楊安琪 楊 光 張光明 王洪臣 王園園
(中國人民大學(xué)環(huán)境學(xué)院,北京 100872)
隨著社會(huì)經(jīng)濟(jì)和工業(yè)技術(shù)的快速發(fā)展,多種有毒性、難降解的新型物質(zhì)得到廣泛應(yīng)用,在給人們?nèi)粘I顜碇T多便利的同時(shí),對(duì)生態(tài)環(huán)境及人體健康產(chǎn)生潛在威脅。近年來,城市污水中檢出多種新型污染物[1-2],主要包括藥物、個(gè)人護(hù)理品(PCPs)、雌激素、表面活性劑、工業(yè)添加劑和阻燃劑等[3]。
城市污水經(jīng)活性污泥法處理后,近65%(質(zhì)量分?jǐn)?shù))的新型污染物通過吸附、降解等作用轉(zhuǎn)移到污泥中[4-5]。截至2014年,我國污泥年總產(chǎn)量近3 359萬t[6],含有新型污染物的污泥在脫水農(nóng)用、焚燒或直接填埋過程中均會(huì)對(duì)環(huán)境帶來嚴(yán)重破壞。厭氧消化因能有效實(shí)現(xiàn)污泥的減量化和資源化被越來越多地運(yùn)用到污泥處理中[7]。厭氧消化對(duì)污泥中新型污染物的去除效果是目前的研究熱點(diǎn),而新型污染物種類繁多復(fù)雜,濃度差異大,且具有一定區(qū)域特性,鑒于此,本研究歸納總結(jié)了污泥中新型污染物的種類、來源及檢出現(xiàn)狀,并分析其在厭氧消化過程中的去除情況,以期為我國在此方面的后續(xù)研究提供理論依據(jù)。
目前,新型污染物的定義尚不明確,通常指能在環(huán)境中檢測出但未列入常規(guī)監(jiān)測的一類對(duì)生態(tài)環(huán)境及人體健康存在威脅的污染物[8-9]。不同種類的新型污染物在危害、主要來源以及在污泥中的濃度范圍上存在很大差別。
對(duì)2000—2015年有關(guān)污泥中各類新型污染物的文獻(xiàn)進(jìn)行整理分析,將污泥中檢測出的新型污染物分為8類(見表1),經(jīng)核算得出藥物、工業(yè)添加劑、表面活性劑及其代謝產(chǎn)物是目前研究最多的3種新型污染物。
表1 污泥中新型污染物種類
污泥中的藥物主要包括抗生素類藥物(如土霉素、氧氟沙星、磺胺甲惡唑等)及精神性藥物(如卡馬西平等)。目前,已有研究發(fā)現(xiàn),在長期的低劑量藥物條件下,污泥中的微生物會(huì)被誘導(dǎo)產(chǎn)生耐藥性基因,污泥經(jīng)填埋或農(nóng)用后,帶有耐藥性基因的微生物將參與到物質(zhì)能量循環(huán)中并最終進(jìn)入人體,經(jīng)不斷積累使人類產(chǎn)生抗藥性[10-11]。污泥中的工業(yè)添加劑主要有多氯聯(lián)苯、鄰苯二甲酸酯等,此類物質(zhì)多具有親脂性、不易降解等特點(diǎn),可通過食物鏈的放大作用在生物體內(nèi)蓄積,從而對(duì)生態(tài)平衡及人類健康造成巨大影響[12-13]。
表面活性劑是指具有一定親水、親油基團(tuán)結(jié)構(gòu),能顯著降低溶劑表面張力和液液界面張力的物質(zhì)[14]。目前,污泥中已檢測出的表面活性劑主要包括陰離子表面活性劑直鏈烷基苯磺酸、非離子表面活性劑壬基酚聚氧乙烯醚及其他陽離子表面活性劑等,而壬基苯酚作為表面活性劑的代謝中間體也大量存在于污泥中。
由于各類新型物質(zhì)在生產(chǎn)、生活中的廣泛應(yīng)用,污泥中新型污染物的來源有很多,污泥中的藥物主要通過醫(yī)院廢水、制藥廢水和養(yǎng)殖場廢水等進(jìn)入城市污水處理系統(tǒng)[15-16],而多氯聯(lián)苯、雙酚A等工業(yè)添加劑及有機(jī)錫化合物、全氟化合物大多是在化工廠的生產(chǎn)、加工過程中通過殘留在工廠廢水中進(jìn)入污水管網(wǎng),并最終進(jìn)入污泥。表面活性劑由于具有增溶、洗滌、抗靜電等一系列物理化學(xué)作用,是洗滌劑的主要成分,主要通過生活污水進(jìn)入城市污水處理系統(tǒng)。由于三氯生、三氯卡班等物質(zhì)具有較強(qiáng)的疏水性,因此污水中超過80%(質(zhì)量分?jǐn)?shù))的個(gè)人護(hù)理品均被吸附到污泥中[17-18]。溴系阻燃劑和部分工業(yè)添加劑主要來源于電子產(chǎn)品和塑料制品,通過生活污水和垃圾滲濾液進(jìn)入城市污水處理系統(tǒng),從而吸附到污泥中。有機(jī)錫化合物、雌激素類物質(zhì)是農(nóng)用殺蟲劑的主要成分,因此水果、蔬菜上殘留的農(nóng)藥多經(jīng)過生活污水進(jìn)入城市污水處理系統(tǒng),且多數(shù)雌激素類物質(zhì)具有較強(qiáng)的疏水性,不易降解,容易富集在污泥中[19-20]。
新型污染物來源廣泛,不易降解,物理化學(xué)性質(zhì)各異,其在污泥中的含量由于污水處理系統(tǒng)運(yùn)行參數(shù)及地區(qū)差異等因素存在很大差異。
表2 污泥中各類新型污染物的質(zhì)量濃度
注:1)指在干污泥中的質(zhì)量濃度。
目前,污泥中檢測出的藥物質(zhì)量濃度為0.1~58 100.0 μg/kg(以干污泥中的質(zhì)量濃度計(jì),下同)。CHEN等[21]從我國13個(gè)省份采集了45個(gè)污泥樣品進(jìn)行分析,從中檢出30余種藥物,其中氧氟沙星含量最高,質(zhì)量濃度可達(dá)24 760 μg/kg。對(duì)于工業(yè)添加劑,由于多氯聯(lián)苯、雙酚A、鄰苯二甲酸酯等物質(zhì)在常規(guī)的污水處理系統(tǒng)中基本得不到降解,大多通過吸附作用轉(zhuǎn)移到污泥中,因此其在污泥中濃度范圍較廣。表面活性劑及其代謝產(chǎn)物是污泥中含量最高的新型污染物[22-24]。污泥中各種新型污染物的質(zhì)量濃度范圍匯總見表2。
由于檢測難度較大,目前我國還未將新型污染物列入污泥常規(guī)檢測項(xiàng)目,但其對(duì)生態(tài)環(huán)境及人類健康的危害已日益凸現(xiàn),因此新型污染物在污泥處理處置過程中的去除情況受到越來越廣泛的關(guān)注。
在污泥厭氧消化過程中,生物降解和吸附是新型污染物的主要去除途徑[52]。其中,大多數(shù)新型污染物通過生物降解去除[53],而具有疏水性的新型污染物主要通過吸附到懸浮顆粒物或膠體上得以去除[54]。厭氧消化運(yùn)行參數(shù)對(duì)不同新型污染物的去除可產(chǎn)生不同的影響。如污泥停留時(shí)間(SRT)和溫度對(duì)藥物、陰離子表面活性劑、合成麝香和雙酚A的去除沒有明顯的影響,而對(duì)于雌三醇,中溫厭氧消化較高溫厭氧消化的去除效果好,但高溫厭氧消化卻能顯著提高雌酮、壬基苯酚等的去除效果[55]。厭氧消化條件下污泥中新型污染物去除率匯總見表3。
藥物具有來源多、濃度范圍廣、毒性強(qiáng)等特點(diǎn),已成為污泥中研究最多的一類新型污染物。藥物中不同物質(zhì)在厭氧消化過程中的去除效果存在很大差異。CARBALLA等[56]研究了相同消化條件下不同藥物的去除情況,結(jié)果表明,厭氧消化對(duì)污泥中磺胺甲惡唑的去除率可達(dá)99%以上,而對(duì)卡馬西平幾乎不降解去除。NARUMIYA等[57]也發(fā)現(xiàn)類似的結(jié)果,其研究還發(fā)現(xiàn),磺胺甲惡唑的去除率總體大于90%,而氧氟沙星的去除率在30%~50%。
表3 厭氧消化條件下污泥中不同新型污染物的去除率
注:1)指在混合污泥中的質(zhì)量濃度;2)指在初沉污泥中的質(zhì)量濃度。
目前,有關(guān)雌激素在污泥厭氧消化中的去除效果研究存在著爭議。ANDERSEN等[63]認(rèn)為,雌酮、雌二醇在厭氧條件下幾乎不降解。但有研究發(fā)現(xiàn),雌激素在厭氧消化條件下不僅可以降解,且去除率隨著溫度的上升得到提高[64]。此外,PATERAKIS等[58]在比較初沉污泥和混合污泥厭氧消化去除雌激素的實(shí)驗(yàn)中發(fā)現(xiàn),雌酮與雌三醇在初沉污泥厭氧消化中的去除率明顯高于在混合污泥中的去除率,其原因可能與初沉污泥中松散的有機(jī)污泥絮體更容易被微生物充分利用有關(guān)。
有研究表明,由于部分陰離子表面活性劑可作為碳源被厭氧消化細(xì)菌利用,因此在無共基質(zhì)存在的條件下,陰離子表面活性劑更容易被微生物利用從而達(dá)到較高的降解效率[65]。與陰離子表面活性劑相比,陽離子表面活性劑的降解相對(duì)困難。TEZEL等[66-67]研究發(fā)現(xiàn),陽離子表面活性劑在污泥厭氧消化過程中幾乎不能被生物降解。但I(xiàn)SMAIL等[68]研究發(fā)現(xiàn),陽離子表面活性劑中烷基鏈的增長有助于提高其吸附去除效果。LU等[69]發(fā)現(xiàn),與中溫厭氧條件相比,壬基酚聚氧乙烯醚在高溫厭氧條件下更容易被降解。PATUREAU等[70]的實(shí)驗(yàn)結(jié)果表明,壬基酚聚氧乙烯醚在污泥高溫厭氧消化中的最終去除率可達(dá)30%。CHANG等[71]發(fā)現(xiàn),當(dāng)易生物降解的碳源與表面活性劑的代謝產(chǎn)物壬基苯酚共存時(shí)能提高其生物降解速率,主要原因是易降解碳源對(duì)整體代謝的刺激促進(jìn)了壬基苯酚的生物降解進(jìn)程。
個(gè)人護(hù)理品在污泥中的檢測已受到廣泛關(guān)注,但有關(guān)其在污泥厭氧消化中去除情況的研究卻不多見。目前,有關(guān)三氯生和三氯卡班去除效果的研究仍存在爭議。HEIDLER等[72]認(rèn)為,污泥厭氧消化不能對(duì)此類物質(zhì)進(jìn)行有效降解。而VEETIL等[73]研究發(fā)現(xiàn),當(dāng)有醋酸鹽作為共基質(zhì)存在時(shí),三氯生可在污泥厭氧消化過程中得到有效的生物降解,其主要降解產(chǎn)物為苯酚、鄰苯酚和2,4-二氯苯酚。此外,佳樂麝香和吐納麝香在厭氧消化中的去除率分別可達(dá)到69%±9%、63%±14%[74],且均以吸附在懸浮顆粒物上為主要的去除方式。
多溴聯(lián)苯醚是溴系阻燃劑中最主要的一類[75-76]。研究發(fā)現(xiàn),多溴聯(lián)苯醚在厭氧消化中的去除率為22%~40%,推測微生物的還原脫溴作用是其降解的主要原因。此外,有研究指出,由于多溴聯(lián)苯醚的生物活性較低,限制了其在污泥厭氧消化的生物降解效率,因此多溴聯(lián)苯醚在厭氧消化池中存在一個(gè)閾值濃度,低于該閾值濃度時(shí)脫鹵過程將無法進(jìn)行[77]。
鄰苯二甲酸酯在污泥厭氧消化過程中的去除與其烷基鏈的長度密切相關(guān),烷基鏈越長,越難降解[78]。有研究發(fā)現(xiàn),鄰苯二甲酸酯的去除路徑以側(cè)鏈酯的連續(xù)水解開始,此后鄰苯二甲酸和烷基醇被逐漸降解為甲烷和二氧化碳,其中90%(質(zhì)量分?jǐn)?shù))的甲烷產(chǎn)生于鄰苯二甲酸二異辛酯(DEHP)[79]。因此,以往研究中多數(shù)學(xué)者主要關(guān)注DEHP在污泥厭氧消化過程中的去除效果。MARTTINEN等[80]發(fā)現(xiàn),DEHP在污泥厭氧消化中的去除率為32%。有學(xué)者認(rèn)為,DEHP在厭氧消化中的降解效率由接種污泥的性質(zhì)決定,當(dāng)接種污泥中的微生物能有效抵抗DEHP造成的毒性環(huán)境時(shí),其降解效率將大幅提高[81]。對(duì)于另一種工業(yè)添加劑——雙酚A,STASINAKIS等[82]研究發(fā)現(xiàn),其在的污泥厭氧消化過程中的去除效果不受SRT影響。
目前,有關(guān)有機(jī)錫化合物在厭氧消化中去除情況的研究鮮有報(bào)道,主要是由于有機(jī)錫化合物在厭氧消化條件下的去除率很低,一般低于30%。VOULVOULIS等[83]認(rèn)為,有機(jī)錫化合物降解效率低的原因可能與其對(duì)發(fā)酵細(xì)菌的抑制作用有關(guān)。
全氟化合物具有極高的穩(wěn)定性,一般的水解、光解和生物降解對(duì)其影響甚小。LIOU等[84]研究發(fā)現(xiàn),全氟化合物在長期厭氧消化中并未發(fā)生降解。此外,SCHULTZ等[85]利用質(zhì)量平衡法研究污泥厭氧消化過程中全氟化合物的降解情況,發(fā)現(xiàn)全氟癸磺酸鈉、全氟癸酸甲酯的含量沒有變化,而全氟辛烷磺酸、全氟壬酸的含量卻有所增加,說明在污泥厭氧消化過程中可能存在前體物質(zhì)的轉(zhuǎn)化。
本研究總結(jié)了污泥中各類新型污染物的來源、濃度范圍及其在厭氧消化過程中的去除情況。可以看出,表面活性劑及其代謝產(chǎn)物是污泥中濃度最高的新型污染物,目前有關(guān)藥物在厭氧消化過程中去除及降解路徑的研究最多。不同新型污染物在污泥厭氧消化進(jìn)程中的去除率和去除路徑受污染物的生物降解特性、SRT、溫度、污泥性質(zhì)等條件影響。其中,卡馬西平、壬基苯酚、三氯卡班、有機(jī)錫化合物和全氟化合物等物質(zhì)在污泥厭氧消化中的去除效果不好。
隨著各類新型物質(zhì)在不同領(lǐng)域中的應(yīng)用不斷增加,必然導(dǎo)致更多的新型污染物進(jìn)入污水和污泥中,其對(duì)環(huán)境和人類健康的危害也會(huì)相應(yīng)加大,為了實(shí)現(xiàn)厭氧消化對(duì)污泥中新型污染物更好地去除,今后研究需關(guān)注如下幾點(diǎn):(1)由于新型污染物種類繁多,目前的研究僅涉及極小部分新型污染物,因此應(yīng)加強(qiáng)厭氧消化對(duì)污泥中更多種新型污染物去除的研究;(2)已有研究表明,部分預(yù)處理方式(如臭氧、超聲波)能顯著提高新型污染物在污泥厭氧消化進(jìn)程中的去除率,因此未來研究應(yīng)嘗試采用更多的預(yù)處理方法以及聯(lián)合預(yù)處理方式提高污泥厭氧消化中新型污染物的去除效率;(3)在關(guān)注各種新型污染物去除效率的同時(shí),應(yīng)加強(qiáng)不同新型污染物在污泥厭氧消化中去除路徑和降解機(jī)制的探究;(4)由于污泥中的新型污染物主要來自城市生活污水和工業(yè)污水,因此應(yīng)加強(qiáng)新型污染物在污水中遷移、轉(zhuǎn)化、去除的研究,這對(duì)于研究新型污染物在污泥厭氧消化過程的去除路徑具有重要的指導(dǎo)意義;(5)目前污泥的主要處置方式為土地利用,因此污泥中新型污染物對(duì)土壤環(huán)境的影響及其影響機(jī)制有待進(jìn)一步探索。
[1] YANG Guang,FAN Maohong,ZHANG Guangming.Emerging contaminants in surface waters in China:a short review[J].Environmental Research Letters,2014,9(7):1195-1206.
[2] PETRIE B,BARDEN R,KASPRZYK HORDERN B.A review on emerging contaminants in wastewaters and the environment: current knowledge,understudied areas and recommendations for future monitoring[J].Water Research,2015,72:3-27.
[3] DIAZ CRUZ M S,GARCIA GALAN M J,GUERRA P,et al.Analysis of selected emerging contaminants in sewage sludge[J].Trac Trends in Analytical Chemistry,2009,28(11):1263-1275.
[4] GADD G M.Biosorption:critical review of scientific rationale,environmental importance and significance for pollution treatment[J].Journal of Chemical Technology and Biotechnology,2009,84(1):13-28.
[5] AVILA C,BAYONA J M,MARTIN I,et al.Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse[J].Ecological Engineering,2015,80:108-116.
[6] YANG Guang,ZHANG Guangming,WANG Hongchen.Current state of sludge production,management,treatment and disposal in China[J].Water Research,2015,78:60-73.
[7] 陳英文,劉明慶,趙冰怡,等.臭氧預(yù)處理—厭氧消化工藝促進(jìn)剩余污泥減量化的研究[J].環(huán)境污染與防治,2012,34(1):33-36.
[8] MARCOUX M A,MATIAS M,OLIVIER F,et al.Review and prospect of emerging contaminants in waste - key issues and challenges linked to their presence in waste treatment schemes: general aspects and focus on nanoparticles[J].Waste Management,2013,33(11):2147-2156.
[9] JASINSKA E J,GOSS G G,GILLIS P L,et al.Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge[J].Science of the Total Environment,2015,530/531:140-153.
[10] 蘇小歡.水環(huán)境中抗生素的遷移轉(zhuǎn)化及其危害[J].廣州化工,2015(5):156-158.
[11] YIN Fubin,WANG Dongling,LI Zifu,et al.Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge[J].Bioresource Technology,2015,177:188-193.
[12] 胡曉芳,王欣澤,魯佳銘,等.活性污泥中典型內(nèi)分泌干擾物的分析方法[J].環(huán)境科學(xué)與技術(shù),2010,33(2):126-130.
[13] SONG Mengke,LUO Chunling,LI Fangbai,et al.Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs),and microbial community dynamics of electronic waste-contaminated soil[J].Science of the Total Environment,2015,502:426-433.
[14] 陳慶華.表面活性劑對(duì)土壤中氮磷遷移的影響[D].重慶:西南大學(xué),2014.
[15] MALMBORG J,MAGNéR J.Pharmaceutical residues in sewage sludge: effect of sanitization and anaerobic digestion[J].Journal of Environmental Management,2015,153:1-10.
[17] ZHOU Haidong,HUANG Xia,GAO Mijun,et al.Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing,China[J].Journal of Environmental Sciences,2009,21(5):561-567.
[18] CHEN Feng,YING Guangguo,MA Yibing,et al.Field dissipation and risk assessment of typical personal care products TCC,TCS,AHTN and HHCB in biosolid-amended soils[J].Science of the Total Environment,2014,470/471:1078-1086.
[19] 趙昕,張占恩,張磊,等.基質(zhì)固相分散萃取/高效液相色譜—串聯(lián)質(zhì)譜法測定污泥中的6種雌激素[J].分析測試學(xué)報(bào),2015,34(1):56-61.
[20] CHAWLA C,SARKAR S,ALI S,et al.Anaerobic digestibility of estrogens in wastewater sludge: effect of ultrasonic pretreatment[J].Journal of Environmental Management,2014,145(12):307-313.
[21] CHEN Yongshan,YU Gang,CAO Qiming,et al.Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge[J].Chemosphere,2013,93(9):1765-1772.
[22] STASINAKIS A S.Review on the fate of emerging contaminants during sludge anaerobic digestion[J].Bioresource Technology,2012,121:432-440.
[23] ELSAMADONY M,TAWFIK A,SUZUKI M.Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion[J].Applied Energy,2015,149:272-282.
[24] GALLIPOLI A,GIANICO A,GAGLIANO M C,et al.Potential of high-frequency ultrasounds to improve sludge anaerobic conversion and surfactants removal at different food/inoculum ratio[J].Bioresource Technology,2014,159:207-214.
[26] GAO Lihong,SHI Yali,LI Wenhui,et al.Occurrence of antibiotics in eight sewage treatment plants in Beijing,China[J].Chemosphere,2012,86(6):665-671.
[27] ROSAL R,RODRGUEZ A,PERDIGN MELN J A,et al.Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation[J].Water Research,2010,44(2):578-588.
[28] LINDBERG R H,WENNBERG P,JOHANSSON M I,et al.Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden[J].Environmental Science & Technology,2005,39(10):3421-3429.
[29] G?BEL A A,THOMSEN A,MCARDELL C S,et al.Extraction and determination of sulfonamides,macrolides,and trimethoprim in sewage sludge[J].Journal of Chromatography A,2005,1085(2):179-189.
[30] MULLER M,RABENOELINA F,BALAGUER P,et al.Chemical and biological analysis of endocrine-disrupting hormones and estrogenic activity in an advanced sewage treatment plant[J].Environmental Toxicology and Chemistry,2008,27(8):1649-1658.
[31] NIETO A,BORRULL F,POCURULL E,et al.Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A,2008,1213(2):224-230.
[32] JENSEN J,JEPSEN S E.The production,use and quality of sewage sludge in Denmark[J].Waste Management,2005,25(3):239-247.
[34] GIBSON R,WANG Minjian,PADGETT E,et al.Analysis of 4-nonylphenols,phthalates,and polychlorinated biphenyls in soils and biosolids[J].Chemosphere,2005,61(9):1336-1344.
[35] CLARKE B O,SMITH S R.Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids[J].Environment International,2011,37(1):226-247.
[36] ANDRADE N A,MCCONNELL L L,TORRENTS A,et al.Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications[J].Journal of Agricultural and Food Chemistry,2010,58(5):3077-3084.
[37] WANG Yawei,ZHANG Qinghua,LYU Jianxia,et al.Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China[J].Chemosphere,2007,68(9):1683-1691.
[38] DE BOER J,WESTER P G,VAN DER HORST A,et al.Polybrominated diphenyl ethers in influents,suspended particulate matter,sediments,sewage treatment plant and effluents and biota from the Netherlands[J].Environmental Pollution,2003,122(1):63-74.
[39] GEVAO B,MUZAINI S,HELALEH M.Occurrence and concentrations of polybrominated diphenyl ethers in sewage sludge from three wastewater treatment plants in Kuwait[J].Chemosphere,2008,71(2):242-247.
[40] MORRIS S,ALLCHIN C R,ZEGERS B N,et al.Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs[J].Environmental Science & Technology,2004,38(21):5497-5504.
[41] NIE Yafeng,QIANG Zhimin,ZHANG Heqing,et al.Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A,2009,1216(42):7071-7080.
[42] TAN B L,HAWKER D W,MUELLER J F,et al.Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland,Australia[J].Environment International,2007,33(5):654-669.
[43] STASINAKIS A S,GATIDOU G,MAMAIS D,et al.Occurrence and fate of endocrine disrupters in Greek sewage treatment plants[J].Water Research,2008,42(6/7):1796-1804.
[44] NG Q Y C,CHAN A H M,MA S W Y.A study of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in the livestock waste compost of Hong Kong,PR China[J].Marine Pollution Bulletin,2008,57(6/7/8/9/10/11/12):381-391.
[45] STEVENS J L,NORTHCOTT G L,STERN G A,et al.PAHs,PCBs,PCNs,organochlorine pesticides,synthetic musks,and polychlorinated n-alkanes in U.K. sewage sludge: survey results and implications[J].Environmental Science & Technology,2003,37(3):462-467.
[46] BLANCHARD M,TEIL M J,OLLIVON D,et al.Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France)[J].Environmental Research,2004,95(2):184-197.
[47] BRIGHT D A,HEALEY N.Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver,British Columbia[J].Environmental Pollution,2003,126(1):39-49.
[48] ROSLEV P,VORKAMP K,AARUP J,et al.Degradation of phthalate esters in an activated sludge wastewater treatment plant[J].Water Research,2007,41(5):969-976.
[49] VOULVOULIS N,SCRIMSHAW M D,LESTER J N.Removal of organotins during sewage treatment: a case study[J].Environmental Technology,2004,25(6):733-740.
[50] PLAGELLAT C,KUPPER T,DE ALENCASTRO L F,et al.Biocides in sewage sludge: quantitative determination in some Swiss wastewater treatment plants[J].Bulletin of Environmental Contamination and Toxicology,2004,73(5):794-801.
[51] BOSSI R,STRAND J,SORTKJAER O,et al.Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments[J].Environment International,2008,34(4):443-450.
[52] BARRET M,DELGADILLO MIRQUEZ L,TRABLY E,et al.Anaerobic removal of trace organic contaminants in sewage sludge: 15 years of experience[J].Pedosphere,2012,22(4):508-517.
[53] MAILLER R,GASPERI J,CHEBBO G,et al.Priority and emerging pollutants in sewage sludge and fate during sludge treatment[J].Waste Management,2014,34(7):1217-1226.
[54] BARRET M,CARRRE H,LATRILLE E,et al.Micropollutant and sludge characterization for modeling sorption equilibria[J].Environmental Science & Technology,2010,44(3):1100-1106.
[55] TRAN N H,URASE T,NGO H H,et al.Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants[J].Bioresource Technology,2013,146:721-731.
[56] CARBALLA M,OMIL F,ALDER A C,et al.Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products[J].Water Science and Technology,2006,53(8):109-117.
[57] NARUMIYA M,NAKADA N,YAMASHITA N,et al.Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion[J].Journal of Hazardous Materials,2013,260(18):305-312.
[58] PATERAKIS N,CHIU T Y,KOH Y K,et al.The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates[J].Journal of Hazardous Materials,2012,199/200(2):88-95.
[59] CARBALLA M,MANTEROLA G,LARREA L,et al.Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products[J].Chemosphere,2007,67(7):1444-1452.
[60] SAMARAS V G,STASINAKIS A S,THOMAIDIS N S,et al.Fate of selected emerging micropollutants during mesophilic,thermophilic and temperature co-phased anaerobic digestion of sewage sludge[J].Bioresource Technology,2014,162(6):365-372.
[61] PARKER W J,MONTEITH H D,MELCER H.Estimation of anaerobic biodegradation rates for toxic organic compounds in municipal sludge digestion[J].Water Research,1994,28(8):1779-1789.
[62] FENT K.Organotin compounds in municipal wastewater and sewage sludge: contamination,fate in treatment process and ecotoxicological consequences[J].Science of the Total Environment,1996,185(1/2/3):151-159.
[63] ANDERSEN H,SIEGRIST H,HALLING S?RENSEN B,et al.Fate of estrogens in a municipal sewage treatment plant[J].Environmental Science & Technology,2003,37(18):4021-4026.
[64] DE MES T Z,KUJAWA ROELEVELD K,ZEEMAN G,et al.Anaerobic biodegradation of estrogens--hard to digest[J].Water Science and Technology,2008,57(8):1177-1182.
[65] SANZ J L,CULUBRET E,DE FERRER J,et al.Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors[J].Biodegradation,2003,14(1):57-64.
[66] TEZEL U,PIERSON J A,PAVLOSTATHIS S G.Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture[J].Water Research,2006,40(19):3660-3668.
[67] TEZEL U,PAVLOSTATHIS S G.Transformation of benzalkonium chloride under nitrate reducing conditions[J].Environmental Science & Technology,2009,43(5):1342-1348.
[68] ISMAIL Z Z,TEZEL U,PAVLOSTATHIS S G.Sorption of quaternary ammonium compounds to municipal sludge[J].Water Research,2010,44(7):2303-2313.
[69] LU Jian,JIN Qiang,HE Yiliang,et al.Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge[J].Chemosphere,2008,71(2):345-351.
[70] PATUREAU D,DELGENES N,DELGENES J P.Impact of sewage sludge treatment processes on the removal of the endocrine disrupters nonylphenol ethoxylates[J].Chemosphere,2008,72(4):586-591.
[71] CHANG B V,CHIANG F,YUAN S Y.Anaerobic degradation of nonylphenol in sludge[J].Chemosphere,2005,59(10):1415-1420.
[72] HEIDLER J,HALDEN R U.Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling[J].Journal of Environmental Monitoring,2009,11(12):2207-2215.
[73] VEETIL P G P,NADARAJA A V,BHASI A,et al. Degradation of triclosan under aerobic,anoxic,and anaerobic conditions[J].Applied Biochemistry and Biotechnology,2012,167(6):1603-1612.
[74] CARBALLA M,OMIL F,TERNES T,et al.Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge[J].Water Research,2007,41(10):2139-2150.
[75] HITES R A.Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations[J].Environmental Science & Technology,2004,38(4):945-956.
[76] VENKATESAN A K,HALDEN R U.Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms[J].Water Research,2014,55:133-142.
[77] SHIN M,DUNCAN B,SETO P,et al.Dynamics of selected pre-existing polybrominated diphenylethers (PBDEs) in municipal wastewater sludge under anaerobic conditions[J].Chemosphere,2010,78(10):1220-1224.
[78] SHELTON D R,BOYD S A,TIEDJE J M.Anaerobic biodegradation of phthalic acid esters in sludge[J].Environmental Science & Technology,1984,18(2):93-97.
[79] EL HADJ T B,DOSTA J,MATA ALVAREZ J.Biodegradation of PAH and DEHP micro-pollutants in mesophilic and thermophilic anaerobic sewage sludge digestion[J].Water Science and Technology,2006,53(8):99-107.
[80] MARTTINEN S K,KETTUNEN R H,SORMUNEN K M,et al.Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant[J].Water Research,2003,37(6):1385-1393.
[81] ANGELIDAKI I,MOGENSEN A S,AHRING B K.Degradation of organic contaminants found in organic waste[J].Biodegradation,2000,11(6):377-383.
[82] STASINAKIS A S,KORDOUTIS C I,TSIOUMA V C,et al.Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation[J].Bioresource Technology,2010,101(7):2090-2095.
[83] VOULVOULIS N,LESTER J N.Fate of organotins in sewage sludge during anaerobic digestion[J].Science of the Total Environment,2006,371(1/2/3):373-382.
[84] LIOU J,SZOSTEK B,DERITO C M,et al.Investigating the biodegradability of perfluorooctanoic acid[J].Chemosphere,2010,80(2):176-183.
[85] SCHULTZ M M,HIGGINS C P,HUSET C A,et al.Fluorochemical mass flows in a municipal wastewater treatment facility[J].Environmental Science & Technology,2006,40(23):7350-7357.