• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      燃料電池陰極氧還原電極材料研究進展

      2016-03-13 18:43:50
      化工技術與開發(fā) 2016年5期
      關鍵詞:催化活性陰極燃料電池

      藺 潔

      (溫州大學化學與材料工程學院,浙江 溫州 325000)

      燃料電池陰極氧還原電極材料研究進展

      藺 潔

      (溫州大學化學與材料工程學院,浙江 溫州 325000)

      目前燃料電池陰極氧還原電極材料主要以鉑基貴金屬電催化劑為主,然而鉑的儲量極其有限,成本昂貴,并且鉑基電催化劑的穩(wěn)定性較差,這些因素嚴重制約了其在商業(yè)中的廣泛應用,因此研究制備成本低、具有高穩(wěn)定性的非貴金屬碳基催化劑是燃料電池電催化劑的研究重點。本文簡單概述了燃料電池陰極氧還原電極材料的研究進展。

      燃料電池;氧還原;電極材料

      發(fā)展清潔、安全、充足的綠色能源是未來能源的發(fā)展方向。隨著全球經(jīng)濟的高速發(fā)展,傳統(tǒng)的不可再生能源,如石油、煤、天然氣等儲量有限,終有一天會消耗殆盡,且它們的利用率很低,會造成嚴重的環(huán)境污染,對人類的生存造成嚴重威脅,不符合現(xiàn)代社會所提倡的可持續(xù)發(fā)展戰(zhàn)略。因此,尋求高效、充足、可再生的環(huán)境友好型新能源迫在眉睫。

      燃料電池是一種能夠通過氧化還原反應將氧化劑和燃料中的化學能直接轉化為電能的能量轉換裝置。與傳統(tǒng)的電池相比,燃料電池不受“卡諾循環(huán)”的限制,能量轉換率比較高[1],能夠達到60%~80%,其實際利用率是普通內燃機的2~3倍,是一種環(huán)境友好的能量轉換裝置,因其原料來源廣泛、安全可靠、噪聲低等優(yōu)點,近年來備受國內外研究者的親睞。

      電極材料是決定燃料電池氧還原性能好壞的關鍵因素之一。目前燃料電池陰極氧還原電極材料主要以鉑基貴金屬電催化劑為主,然而鉑的儲量極其有限,成本昂貴,并且鉑基電催化劑的穩(wěn)定性較差,這些因素嚴重制約了其在商業(yè)中的廣泛應用,因此研究制備成本低、具有高穩(wěn)定性的非貴金屬碳基催化劑是燃料電池電催化劑的研究重點。

      1 燃料電池陰極氧還原電極材料研究進展

      目前應用于燃料電池陰極氧還原的催化劑主要有Pt基催化劑、非金屬摻雜碳基催化劑和非貴金屬摻雜碳基催化劑。

      1.1 Pt基催化劑

      目前,應用最多的陰極ORR催化劑主要是Pt基催化劑[2-4],Pt基催化劑的催化活性高,是最早用于燃料電池陰極氧還原的催化劑。被廣泛應用的Pt基催化劑主要是Pt/C和Pt-M/C合金催化劑兩種。Pt/C催化劑目前的應用比較廣泛,但由于其價格昂貴,資源有限,并且非常容易CO中毒而失去活性,限制了其在商業(yè)燃料電池中的廣泛應用。Pt-M/ C合金催化劑(M=Fe,Zn,Co等)是在Pt/C的基礎上摻雜一些過渡金屬,形成二元或多元合金,從而獲得更高效催化活性的氧還原催化劑。Mukerjee等[5]通過研究發(fā)現(xiàn),Pt/Cr、Pt/Co和Pt/Ni都有比Pt/C更好的氧還原催化活性。Myong-ki等[6]研究表明,在比表面積相同時,Pt合金催化劑比純的Pt催化劑擁有更高的催化活性,這是由于Pt合金催化劑中相鄰的Pt-Pt之間的距離減小,使得其氧吸附能力增強。Pt基催化劑雖然有著優(yōu)異的催化性能,但是它對燃料中的雜質敏感,易被氨氣、一氧化碳和硫化氫等毒化,且抗透過性能差,比如甲醇的透過會明顯降低其陰極氧還原催化活性,然而最重要的是,它的成本太高,從而限制了其在商業(yè)中的廣泛應用。

      1.2 非金屬摻雜碳基催化劑

      從理論上來說,不含金屬的催化劑應該更能夠增強其耐酸堿的腐蝕性,且其成本低廉,不會由于燃料中的CH3OH或CO而中毒。理論計算和實驗結果均表明,一些無金屬摻雜碳基催化劑由于其特殊的電子特性和二維納米結構而具有良好的催化活性[7-9]。近年來研究比較多的雜原子摻雜碳材料主要有氮摻雜、硫摻雜、磷摻雜以及硼摻雜等電催化劑材料。通常用到的碳材料有石墨烯[10-11]、Vulcan XC-72[12]、碳球[13]、碳纖維[14]、炭氣凝膠[15]、富勒烯[16]和碳納米籠狀顆粒[17],這些碳材料可以作為氮摻雜的載體,來制備氧還原電催化劑。目前,制備這類催化劑的方法主要有高溫裂解法[18]、化學氣相沉積(CVD)法[19-20]等。碳材料中的氮主要有4種存在形式:吡啶型N(Pyridinic N)、石墨型N(Graphitic N)、吡咯型N(Pyrrolic N)及氧化型N(N-Oxide)。其中吡啶型氮和吡咯型氮主要存在于材料的邊緣及缺陷處,石墨化氮在石墨結構內取代碳原子,一部分存在于材料的邊緣,而另一部分存在石墨化架構的體相中,吡啶型氮也能以氧化形式存在[21-22]。Zelenay[23]課題組研究的Co-聚吡咯-碳結構說明了N-金屬活性與穩(wěn)定性并存。合成過程中,硝酸鈷被聚吡咯的陣列包圍,然后通過Vulcan XC-72載體被硼氫化鈉還原,這樣制備得到的氧還原催化劑具有很好的活性和穩(wěn)定性。其氫-氧燃料電池的功率密度約為150mW·cm-2,放電時間能夠持續(xù)100h而沒有損失。但與Pt/C相比,該氧還原催化劑的還原電位仍然很高。

      近年來,有研究指出,可利用兩種及以上非金屬元素對碳材料進行雙摻雜,形成獨特的電荷網(wǎng)絡結構,改變氧氣分子和催化劑之間的吸附方式,從而提高其氧還原催化活性。Dai等[24]通過高溫熱解法制備了硼/氮雙摻雜的VA-BCN,實驗結果表明,在堿性電解液中,該催化劑具有良好的氧還原催化活性。最近,硼/氮摻雜已經(jīng)被應用到碳納米管和石墨烯的摻雜中,如Sun等[25]利用尿素、硼酸和聚乙二醇為前驅體制備B/N摻雜石墨烯(BNG),通過改變前驅體的質量比和合成溫度,作者得到了一系列的B/ N摻雜石墨烯(BNG)催化劑。這些催化劑的電化學性能顯示,高的氧還原催化活性不僅依賴于B-N鍵,而且依賴于高含量的C-B和C-N鍵,并且使其擁有高的電化學穩(wěn)定性和抗甲醇中毒性。Chen等[26]報道,利用熱溶劑法一步設計合成硫摻雜石墨烯,催化劑是利用還原劑Na2S和硫磺同時還原氧化石墨烯得到的。該催化劑表現(xiàn)出優(yōu)越的氧還原催化活性和穩(wěn)定性。戴立明等[27]通過化學氣相沉積法,以吡啶、三苯基磷為前驅體,二茂鐵為催化劑,制備P/N雙摻雜的垂直排列碳納米管(PN-ACNT),這些P/N雙摻雜的碳納米管表現(xiàn)出極佳的氧還原催化活性以及很好的抗甲醇和一氧化碳中毒能力,由于其協(xié)同效應表現(xiàn)出完全的四電子轉移過程。

      1.3 非貴金屬摻雜碳基催化劑

      近年來,非貴金屬摻雜氧還原催化劑的發(fā)展已經(jīng)廣泛推動了多種能量轉換裝置的商業(yè)化。其中,最有發(fā)展前途的非貴金屬摻雜氧還原催化劑是過渡金屬氮摻雜碳材料(M-N-C,M= Co,F(xiàn)e,Mn,Ni等)。由于其前驅體資源廣泛,成本低廉,以及卓越的氧還原催化活性,因此受到國內外學術界的廣泛關注。最早由Jasinski等[28]發(fā)現(xiàn)金屬酞菁具有金屬-N4,能夠在酸性介質中催化氧還原反應。最近,在固定過渡金屬-N4大環(huán)化合物以及提高其催化活性的研究中取得了突破性進展。M-N-C催化劑由于其原子結構的復雜性,使得其催化活性位點及催化機制還不是很清楚。Fe、Mn、Ni、Co、Cr、Cu等過渡金屬元素作為M-N-C材料中的中心原子已經(jīng)被人們大量研究過,研究結果初步表明,以Fe和Co為中心原子的M-N-C型催化劑表現(xiàn)出最好的氧還原催化活性[29-31]。Dodelet等[32]通過在Ar和NH3氛圍中熱解醋酸鐵和碳載體合成了Fe-N-C催化劑,并且顯示了較高的氧還原催化活性。Bashyam等[33]將鈷原子摻入到聚吡咯中,得到的Co-N-C催化劑表現(xiàn)出很好的氧還原催化活性,從而證實了將過渡金屬摻入到導電聚合物可以有效提高其氧還原催化活性。Wang等[34]研究了不同金屬含量對催化劑氧還原催化活性的影響,研究結果表明,過渡金屬的含量對催化劑催化活性的高低具有明顯影響。同時,隨著過渡金屬含量的增加,催化劑的ORR催化活性明顯提高,但當金屬含量增加到某一個值時,催化劑的ORR催化活性隨著金屬含量的增加反而會降低,這也證明了催化劑中的金屬含量有一個最佳的比例。Lefevre等[35]使用醋酸鐵為金屬前驅體時,當金屬含量為0.2wt%時,其ORR催化活性最高。當鐵含量超過最佳值后,生成的Fe顆粒會導致其催化活性降低。Liu等[36]使用聚苯胺熱解作為載體,制備Fe-CNx催化劑,實驗結果表明,金屬Fe的含量為1.2wt%時,催化劑的ORR催化活性最高,增加或減少鐵含量都會降低其ORR催化活性??梢钥闯觯煌w系下,金屬的最佳含量差別很大。很多研究者已經(jīng)通過實驗證實,對材料進行溫度處理可以明顯提高其ORR催化活性和催化穩(wěn)定性[37]。Lalande等[38]研究了溫度處理對CoPcTc/C(碳載鈷酞菁)性能的影響,結果表明,CoPcTc/C經(jīng)過500~700℃處理仍能保持原來的結構,催化劑具有最好的催化活性,但催化劑的穩(wěn)定性很差,活性下降明顯,經(jīng)過900℃處理的CoPcTc/C具有最穩(wěn)定的ORR催化性能。然而900℃處理已經(jīng)將材料中的Co-N結構破壞,鈷以金屬鈷和氧化鈷的形式存在。Niwa等[42]制備了FePc催化劑,其研究結果指出,當熱處理溫度低于500℃時,催化劑基本上沒有催化活性,當處理溫度高于500℃,其催化活性明顯升高,溫度升高到600℃時,其ORR催化活性最高,繼續(xù)升高溫度,催化劑的氧還原催化活性降低。研究者認為,熱處理過程中,材料的碳化使其導電性提高,從而提高了催化劑的催化活性。

      2 結語

      燃料電池陰極氧還原電極材料的種類很多,本文簡單介紹了幾類比較常見的氧還原電催化劑,為研究制備低成本、具有高活性和穩(wěn)定性的非貴金屬碳基催化劑提供理論基礎,使其能夠盡快實現(xiàn)在商業(yè)化生產中的廣泛應用。

      [1] Markovic N. M., Schmidt T. J., Stamenkovic V., et al. Oxygen reduction reaction on Pt and Pt bimet all icsurfaces: A selective review[J]. Fuel Cells, 2001(2): 105-116.

      [2] Jeon M. K., Zhang Y. A., McGinn P. J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electroreduction reaction[J]. Electrochim Acta., 2010(55): 5318-5325.

      [3] Koh S., Toney M. F., Strasser P., Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR)[J]. Electrochim Acta., 2007(52): 2765-2774.

      [4] Srivastava R., Mani P., Hahn N., et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles[J]. Angew. Chem. Int. Ed.,2007(46): 8988-8991.

      [5] Jalan V. M. Noble Metal panadium Alloy Catalyst and Method for Making: US: 4, 202, 934[P].

      [6] Myoung K. M., Jihoon C., Kyuwoong C., et al. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell application[J]. Electrochimica Acta., 2000(45): 4211-4217.

      [7] Gong K., Du F., Xia Z., et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science, 2009, 323(5915): 760-764.

      [8] Silva R., Voiry D., Chhowalla M., et al. Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons[J]. Journal of the American Chemical Society, 2013, 135(21):7823-7826.

      [9] Yang W., Fellinger T., Antonietti M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases[J]. Journal of the American Chemical Society, 2011, 33(2): 206-209.

      [10] Geng D., Chen Y., Chen Y., et al. High oxygen-reduction activity and durability of nitrogen-doped graphene[J]. Energy Enviro Sci, 2011(4): 760-764.

      [11] Luo Z., Lim S., Tian Z., et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property[J]. J Mater Chem., 2011(21): 8038-8044.

      [12] Chisaka M., Iijima T., Tomita A., et al. Oxygen Reduction Reaction Activity of Vulcan XC-72 Doped with Nitrogen under NH3Gas in Acid Media[J]. J. Electrochem Soc.,2010(157): B1701-B1706.

      [13] Zhou X., Yang Z., Nie H., et al. Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium[J]. J. Power Sources, 2011(196): 9970-9974.

      [14] Chen T., Cai Z., Yang Z., et al. Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core-Sheath Structure for Novel Electrodes[J]. Adv Mater., 2011(23): 4620-4625.

      [15] Jin H., Zhang H., Zhong H., et al. Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane(PEM)fuel cells[J]. Energy Environ Sci., 2011(4): 3389-3394.

      [16] Gao F., Zhao G. L., Yang S, et al. Nitrogen-Doped Fullerene as a Potential Catalyst for Hydrogen Fuel Cells[J]. J Am Chem Soc., 2012(135): 3315-3318.

      [17] Chen S., Bi J., Zhao Y., et al. Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction[J]. Adv. Mater., 2012(24): 5593-5597.

      [18] Li Yunyong, Li Zesheng, Shen Peikang. Simultaneous Formation of Ultrahigh Surface Area and Three-Dimensional Hierarchical Porous Graphene-Like Networks for Fast and Highly Stable Supercapacitors[J]. Adv. Mater.,2013(25): 2474-2480.

      [19] Wang B. Recent Development of Non-platium Catalystsfor Oxygen Reduction Reaction[J]. J. Power Sources,2005(152): 1-15.

      [20] Stephen M., Keith J. S. Influence of Nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. J. Pys. Chem. B, 2005, 109 (10): 4707-4716.

      [21] Jin Z., Yao J., Kittrell C., et al. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets[J]. ACS Nano, 2011(5): 4112-4117.

      [22] Sharifi T., Hu G., Jia X., et al. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes[J]. ACS Nano., 2012, 6(10): 8904-8912.

      [23] Bashyam R., Zelenay P. A Class of Non-Precious Metal Composite Catalysts for Fuel Cells[J]. Nature, 2006,443(7107): 63-66.

      [24] Wang S., Iyyamperumal E., Roy A., et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by codoping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011(123): 11960-11964.

      [25] Huang S. F., Terakura K., Ozaki T., et al. First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction[J]. Phys. Rev. B,2009(80): 235410.

      [26] Chen L., Cui X., Wang Y., et al. One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions[J]. Dalton Trans., 2014(43): 3420.

      [27] Yu D., Xue Y., Dai L. M. Vertically-aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction[J]. The Journal of Physical Chemistry Letters, 2012(3): 2863-2870.

      [28] Jasinski R. A new fuel cell cathode catalyst[J]. Nature,1964, 201(4925): 1212-1213.

      [29] Ohms D., Herzog S., Franke R., et al., Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. Journal of Power Sources, 1992, 38(3): 327-334.

      [30] Van Veen J. A. Rob, Van Baar Jan F., Kroese Kees J. Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen[J]. Journal of the Chemical Society, 1981, 77(11): 2827-2843.

      [31] Wiesener K., Ohms D., Neumann V., et al. N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen[J]. Materials Chemistry and Physics, 1989, 22(3/4): 457-475.

      [32] Lefèvre M., Proietti E., Jaouen F., et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009(324): 71-74.

      [33] Bashyam R., Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006(443): 63-66.

      [34] Wang H., Cote R., Faubert G., et al. Effect of the pretreatment of carbon black supports on the activity of Febased electrocatalysts for the reduction of oxygen[J]. The Journal of Physical Chemistry B, 1999, 103(12): 2042-2049.

      [35] Lefèvre M., Dodelet J. P., Bertrand P. O2Reduction in PEM Fuel Cells: Activity and Active Site Structural Information for Catalysts Obtained by the Pyrolysis at High Temperature of Fe Precursors[J]. The Journal of Physical Chemistry B, 2000(104): 11238-11247.

      [36] Liu G., Li X., Ganesan P., et al. Development of nonprecious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J]. Applied Catalysis B: Environmental, 2009(93): 156-165.

      [37] Faubert G., Lalande G., Cté R., et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1996(41): 1689-1701.

      [38] Lalande G., Cté R., Tamizhmani G., et al., Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1995(40): 2635-2646.

      [39] Okada T., Gokita M., Yuasa M., et al. Oxygen Reduction Characteristics of Heat-Treated Catalysts Based on Cobalt-Porphyrin Ion Complexes, Journal of The Electrochemical Society[J]. 1998(145): 815-822.

      [40] Gouérec P., Biloul A., Contamin O., et al. Oxygen reduction in acid media catalyzed by heat treated cobalt tetraazaannulene supported on an active charcoal: correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS[J]. Journal of Electroanalytical Chemistry, 1997(422): 61-75.

      [41] Gojkovi? S. L., Gupta S., Savinell R. F. Heat-treated iron(Ⅲ) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part Ⅱ. Kinetics of oxygen reduction[J]. Journal of Electroanalytical Chemistry, 1999(462): 63-72.

      [42] Niwa H., Saito M., Kobayashi M., et al. Probing carbon edge exposure of iron phthalocyanine-based oxygen reduction catalysts by soft X-ray absorption spectroscopy[J]. Journal of Power Sources, 2013(223): 30-35.

      Review of Fuel Cell Cathode Oxygen Reduction Electrode Materials

      LIN Jie
      (College of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325000, China)

      At present, platinum based materials were the most effective oxygen reduction reaction catalysts in fuel cells cathode oxygen reduction. Due to their high cost, scarcity and short life span, wide commercialization of FCs was still limited. Therefore, one of the important research directions in the feld of fuel cells was to design and prepare a novel structure of carbon-based non-precious metal catalysts with low cost and high cycle stability. In this paper, the research progress of fuel cell cathode oxygen reduction electrode materials was simply summarized.

      fuel cells; ORR; electrode materials

      TM 911

      A

      1671-9905(2016)05-0040-04

      2016-03-17

      猜你喜歡
      催化活性陰極燃料電池
      Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China
      燃料電池題解法分析
      場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進展
      電子制作(2018年12期)2018-08-01 00:47:46
      試駕豐田氫燃料電池車“MIRAI未來”后的六個疑問?
      車迷(2017年12期)2018-01-18 02:16:11
      燃料電池的維護與保養(yǎng)
      電子制作(2017年10期)2017-04-18 07:23:13
      IT-SOFCs陰極材料Sm0.8La0.2Ba1-xSrxFe2O5+δ的制備與表征
      電源技術(2015年9期)2015-06-05 09:36:06
      微生物燃料電池空氣陰極的研究進展
      電源技術(2015年9期)2015-06-05 09:36:04
      稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
      環(huán)化聚丙烯腈/TiO2納米復合材料的制備及可見光催化活性
      Fe3+摻雜三維分級納米Bi2WO6的合成及其光催化活性增強機理
      靖州| 庆城县| 平凉市| 资阳市| 宣恩县| 奉新县| 集安市| 肥东县| 安丘市| 东方市| 雷州市| 彝良县| 滨海县| 张家港市| 喜德县| 信阳市| 临泉县| 富锦市| 德清县| 通辽市| 乐清市| 珠海市| 巴马| 龙州县| 平度市| 凤台县| 黑水县| 晋城| 张北县| 乌拉特后旗| 安岳县| 利津县| 宁陵县| 永宁县| 商南县| 聊城市| 盐津县| 开平市| 太和县| 忻州市| 凌海市|