度已經(jīng)可能形成山岳冰川,這些冰川融水造成了塔里木盆地一些湖泊的出現(xiàn)與擴大,使得總體干旱背景下湖泊中介形蟲的出現(xiàn)與不同種屬的繁盛。

      常秋芳, 常 宏. 2013. 羅布泊Ls2孔近7.1 Ma以來沉積物的環(huán)境磁學(xué)研究[J]. 第四紀(jì)研究, 33(5): 876 - 888. [Chang Q F, Chang H. 2013. The environmental magnetism study of core Ls2 in Lop Nor, Tarim since 7.1 Ma [J]. Quaternary Sciences, 33(5): 876 - 888.]

      郝詒純,關(guān)紹曾,葉留生,等. 2002. 塔里木盆地西部地區(qū)新近紀(jì)地層及古地理特征[J]. 地質(zhì)學(xué)報, 76(3): 289 - 298. [Hao Y C, Guan S Z, Ye L S, et al. 2002. Neogene stratigraphy and palaeogeography in the western Tarim Basin [J]. Acta Geologica Sinica, 76(3): 289 - 298.]

      李海兵, Vali F, 劉敦一, 等. 2007. 喀喇昆侖斷裂的形成時代:鋯石SHRIMP U-Pb年齡的制約[J]. 科學(xué)通報, 52(4): 438 - 447. [Li H B, Valli F, Liu D Y, et al. 2007. Forming age of the Karakorum fault: Constraints from Zircon SHIRIMP U-Pb chronology [J]. Chinese Science Bulletin, 52(4): 438 - 447.]

      李文巧, 陳 杰, 袁兆德, 等. 2011. 帕米爾高原1895年塔什庫爾干地震地表多段同震破裂與發(fā)震構(gòu)造[J]. 地震地質(zhì), 33(2): 260 - 276. [Li W Q, Chen J, Yuan Z D. 2011. Coseismic surface ruptures of multi segments and seismogenic fault of the Tashkorgan Earthquake in Pamirs, 1895 [J]. Seismology and Geology, 33(2): 260 - 276.]

      李文巧. 2014. 帕米爾高原東北部塔什庫爾干谷地活動構(gòu)造與強震[J]. 國際地震動態(tài), (8): 35 - 41. [Li W Q. 2014. Active tectonic and strong earthquake in Kashkorgan valley in the Pamir Plateau [J]. Recent Developments in World Seismology, (8): 35 - 41.]

      李羿芃, 丁 林, 劉德亮, 等. 2013. 帕米爾高原沙克達(dá)拉穹窿變質(zhì)作用及新生代下地殼演化[J]. 地質(zhì)科學(xué), 48(2): 468 - 483. [Li Y F, Ding L, Liu D L, et al. 2013. The Cenozoic metamorphism and tectonic evolution of the lower crust of Shakhdara dome, Tarim Mountains [J]. Chinese Journal of Geology, 48(2): 468 - 483.]

      劉棟梁, 李海兵, 潘家偉. 等. 2011. 帕米爾高原東北緣-西昆侖的構(gòu)造地貌及其構(gòu)造意義[J]. 巖石學(xué)報, 27(11): 3499 - 3512. [Liu D L, Li H B, Pan J W, et al. 2011. Morphotectonic study from the northeastern margin of the Pamir to West Kunlun range and its tectonic implications [J]. Acta Patrologica Sinica, 27(11): 3499 - 3512.]

      潘家偉, 李海兵, Van der Woerd J, 等. 2009. 青藏高原西北部帕米爾東北緣構(gòu)造地貌與活動構(gòu)造研究[J]. 第四紀(jì)研究, 29(3): 586 - 598. [Pan J W, Li H B, Van der Woerd J, et al. 2009. Tectonic geomorphology and active tectonics in northeastern Pamir, northwestern Margin of the Qinghai-Tibetan Plateau [J]. Quaternary Sciences, 29(3): 586 - 598.]

      孫東懷, 王 鑫, 李寶峰, 等. 2013. 新生代特提斯海演化過程及其內(nèi)陸干旱化效應(yīng)研究進(jìn)展[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì), 33(4): 135 - 151. [Sun D H, Wang X, Li B F, et al. 2013. Evolution of Cenozoic Tethys and environmental effects on inland drought [J]. Marine Geology & Quaternary Geology, 33(4): 135 - 151.]

      孫知明, 李海兵, 裴軍令, 等. 2013. 帕米爾-西昆侖地區(qū)新生代古地磁結(jié)果及其構(gòu)造意義[J]. 巖石學(xué)報, 29(9): 3183 - 3191. [Sun Z M, Li H B, Pei J L, et al. 2013. Paleomagnetic study of Cenozoic sediments from western Kunlun-Pamir and its tectonic implications [J]. Acta Petrologica Sinica, 29(9): 3183 - 3191.]

      張培震, 鄧起東, 楊小平, 等. 1996. 天山的晚新生代構(gòu)造變形及其地球動力學(xué)問題[J].中國地震, 12(2): 127 - 140. [Zhang P Z, Deng Q D, Yang X P, et al. 1996. Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountain, northwestern China [J]. Earthquake Research in China, 12(2): 127 - 140.]

      An Z S, Sun Y B, Chang H, et al. 2014. Late Cenozoic climate change in Monsoon Arid Asia and global changes [M]// An Z S. Late Cenozoic climate change in Asia. Heidelberg: Springer: 491 - 581.

      Arnaud N O, Brunel M, Cantagrel J M, et al. 1993. High cooling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China) revealed by40Ar/39Ar alkali feldspar thermochronology [J]. Tectonic, 12(6): 1335 - 1346.

      Bazhenov M L, Perroud H, Chauvin A, et al. 1994. Paleomagnetism of Cretaceous red beds from Tadjikistan and Cenozoic deformations related to the India-Eurasia collision [J]. Earth and Planetary Science Letters, 124: 1 - 18.

      Bershaw J, Garzione C N, Schoenbohm L, et al. 2012. Cenozoic evolution of the Pamir Plateau based on stratigraphy, zircon peovence, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China) [J]. Journal of Asian Earth Science, 44: 136 - 148.

      Bosboom R E, Dupont-Nivet M, Houben A J P, et al. 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change [J]. Paleogeography, Palaeoclimatology, Palaeoecology, 299: 385 - 398.

      Burtman V S, Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crustal beneath the Pamir [J]. Geological Society of America Special Papers, 281: 1 - 76.

      Burtman V S. 2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene [J]. Tectonophysics, 319: 69 - 92.

      Chang H, An Z S, Liu W G, et al. 2012. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin [J]. Global and Planetary Science, 80 / 81: 113 - 122.

      Chang H, An Z S, Wu F, et al. 2013. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene [J]. Paleogeography, Palaeoclimatology, Palaeoecology, 386: 364 - 373.

      Coutand I, Strecker M R, Arrowsmith J R, et al. 2002. Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir-Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo-Eurasia collision [J]. Tectonics, 21(6), 1053, doi: 10.1029/2002TC001358.

      Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient northwestern China [J]. Geological Society of America Bulletin, 122(1/2): 145 - 161.

      Fan G W, Ni J F, Wallace T C. 1994. Active tectonics of the Pamirs and Karakorum [J]. Journal of Geophysical Research, 99(B4): 7131 - 7160.

      Fang X M, Lü L Q, Yang S L, et al. 2002. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China [J]. Science China (D), 45(2): 289 - 299.

      Gradstein F, Ogg J, Schmitz M, et al. 2012. The geological time scale 2012 [M]. Amsterdam: Elsevier: 923 - 978.

      Hao H, Ferguson D K, Chang H, et al. 2012. Vegetation and climate of the Lop Nur area, China, during the past 7 million years [J]. Climatic Change, 113: 323 - 338.

      Hu P X, Liu Q S, Heslop D, et al. 2015. Soil moisture balance and magnetic enhancement in loess-paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 409: 120 - 132.

      Ischuk A, Bendick R, Rybin A, et al. 2013. Kinematics of the Pamir and Hindu Kush region [J]. Journal of Geophysical Research: Solid Earth, 118: 2408 - 2416.

      Jansen E, Sj?holm J. 1991. Reconstruction of glaciation over the past 6 Myr from ice-bone deposits in the Norwegian Sea [J]. Nature, 349: 600 - 603.

      Liu W G, Liu Z H, An Z S, et al. 2014. Late Miocene episodic lakes in the arid Tarim Basin, western China [J]. Proceeding of the National Academy Sciences of the United States ofAmerica, 111: 16292 - 16296.

      Liu X D, Sun H, Miao Y F, et al. 2015. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment [J]. Quaternary Science Reviews, 116: 1 - 14.

      Liu X D, Yin Z Y. 2001. Spatial and temporal variation of summer precipitation over the Eastern Tibetan Plateau and North Atlantic Oscillation [J]. Journal of Climate, 14: 2896 - 2909.

      Luo C, Peng Z C, Yang D, et al. 2009. A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene [J]. Journal of Asian Earth Sciences, 34: 38 - 45.

      Mohadjer S, Bendick R, Ischuk A, et al. 2010. Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements [J]. Geophysical Research Letters, 37, L04305, doi: 10.1029/2009GL041737.

      Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon [J]. Reviews of Geophysics, 31(4): 357 - 396.

      Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantls dynamics [J]. Tectonics, 28, TC3001, doi:10.1029/2008TC002271.

      NegredoA M, Replumaz A, Villasenor A, et al. 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region [J]. Earth and Planetary Science Letters, 259: 212 - 225.

      Pavlis T, Hamburger M W, Pavlis G L. 1997. Erosional processes as a control on the structural evolution of an actively deforming fold and thrust belt: An example from the Pamir-Tien Shan region, central Asia [J]. Tectonics, 16(5): 810 - 822.

      Popov S V, R?gl F, Rozanov A Y, et al. 2004. Lithological-Paleogeographic maps of Paratethys: 10 maps late Eocene to Pliocene [M]. Courier Forschungsinastitut Senckenberg, 250: 1 - 46.

      Ritts B, Yue Y J, Greham S A, et al. 2008. From sealevel to high elevation in 15 Million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan [J]. Americal Journal of Science, 308: 657 - 678.

      Robinson A C, Ducea M, Lapen T J. 2012. Detrial zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir [J]. Tectonics, 31, TC2016, doi: 10. 1029/2011TC003013.

      Savostin L A, Sibuet J C, Zonenshain L P, et al. 1986. Kinematic evolution of the belt from the Atlantic Ocean to the Pamirs since the Triassic [J]. Tectonophysics, 123: 1 - 35.

      Schmidt J, Hacker B R, Ratschbacher L, et al. 2011. Cenozoic deep crust in the Pamir [J]. Earth and Planetary Science Letters, 312: 411 - 421.

      Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margin of the western Tarim Basin during the India-Asia collision [J]. Journal of Geophysical Research, 102: 5043 - 5063.

      Sun J M, Jiang M S. 2013. Wocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau [J]. Tectonopgysics, 588: 27 - 38.

      Sun J M, Zhang L Y, Deng C L, et al. 2008. Evidence for enhanced aridity in the Tarim Basin of China since 5.3 Ma [J]. Quaternary Science Reviews, 27: 1012 - 1023.

      Sun Z C, Feng X J, Li D M, et al. 1999. Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin, western China [J]. Paleogeography, Palaeoclimatology, Palaeoecology, 148: 37 - 50.

      Tang Z H, Dong X X, Wang X, et al. 2015. Oligocene-Miocene magnetostratigraphy and magnetic anisotropy of the Baxbulak section from the Pamir-Tian Shan convergence zone [J]. Geochemistry, Geophysics, Geosystems, 16: 3675 - 3592.

      Thiede J, Winkler A, Wolf-Welling T, et al. 1998. Late Cenozoic history of the polar north Atlantic: results from ocean drilling [J]. Quaternary Science Reviews, 17: 185 - 208.

      Thiede R C, Sobel E R, Chen J, et al. 2013. Late Cenozoic extension and crustal doming in the India-Eurasia collision zone: New thermohcronologic constraints from the NE Chinese Pamir [J]. Tectonics, 32: 763 - 779.

      Wolf T C W, Thiede J. 1991. History of terrigenous sedimentation during the past 10 m.y. in the North Atlantic (ODP Legs 104 and 105 and DSDP Leg 81) [J]. Marine Geology, 101: 83 - 102.

      Wu G X, Liu Y M, Wang T M, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate [J]. Journal of Hydrameteology — Special Section, 8: 770 - 789.

      Yin A, Rumelhart P E, Butler R, et al. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation [J]. Geological Society of America Bulletin, 114(10): 1257 - 1295.

      Link between development of the northeast Pamir Plateau and climate changes in the Tarim Basin

      ZHANG Biao1, LI Leyi2,3, LIU Xiangdong1, HE Ningqiang1, DU Biao1, SONG Yuanli1, CHANG Hong2
      (1. Shaanxi Central of Geological Survey, Xi’an 710068, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)

      Background, aim, and scope The Pamir Plateau, the west syntaxis of the Tibetan Plateau, is located in the west to the Tarim Basin where climate is extremely arid. So, its evolution plays an important role to the growth of the Tibetan Plateau and aridification process in the Tarim Basin. Based on the studies of spatial distributions, activity and age of the normal fault in the northeastern Pamir, and observations on tectonics in the past several years, it is deduced that westerly wind was obstructed when flowing through directly since the Late Miocene when the Tibetan Plateau had been uplifted to a certain elevation. Tectonic events in the Pamir Plateau have been researched onvolcanism, sedimentology, metamorphism, deformations of the geological materials, low temperature chronology, and Global Positioning System (GPS). Evolution of climatic changes also has been carried out because the high-resolution drilling cores obtained from the eastern Tarim Basin. Comparison possible elevations of the Pamir Plateau and the significant climatic changes in the Tarim Basin in special time windows since Late Miocene can shed light on their correlation. Materials and methods In this study, we calculate probable elevation in different geologic times according to GPS data and low temperature measurements published in recent decades. Field works in the Muji-Tashkorgan valley in northeastern Pamir show that normal faults have initiated at least since Late Pleistocene. This suggests that obviously uplift occurred in this region since that time. The elevations of the Pamir Plateau were estimated when the signifi cant climate change occurred in Late Miocene. Results The results of the GPS and low temperature thermochronologies showed that even if the east-west extensive stress occurred in the Pamir since late Middle Miocene, uplift occurred in the northeastern Pamir Plateau. Paleoelevation of the Pamir Plateau was lower than 3000 m on the base of the data from these observations since transition of the Late Miocene and Early Pliocene, calculated from shortening amount of the crust stemmed from recent GPS data (10 — 12 mm · a-1). The similar result is obtained on the base of the uplift rate came from the low temperature thermometers (0.5 —0.4 mm · a-1). The oldest sediment observed in hanging wall of the normal faults in Muji-Tashkorgan valley is composed of the Early-Middle Pleistocene. So, Muji-Tashkorgan valley developed at least since the Early-Middle Pleistocene on the setting of pressure stress state in the north of the Pamir Plateau. Discussion If these are the cases, the west wind could reach the Tarim Basin directly before Late Miocene. Because the elevation of the Pamir Plateau uplifted in Late Miocene, the west wind weakened and part of it cannot reach the Tarim Basin directly. This process can decrease the moisture and enhance the aridifi cation in the basin. Elevation increased attributed to the progressively tectonic uplift since Late Pleistocene triggered development of the mountain glacial, and most of the amount of the water reached the basin would block in the high mountains, rivers and lakes in the basin. The variation made amount of the water volume increase in lakes on the background of enhanced aridifi cation in whole basin. It makes climate proxies of index complicated, which came from different sedimentary documents, especially the eolian deposits. These tectonic and climatic events shaped the geomorphology of the Pamir Plateau since Late Miocene which is located between the Himalaya and South Tianshan. And since Late Miocene, climate feature of the Tarim Basin was mostly influenced by the decrease of moisture because of the uplift of the Pamir Plateau and the migration southward of the west wind drove by increasing ice volume in the north hemisphere, even through retreat of the Paratethys Sea play minor role. We argue in this study that evolution of the tectonic geomorphology of the Pamir Plateau caused the enhancement of aridification and complicated interpretation to climatic proxies in the Tarim Basin since Late Miocene. Conclusions Growth of the Pamir Plateau has started since Oligocene-Miocene, and activities were observed along several fault belts inner and around the plateau. The normal faults along the eastern Muji-Kashkorgan valley suggested that east part of the plateau has still uplifted since early-middle Pleistocene. Height of the plateau can influence climate changes in the Tarim Basin because it may be obstruct the westerly circulation. Recommendations and perspectives The results about the evolution of the Pamir remained controversial, for an example, the development age from Eocene to Pleistocene. Detail process (including elevations and rates in different geologic times) of its uplift should be study on the top plateau and in the surrounding basins.

      Pamir Plateau; valley; normal fault; slip fault; tectonic uplift; aridifi cation

      CHANG Hong, E-mail: changh@loess.llqg.ac.cn

      10.7515/JEE201604003

      2015-12-02;錄用日期:2016-05-12

      Received Date:2015-12-02;Accepted Date:2016-05-12

      國家自然科學(xué)基金項目(41420104008,41572166,41290252)

      Foundation Item:National Natural Science Foundation of China (41420104008, 41572166, 41290252)

      常 宏,E-mail: changh@loess.llqg.ac.cn

      猜你喜歡
      谷地塔什庫爾干帕米爾高原
      The Kathmandu Valley
      《帕米爾高原》
      帕米爾高原
      保健與生活(2019年6期)2019-07-31 01:54:16
      帕米爾高原秋色美
      中亞信息(2019年10期)2019-04-10 02:14:10
      湟水谷地世界屋脊上的隱秘詩意
      遷徙
      文學(xué)港(2016年7期)2016-07-06 15:21:05
      “第七屆中小學(xué)音樂課觀摩活動”獲獎?wù)n程 教學(xué)設(shè)計之《陽光照耀著塔什庫爾干》
      基于可視性分析的谷地彎曲識別及結(jié)構(gòu)化方法
      丹江口市| 禄劝| 太仆寺旗| 新晃| 江达县| 嵊州市| 广昌县| 平定县| 三穗县| 江安县| 南汇区| 浦城县| 株洲市| 白水县| 定西市| 临夏县| 上饶市| 阳西县| 沙田区| 依兰县| 清丰县| 福建省| 偏关县| 临夏市| 谢通门县| 房山区| 兴文县| 石嘴山市| 兖州市| 兰溪市| 亳州市| 广德县| 静安区| 青浦区| 晋江市| 临湘市| 灵台县| 石渠县| 平罗县| 噶尔县| 舟山市|