• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in the Composition of Volatiles Emitted from Newhall Nucellar Navel Oranges (Citrus Sinensis (L.) Osbeck)During Anaerobic Storage

    2016-03-19 18:36:07YANGGengZHANGYujieLIUShuluYUYuegang
    關(guān)鍵詞:荷爾安徽師范大學(xué)萜烯

    YANG Geng, ZHANG Yu-jie, LIU Shu-lu, YU Yue-gang

    (College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China)

    ?

    Changes in the Composition of Volatiles Emitted from Newhall Nucellar Navel Oranges (Citrus Sinensis (L.) Osbeck)During Anaerobic Storage

    YANG Geng,ZHANG Yu-jie,LIU Shu-lu,YU Yue-gang

    (College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China)

    Clssification No: TS207.3Document Code: APaper No:1001-2443(2016)04-0364-07

    Newhall nucellar navel oranges (Citrus sinensis (L.) Osbeck) originating as a limb sport of Washington navel oranges are native to USA and now widely planted in middle part of China. The fruit of Newhall is oval-shaped, 6.48-7.18cm in long and 6.65-7.71cm in diameter, and it weights approximately from 250 to 350 g for each orange, containing 15.5% for soluble solids, 85-105g L-1for sugars, 10-11g L-1for titratable acids and 0.47-0.64g L-1for vitamin C, respectively[1].

    Newhall nucellar navel oranges are the most popular navel orange cultivar in China because of their bright color, rich nutrition, sweet flavor and pleasant smelling. The attractive and pleasant flavor of citrus fruit is attributed to a combination of alcohols, aldehydes, ketones, esters, hydrocarbon terpenes, sulfur volatiles and so on in specific proportions[2-4]. For Newhall nucellar navel oranges, forty-two volaitle organic compounds including twenty-seven oxygenated volatiles, thirteen terpene hydrocarbons and three sulfides were identified and quantified in the gases from their fresh fruit in previous studies[5].

    During their commercial packing and storage, citrus fruit not excepting Newhall nucellar navel oranges are usually exposed under various anaerobic conditions such as storing in modified or controlled atmospheres, coating with waxes or films, packing in plastic liners and holding in containers or trailers[6,7,4]. These anaerobic or anoxia storage and handing process can inhibit deterioration development of fruit, but anaerobic metabolism is induced, leading to decreases in aroma-active volatiles and accumulation of off-flavor volatiles such as ethanol, acetaldehyde and ethyl acetate[8,9,6,4]. The composition changes of volatiles from citrus fruit could lead to an altered balance of orange aroma away from what is considered “fresh” or desirable and thus becoming “rotten”[2-4]. Thus, measurement of the composition changes of volatiles from citrus fruit based on relative percentage may serve reliable and convenient information for quality evaluation.

    Fresh Newhall nucellar navel oranges maintain their external and internal quality in regular atmospheres for only 2-3 weeks after harvest, and thus anaerobic or anoxia storage is often needed when they are to be kept for longer than 3 weeks after harvest. Consequently, in this study Newhall nucellar navel oranges were incubated under N2 atmospheres to stimulate anaerobic respiration in laboratory, and the relative compositional changes of volatiles and the possible artifacts of Newhall nucellar navel oranges were investigated during storage under anaerobic conditions for a period of 90 days.

    1 Materials and Methods

    1.1Materials and chemicals

    Fresh ripe Newhall nucellar navel oranges (Citrus sinensis (L.) Osbeck) were obtained from a commercial orchard in the city of Ganzhou in China in November 2012. Fruits at ripe stage were classified as those possessing totally orange-yellow color. Fruits were carefully selected for uniformity size, color, and absence of physical damage, and were randomly divided into three groups for the anaerobic treatment.

    All volatiles listed in Table 1 were purchased from Sigma-Aldrich Inc. (Saint Louis, MO, USA) and were of analytical grade.

    Table 1 Compositional changes of volatiles emitted from Newhall nucellar navel oranges during the anaerobic storagea

    續(xù)表1

    ChemicalsCompositions(%)b0(fresh)c361020304050607080903-heptanone*ndtrtrtrtrtrtrtrtrtrtrtr2,3-butanedionetr0.20.30.60.20.1trtrtrtrtrtr3-hydroxy-2-butanone*ndndndnd0.1ndndndndndndndEstersmethylformate*ndtrtrtrtr0.10.10.10.10.10.1trethylformatetrtr0.1tr0.20.40.30.20.40.20.20.11-methylpropylformate*ndtrtrtrtrtrtrtrtrtrtrtr3-methylbutylformate*ndndndndndtrtrtrtrtrtrtrmethylacetatetr0.70.80.91.21.21.61.81.81.71.31.1ethylacetate0.59.010.810.07.26.45.24.23.94.23.83.4propylacetatetrtrtrtr0.20.20.40.40.50.40.50.4butylacetatetr0.10.1trtrtrtrtrtrtrtrtr1-methylpropylacetate*ndndndtr0.20.81.11.21.31.00.90.72-methylpropylacetate*ndtr0.10.10.10.10.10.10.10.10.10.12-methylbutylacetate*ndtr0.1trtrtrtr0.10.10.10.1tr3-methylbutylacetate*nd0.30.60.30.10.20.10.20.20.10.20.13-methyl-2-butenylacetate*ndndtrtrtrtrtrtrtrtrtrtrmethylpropionate*ndndndndnd0.10.10.20.20.20.20.1ethylpropionate*ndtrtrtr0.30.40.50.50.70.40.40.4propylpropionate*ndndndndndtrtrtrtrtrtrtr1-methylpropylpropoinate*ndndndndndtr0.10.10.20.10.10.1methylbutyratetrtrndndndndndndndtrtrtrethylbutyrate0.10.10.00.00.00.10.10.10.10.10.10.1methylisobutyrate*ndndndndndndndndndtrtrtrethylvalerate*ndndndndndtrtrtrtrtrtrtrmethylisovalerate*ndndndndndndtrndtrtrtrtrmethylhexanionatetrtrtrtrtrtrtrtrtrtrtrtrAcetals1,1’-diethoxy-ethane*ndtrtrtrtrtrtrtrtrtrtrtr2,4,6-trimethyl-1,3,5-trioxane0.2tr0.10.10.10.10.10.10.2trtrtrtotaloxygenatedvolatilesd18.174.580.277.372.371.272.071.270.859.459.649.0Terpenoidhydrocarbonsisoprenetrtrtrtrtrtrtrtrtrtrtrtrα-thujene0.1trtrtr0.10.10.10.10.10.10.20.1camphenetrtrtrtrtrtrtrtrtrtrtrtrβ-pinene0.60.10.10.10.30.30.30.30.30.40.50.4α-terpinenetrtrtr0.10.30.40.40.40.40.40.70.5l-phellandrene0.90.20.10.30.60.70.60.60.70.70.90.7terpinolene0.80.40.30.50.40.70.70.60.70.40.50.6

    aTable includes all identified chemicals and percentages add to 100% for each sample.bMean percentage of individual volatile constituents from triplicate experiments.cDays of incubation.dSum of alcohols, aldehydes, ketones, esters and acetals.*Artifact volatiles. nd, not detected. tr, trace (<0.05%).

    1.2Anaerobic treatment

    For laboratory simulation study, about 2 kg fresh shredded Newhall nucellar navel oranges were weighed and placed in glass reactors with a volume of approximately 8 L. Treatments were tested in triplicate and incubated at room temperature (25±0.5℃) for 90 days. Pure N2gas was maintained between 40-60mL min-1per reactor, which was identified in preliminary work as sufficient to ensure that the O2containers were less than 0.5% for the anaerobic storage. When sampling, 1L Teflon sampling bags (SKC Inc., USA) was used to collect gas from the air outlet of each reactor. Volatile measurements were performed on days 0, 3, 6, 10, 20, 30, 40, 50, 60, 70, 80 and 90 during the incubation.

    1.3Volatiles analysis

    Volatiles were analyzed by an Entech Model 7100 Preconcentrator (Entech Instruments Inc., CA, USA) coupled with a gas chromatography/mass spectrum (GC/MS, Agilent 5973N). Detailed analysis steps were described elsewhere[10].

    1.4Statistical Analysis

    Statistical analysis was performed using SPSS 10.0 for Windows. A one-way ANOVA was performed to test the significant variance between the samples. A post hoc examination was conducted to test the significance using the LSD test. The significance level was set as p<0.05.

    2 Results and Discussion

    2.1General

    Fig.1 Typical chromatograms showing selected volatiles from fresh Newhall nucellar navel oranges at day 0 when fresh(A) and at day 50(B).

    As presented in Fig.1, differences between the chromatogram of the fresh oranges and that of the oranges at day 50 were noticeable. Several new peaks of artifact compounds occurred at day 50. The peak identities and their relative percentages, and the artifacts identified, are listed in Table 1 according to functional classes. In total, sixty-seven volatiles were identified, among which twenty-four volatile chemicals were absent in gases of fresh Newhall nucellar navel oranges and occurred as artifacts in the following storage process, consisting of 3 alcohols(2-butanol, 2-pentanol and 2-methyl-3-buten-2-ol), 3 aldehydes(2-methypropanal, 2-methylbutanal and pentanal), 2 ketones(3-heptanone and 3-hydroxy-2-butanone), 15 esters(methyl formate, 1-methylpropyl formate, 3-methylbutyl formate, 1-methylpropyl acetate, 2-methylpropyl acetate, 2-methylbutyl acetate, 3-methylbutyl acetate, 3-methyl-2-butenyl acetate, methyl propionate, ethyl propionate, propyl propionate, 1-methylpropyl propionate, methyl isobutyrate, ethyl valerate and methyl isovalerate) and 1 acetals (1,1’-diethoxy-ethane) (Table 1 and Fig.1(B)). The concentration of total volatile chemicals gradually rose up to 2729.1μg L-1upon 90 days of storage, approximately 5 times higher than that at day 0(558.8 μg L-1)(Fig.2), and the percentage of total artifact volatiles increased with storage time and attained the peak at day 70, sharing 15.9% of total volatile chemicals released (Table 1). For volatile groups or individual volatile chemicals, their compositions changed significantly during the anaerobic storage of Newhall nucellar navel oranges.

    The numbered peaks indicate compounds: 1 acetaldehyde; 2 methanol; 3 ethanol; 4 methyl acetate; 5 2-propanol; 6 2-methyl-propanal; 7 1-propanol; 8 2-butanone; 9 ethyl acetate; 10 2-butanol; 11 2-methyl-1-propanol; 12 2-methyl-butanal; 13 1-butanol; 14 ethyl propionate; 15 propyl acetate;16 3-methyl-1-butanol; 17 2-methyl-1-butanol; 18 1-methylpropyl acetate; 19 2-methylpropyl acetate; 20 2-methyl-3-buten-2-ol; 21 2,4,6-trimethyl-1,3,5-trioxane; 22 ethyl butyrate; 23 butyl acetate; 24 3-hexen-1-ol; 25 1-hexanol; 26 3-methylbutyl acetate; 27 2-methylbutyl acetate; 28 α-thujene; 29 α-pinene; 30 camphene; 31 sabinene; 32 β-pinene; 33 β-myrcene; 34 l-phellandrene; 35 Δ-3-carene; 36 α-terpinene; 37 limonene; 38 γ-terpinene; 39 terpinolene.

    Fig.2 Concentrations of three volatile groups and total volatile compounds released from Newhall nucellar navel oranges during the anaerobic storage. Error bars represent the standard deviation

    2.2Change in oxygenated volatiles

    Fifty-one oxygenated volatiles were determined during the anaerobic storage of Newhall nucellar navel oranges(Table 1), and the concentration of total oxygenated volatiles increased rapidly to attain the maximum(1924.2μg L-1) at day 50, about 18 times higher than that at day 0(101.7 μg L-1)(Fig.2). Methanol, ethanol, 2-butanol, acetaldehyde, 2-butanone and ethyl acetate dominated and were the most important oxygenated volatiles. For the total oxygenated volatiles or major oxygenated compounds except acetaldehyde, their relative percentages showed a significant increasing trend during the anaerobic incubation. The relative percentage of total oxygenated volatiles increase from 18.1% to 49.0% upon 90 days of anaerobic storage, attaining the maximum (80.2%) at day 6. Also, oxygenated compounds were the most predominant function group after 3 days, although they were less than terpenes to some extent again after 90 days. The observably growing oxygenated volatiles were methanol (from 0.8% to 5.9%), ethanol (from 13.9% to 15.6%), 2-butanol (from 0.0% to 11.1%), 2-butanone (from>0.05% to 8.1%) and ethyl acetate (from 0.5% to 3.4%). Particular for ethanol, its ratio reached the peak (59.0%) at day 3 and it became the first abundant volatile chemicals. 2-Butanol and ethyl acetate were the third abundant volatile chemicals at day 40 and at day 3, respectively. For acetaldehyde, it decreased steadily to 0.1% at day 90, but its concentration actually increased and reached a peak at day 50 during the anaerobic storage.

    The relative changes of the oxygenated compounds from Newhall nucellar navel oranges on the anaerobic storage were in accordance with reports on commercial packing and storage of navel oranges[7]. The considerable enhancements of the oxygenated compounds could be related to secondary metabolites of orange substrates from biochemical reaction caused by enzymes[11]or microorganisms[12,13]. The production of alcohols, aldehydes, ketones and esters from fruit under anoxic or anaerobic conditions had been reported[9,6]. For example, methanol, ethanol, acetaldehyde and ethyl acetate as anaerobic metabolites were reported to be strongly accumulated in fruit such as mandarin[14], grapefruit[14]and pear[15]on storage under conditions favoring anaerobiosis. As well known, ethanol as major component of wines is produced from anaerobic fermentation of substrates, and its biosynthesis in fruit such as apples enhanced at greater rate under hypoxic or anoxic storage conditions[9]. 2-Butanol as undirable constituent was found in spirits of grape pomace, which fermented under anaerobic conditions[16]. 2-Butanone had been reported in gases purged and trapped from cherry fruit homogenates after storage under controlled atmosphere (anoxic condition)[8]. The production of esters in fruit could be attributed to esterification of various alcohol moieties and acetyl CoA[9]. Actually, a good correlation were between total alcohols and total esters (r=0.77,p<0.01), particularly between ethanol and ethyl acetate (r=0.90,p<0.01). As also reported by[8], qualitative and quantitative changes in ester production, particularly ethyl acetate, were coincident with the accumulation of ethanol. Acetals were usually produced during the anaerobic fermentation of fruit and grain. For example, 1,1’-diethoxy-ethane was present in grape wine[17]and Chinese ‘Yanghe Daqu’ liquor, which was made from the anaerobic fermentation of grains[18].

    2.3Change in isoprene and monoterpenes

    As shown in Table 1, isoprene was merely a trivial constituent detected in emitted volatiles and was under 0.05% during the whole anaerobic storage. β-Myrcene, sabinene, α-pinene and Δ-3-carene were the major monoterpenes in addition to limonene during the anaerobic storage of Newhall nucellar navel oranges. During the early 6 days, the concentration of total monoterpenes decreased sharply from 457.1μg L-1to 288.6μg L-1(Fig.2). Also, the relative percentages of total monoterpenes decreased abruptly from 81.9% to 19.8%, as much loss of limonene (from 54.9% to 15.8%), β-myrcene (from 10.8% to 1.8%), sabinene (from 6.6% to 0.8%), α-pinene (from 5.0% to 0.4%) and Δ-3-carene (from 2.0% to 0.3%). Some slight dropping also occurred for α-thujene (from 0.1% to <0.05%), β-pinene (from 0.6% to 0.1%), l-phellandrene (from 0.9% to 0.1%) and terpinolene (from 0.8% to 0.3%). The decrease of monoterpene hydrocarbons from Newhall nucellar navel oranges during the early stage was in accordance with reports on storage of some citrus fruit oil such as Yuzu[19], and Daidai[20]. The monoterpene hydrocarbons can be lost through chemical process and/or physical process. Chemical degradation such as polymerization, oxidation and rearrangement of monoterpene was reported by[19]. For example, limonene could be oxidized to cis- and trans-limonene oxides as artifacts in the citrus fruit oil[12]and also be cyclized to camphene, α-pinene and β-pinene as previously noted[21]. Mycrene could be cyclized to γ-terpinene, α-terpinene, limonene and terpinolene[21]. This process would imply an increase of some monterpenes such as α-pinene and β-pinene and terpinolene, which was inconsistent with the data in this study. For this reason, we assume that this process can be neglible for the loss of monoterpenes. Physical evaporation of inherited constituents could be mainly responsible for the observed relative decrease of monnoterpnes. Oranges as a pool of monoterpenes were shredded before incubation, making these compounds not to be locked in clumps but volatilize rapidly due to increased surface area. For camphene, α-terpinene and γ-terpinene, their percentages were merely trivial and kept steady during the early 6 days of anaerobic incubation, but their concentrations had a decreasing trend.

    After the early 6 days of incubation, the concentration of total terpenes increased progressively to reach the peak upon 90 days (1391.9μg L-1), about three times higher than that at day 0 (457.1μg L-1) (Fig.2). The relative percentages of total monoterpenes and all monoterpene hydrocarbons except camphene also grew steadily until the end of the experiment. Monoterpenes shared 51.0% of total volatiles released and became the prevailed class upon 90 day again. The preminently enhanced monoterpenes were limonene (from 15.8% to 36.0%), β-myrcene (from 1.8% to 6.6%), α-pinene (from 0.4% to 2.9%) and Δ-3-carene (from 0.3% to 1.4%). Some slight growing also occurred for α-thujene (from <0.05% to 0.1%), β-pinene (from 0.1% to 0.4%), l-phellandrene (from 0.1 to 0.7%), α-terpinene (from <0.05 to 0.5%), γ-terpinene (from 0.2% to 0.8%), terpinolene (from 0.3% to 0.6%) and sabinene (from 0.8% to 1.0%). For camphene, its percentage still kept trivial and steady. The results indicated that monoterpenes emitted after 6 days were mainly secondary production, most probably the microbial degradation of pectin, which had high contents in oranges and would emit a high rate of monoterpenes when biologically metabolized.

    References:

    [1]CHEN J. Newhall Navel Oranges[M]. Beijing: Jindun Press. (In Chinese). 2006:1-12.

    [2]BRAT P, REGA B, ALTER P, REYNES M, BRILLOUET J-M. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice[J]. Journal of Agricultural & Food Chemistry, 2003,51:3442-3447.

    [3]ROUSEFF R L, PEREZ-CACHO P R, JABALPURWALA F. Historical review of citrus flavor research during the past 100 years[J]. Journal of Agricultural & Food Chemistry, 2009,57:8115-8124.

    [4]TIETEL Z, PLOTTO A, FALLIK E, LEWINSOHN E, PORAT R. Taste and aroma of fresh and stored mandarins[J]. Journal of the Science of Food and Agriculture, 2011,91:14-23.

    [5]WANG X M, WU T. Chemical composition analysis of volatile components in Newhall navel oranges[J]. Food Science, 2013,34(06),160-163.(In Chinese)

    [6]PESIS E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration[J]. Postharvest Biology and Technology, 2015,37:1-19.

    [7]OBENLAND D, COLLIN S, SIEVERT J, et al. Commercial packing and storage of navel oranges alters aroma volatiles and reduces flavor quality[J]. Postharvest Biology and Technology, 2008,47:159-167.

    [8]MATTHEIS J P, BUCHANAN D A, FELLMAN J K. Volatile constituents of Bing sweet cherry fruit following controlled atmosphere storage[J]. Journal of Agricultural & Food Chemistry, 1997,45:212-216.

    [9]RUDELL D R, MATTINSON D S, MATTHEIS J P, et al. Investigations of aroma volatile biosynthesis under anoxic conditions and in different tissues of “Redchief Delicious” apple fruit (Malus domestica Borkh.). Journal of Agricultural & Food Chemistry, 2002,50:2627-2632.

    [10]WANG X M, WU T. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments[J]. Environmental Science & Technology, 2008,42:3265-3270.

    [11]PETERSON D, REINECCIUS G A. Biological Pathways for the Formation of Oxygen-Containg Aroma Compounds[M]//In: Reineccius G A, Reineccius T A. Eds., Heteroatomic Aroma Compounds Washington: American Chemical Society, 2002:227-242.

    [12]PEREZ-CACHO P R, ROUSEFF R L. Fresh squeezed orange juice odor: A Review[J]. Critical Reviews in Food Science and Nutrition, 2008,48:681-695.

    [13]ARREBOLA E, SIVAKUMAR D, KORSTEN L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus[J]. Biological Control, 2010,53:122-128.

    [14]SHI J X, PORAT R, GOREN R, GOLDSCHMIDT E E. Physiological responses of ‘Murcott’mandarins and ‘Star Ruby’ grapefruit to anaerobic stress conditions and their relation to fruit taste, quality and emission of off-flavor volatiles[J]. Postharvest Biology and Technology, 2005,38:99-105.

    [15]MATTHEIS J P, RUDELL D. Responses of ‘d’Anjou’ pear (Pyrus communis L.) fruit to storage at low oxygen setpoints determined by monitoring fruit chlorophyll fluorescence[J]. Postharvest Biology and Technology, 2011,60:125-129.

    [16]SILVA M L, MALCATA F X. Relationships between storage conditions of grape pomace and volatile composition of spirits obtained therefrom[J]. American Journal of Enology and Viticulture, 1998,49:56-63.

    [17]LEE S-J, NOBLE A C. Characterization of odor-active compounds in californian chardonnay wines using GC-olfactometry and GC-mass spectrometry[J]. Journal of Agricultural & Food Chemistry, 2003,51:8036-8044.

    [18]FAN W L, QIAN M C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’ liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry[J]. Flavour and Fragrance Journal, 2006,21:333-342.

    [19]NJOROGE S M, UKEDA H, SAWAMURA M. Changes in the volatile composition of Yuzu (Citrus junos Tanaka) cold-pressed oil during storage[J]. Journal of Agricultural & Food Chemistry, 1996,44:550-556.

    [20]NJOROGE S M, UKEDA H, SAWAMURA M. Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage[J]. Journal of Agricultural & Food Chemistry, 2003,51:4029-4035.

    [21]DIECKMANN R H, PALAMAND S R. Autoxidation of some constituents of hops. I. The monoterpene hydrocarbon, myrcene[J]. Journal of Agricultural & Food Chemistry, 1974,22:498-503.

    date:2015-10-21

    Sponsored by National Natural Science Foundation of China(41273095 and 41103067).

    The composition of volatiles emitted from Newhall nucellar navel oranges were investigated during laboratory-controlled anaerobic storage for a period of 90 days, using preconcentrator coupled with gas chromatography-mass spectrum (GC-MS). Major relative changes occurred for oxygenated volatiles and monoterpene hydrocarbons, while no observable changes were found for sulfides. Before storage, terpenoid hydrocarbons and oxygenated volatiles dominated, with the most abundance of limonene, ethanol, β-myrcene, sabinene, α-pinene, acetaldehyde and Δ-3-carene. During the early 6 days of storage, terpenoid hydrocarbons decreased sharply as much loss of limonene, β-myrcene, sabinene, α-pinene and Δ-3-carene, while oxygenated volatiles increased abruptly and became the first predominant class, with observable growing of methanol, ethanol and ethyl acetate. After 6 days of storage, terpenoid hydrocarbons rose up progressively with storage time, whereas oxygenated volatiles dropped down gradually until the end of the experiment. It is worth noting that twenty-four oxygenated volatiles as artifacts were formed, with predominance of 2-butanol and methyl acetate.

    volatiles; compositions; newhall nucellar navel oranges; anaerobic storage

    紐荷爾臍橙(Citrus sinensis (L.) Osbeck)厭氧保存過(guò)程中揮發(fā)性風(fēng)味物質(zhì)組成變化

    楊耿,張玉潔,劉書(shū)路,于越剛

    (安徽師范大學(xué) 環(huán)境科學(xué)與工程學(xué)院,安徽 蕪湖241003)

    采用預(yù)濃縮系統(tǒng)與氣相色譜質(zhì)譜聯(lián)用技術(shù)分析檢測(cè)紐荷爾臍橙在實(shí)驗(yàn)室控制厭氧條件下保存90天過(guò)程中釋放出來(lái)的揮發(fā)性風(fēng)味物質(zhì)組成變化.結(jié)果表明,紐荷爾臍橙厭氧保存過(guò)程中含氧化合物和萜烯化合物兩類(lèi)揮發(fā)性風(fēng)味物質(zhì)組成比例變化明顯,含硫化合物變化不明顯.在尚未保存前,紐荷爾臍橙釋放出來(lái)的揮發(fā)性風(fēng)味物質(zhì)主要是含氧化合物和萜烯化合物兩類(lèi)化合物,其中檸檬烯、乙醇、β-月桂烯、檜烯、α-蒎烯,乙醛和蒈烯是最主要的成分.在保存的前6天,由于檸檬烯、β-月桂烯、檜烯、α-蒎烯和蒈烯5種化合物大量減少導(dǎo)致萜烯類(lèi)化合物比例隨時(shí)間急劇下降,同時(shí)由于甲醇、乙醇和乙酸乙酯3種化合物大量增加使得含氧化合物比例隨時(shí)間急劇升高,成為最主要的揮發(fā)性風(fēng)味物質(zhì).在保存6天以后到實(shí)驗(yàn)結(jié)束,萜烯類(lèi)化合物比例隨時(shí)間逐漸增高,而含氧化合物比列隨時(shí)間逐漸降低.特別值得注意的是紐荷爾臍橙保存過(guò)程中有24種含氧化合物是新生成的,其中最主要是2-丁醇和乙酸甲酯.

    揮發(fā)性風(fēng)味物質(zhì);紐荷爾臍橙;厭氧保存

    Author’s brief:YANG Geng(1968-),F(xiàn)emale,born in Tongcheng,Anhui Province, senior experimentalist.

    引用格式:楊耿,張玉潔,劉書(shū)路,等.紐荷爾臍橙(Citrus sinensis (L.) Osbeck)厭氧保存過(guò)程中揮發(fā)性風(fēng)味物質(zhì)組成變化[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(4):364-370.

    DOI:10.14182/J.cnki.1001-2443.2016.04.011

    猜你喜歡
    荷爾安徽師范大學(xué)萜烯
    4-萜烯醇對(duì)沙門(mén)菌的抗菌機(jī)制
    漫步在森林當(dāng)中為何讓人感覺(jué)心情舒暢?
    輻射松與杉木在高溫干燥中萜烯類(lèi)釋放濃度研究*
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    一種改性萜烯酚樹(shù)脂及其制備方法及其在輪胎胎面膠中的應(yīng)用
    Hemingway’s Marriage in Cat in the Rain
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    紐荷爾臍橙揮發(fā)性風(fēng)味成分分析
    元陽(yáng)梯田
    海峽影藝(2012年1期)2012-11-30 08:17:00
    缺硼條件下兩種不同砧木“紐荷爾”臍橙礦質(zhì)元素含量變化的比較
    偷拍熟女少妇极品色| 国产精品电影一区二区三区| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线| 97热精品久久久久久| 搡老妇女老女人老熟妇| 99久久精品热视频| 午夜福利18| 成年女人看的毛片在线观看| 欧美日韩综合久久久久久 | 亚洲精品乱码久久久v下载方式| 99热6这里只有精品| 欧美人与善性xxx| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 黄色欧美视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲va日本ⅴa欧美va伊人久久| 亚洲在线观看片| 女的被弄到高潮叫床怎么办 | 亚洲专区国产一区二区| 国内精品一区二区在线观看| 色综合婷婷激情| 免费一级毛片在线播放高清视频| 级片在线观看| 欧美极品一区二区三区四区| 很黄的视频免费| 久久久色成人| 精品一区二区三区视频在线| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清专用| 乱系列少妇在线播放| 一本一本综合久久| 夜夜爽天天搞| 天天躁日日操中文字幕| 亚洲最大成人av| 美女高潮喷水抽搐中文字幕| 99久久精品热视频| 高清日韩中文字幕在线| 国产一区二区三区av在线 | 一级黄片播放器| 在线观看午夜福利视频| 亚洲七黄色美女视频| 精品免费久久久久久久清纯| 免费看美女性在线毛片视频| 麻豆国产97在线/欧美| 精品午夜福利在线看| 黄色女人牲交| 免费电影在线观看免费观看| 久久精品国产亚洲av香蕉五月| 色噜噜av男人的天堂激情| 日韩中字成人| eeuss影院久久| 久久亚洲精品不卡| 亚洲成人中文字幕在线播放| eeuss影院久久| 亚洲精品成人久久久久久| 亚洲国产精品sss在线观看| av在线观看视频网站免费| 亚洲真实伦在线观看| 3wmmmm亚洲av在线观看| 婷婷精品国产亚洲av在线| 亚洲av中文av极速乱 | 久久天躁狠狠躁夜夜2o2o| www.www免费av| 日韩亚洲欧美综合| 嫁个100分男人电影在线观看| 性插视频无遮挡在线免费观看| 中亚洲国语对白在线视频| 一区二区三区免费毛片| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩乱码在线| 淫秽高清视频在线观看| 欧美黑人欧美精品刺激| 草草在线视频免费看| 午夜a级毛片| 在线免费观看不下载黄p国产 | 啦啦啦啦在线视频资源| 成年免费大片在线观看| 最近最新免费中文字幕在线| 欧美一区二区国产精品久久精品| 免费电影在线观看免费观看| 亚洲av中文av极速乱 | 精品国产三级普通话版| 国产免费一级a男人的天堂| 白带黄色成豆腐渣| 在线播放无遮挡| 免费观看精品视频网站| 精品久久久噜噜| 午夜精品一区二区三区免费看| 国产 一区 欧美 日韩| 99热这里只有精品一区| 蜜桃亚洲精品一区二区三区| 欧美3d第一页| 美女高潮的动态| 亚洲av电影不卡..在线观看| 99久国产av精品| 一卡2卡三卡四卡精品乱码亚洲| 麻豆av噜噜一区二区三区| 国产美女午夜福利| 无人区码免费观看不卡| 亚洲欧美日韩高清专用| 美女cb高潮喷水在线观看| 久久亚洲真实| 欧美zozozo另类| 天天躁日日操中文字幕| videossex国产| 国模一区二区三区四区视频| 成人无遮挡网站| 色精品久久人妻99蜜桃| 国产精华一区二区三区| 欧美成人a在线观看| 色精品久久人妻99蜜桃| 亚洲精华国产精华精| 午夜老司机福利剧场| 天天躁日日操中文字幕| 午夜福利视频1000在线观看| 国模一区二区三区四区视频| 欧美在线一区亚洲| 天美传媒精品一区二区| 狠狠狠狠99中文字幕| 精品免费久久久久久久清纯| 欧美成人a在线观看| 国产欧美日韩一区二区精品| 成人性生交大片免费视频hd| 夜夜夜夜夜久久久久| 亚洲人成网站在线播| 国产精品永久免费网站| 乱码一卡2卡4卡精品| 免费观看精品视频网站| 成人美女网站在线观看视频| 中文字幕av在线有码专区| 99精品在免费线老司机午夜| 国产精品不卡视频一区二区| 日韩国内少妇激情av| 国语自产精品视频在线第100页| h日本视频在线播放| 国产激情偷乱视频一区二区| 麻豆一二三区av精品| 搞女人的毛片| 色5月婷婷丁香| 亚洲av五月六月丁香网| 成人特级黄色片久久久久久久| 欧美日韩综合久久久久久 | av中文乱码字幕在线| 国产精品无大码| 国产精品免费一区二区三区在线| 88av欧美| 久久久久久久久久黄片| 精品久久久久久久久av| 丰满乱子伦码专区| 深爱激情五月婷婷| a在线观看视频网站| 99riav亚洲国产免费| 麻豆成人午夜福利视频| 亚洲人与动物交配视频| 91精品国产九色| 老女人水多毛片| 成人精品一区二区免费| 午夜免费男女啪啪视频观看 | 午夜免费男女啪啪视频观看 | 免费av观看视频| av专区在线播放| 看黄色毛片网站| 成人国产综合亚洲| 欧美日韩黄片免| 午夜福利在线在线| 国产精品福利在线免费观看| 最新中文字幕久久久久| 国产国拍精品亚洲av在线观看| 观看美女的网站| 国模一区二区三区四区视频| 成年免费大片在线观看| 日本 av在线| 99久久精品热视频| 综合色av麻豆| а√天堂www在线а√下载| 国产亚洲av嫩草精品影院| 性欧美人与动物交配| 国产av一区在线观看免费| 中文字幕高清在线视频| 看片在线看免费视频| 国产精品人妻久久久久久| 日本黄色视频三级网站网址| 精品人妻视频免费看| 国产91精品成人一区二区三区| a级一级毛片免费在线观看| 久久久久免费精品人妻一区二区| 成人特级黄色片久久久久久久| 黄片wwwwww| 麻豆国产97在线/欧美| 欧美黑人巨大hd| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 九九在线视频观看精品| 男人舔奶头视频| 午夜福利欧美成人| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 久久久久久久久久久丰满 | 国语自产精品视频在线第100页| 22中文网久久字幕| 亚洲自偷自拍三级| 性插视频无遮挡在线免费观看| 麻豆精品久久久久久蜜桃| 啦啦啦观看免费观看视频高清| 看十八女毛片水多多多| 悠悠久久av| 国产精品人妻久久久影院| 亚洲精品久久国产高清桃花| 成年免费大片在线观看| 18+在线观看网站| 色哟哟哟哟哟哟| 一区福利在线观看| 校园人妻丝袜中文字幕| 国产成人av教育| 啦啦啦韩国在线观看视频| 欧美精品啪啪一区二区三区| 人妻夜夜爽99麻豆av| 他把我摸到了高潮在线观看| 欧美成人性av电影在线观看| 欧美色欧美亚洲另类二区| 小蜜桃在线观看免费完整版高清| 欧美日韩综合久久久久久 | 免费人成视频x8x8入口观看| 一级av片app| 精品久久久噜噜| 小说图片视频综合网站| 日本色播在线视频| 最近视频中文字幕2019在线8| 亚洲国产色片| 最近最新中文字幕大全电影3| 亚洲最大成人中文| 97碰自拍视频| 精品久久久久久久久av| 一本久久中文字幕| 欧美国产日韩亚洲一区| 熟妇人妻久久中文字幕3abv| 亚洲成人免费电影在线观看| 草草在线视频免费看| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 精品国内亚洲2022精品成人| 内射极品少妇av片p| 日韩欧美国产一区二区入口| 国产精品三级大全| 99久久精品国产国产毛片| 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 午夜福利18| 亚洲性夜色夜夜综合| 午夜激情福利司机影院| 联通29元200g的流量卡| 亚洲第一区二区三区不卡| 久久久久久久久大av| 午夜福利在线观看吧| 国产精品永久免费网站| 国产精品一区二区三区四区免费观看 | 亚洲狠狠婷婷综合久久图片| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| 1000部很黄的大片| 亚洲熟妇熟女久久| 亚洲国产色片| 国产精品电影一区二区三区| 精品一区二区三区人妻视频| 男人舔女人下体高潮全视频| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 中文字幕av在线有码专区| 2021天堂中文幕一二区在线观| 一级毛片久久久久久久久女| 国产69精品久久久久777片| 亚洲午夜理论影院| 精品人妻偷拍中文字幕| 国产一区二区在线av高清观看| 麻豆国产av国片精品| 久久久久久久亚洲中文字幕| 亚洲一区二区三区色噜噜| 国产精品人妻久久久影院| 日本欧美国产在线视频| 精品久久久噜噜| 亚洲成人久久性| 少妇的逼好多水| 午夜激情福利司机影院| 色5月婷婷丁香| 精品久久久久久久久亚洲 | 欧美性猛交╳xxx乱大交人| 少妇裸体淫交视频免费看高清| 色视频www国产| 在线观看舔阴道视频| 久久精品人妻少妇| 舔av片在线| 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 国产亚洲精品av在线| 国产爱豆传媒在线观看| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 中亚洲国语对白在线视频| 成人av在线播放网站| 欧美潮喷喷水| av在线蜜桃| 天堂√8在线中文| 18禁黄网站禁片午夜丰满| 在线播放无遮挡| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放| 欧美国产日韩亚洲一区| 日本成人三级电影网站| 亚洲av成人av| 97超级碰碰碰精品色视频在线观看| 亚洲性久久影院| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 亚洲一区高清亚洲精品| 成人国产综合亚洲| 一进一出好大好爽视频| 精品一区二区三区视频在线| 麻豆一二三区av精品| 亚洲成人精品中文字幕电影| 天美传媒精品一区二区| 亚洲男人的天堂狠狠| 久久精品91蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 99热网站在线观看| 久99久视频精品免费| 国产欧美日韩精品一区二区| 国产三级在线视频| 99国产精品一区二区蜜桃av| 99热这里只有精品一区| 女同久久另类99精品国产91| 深夜精品福利| 热99re8久久精品国产| 亚洲精华国产精华液的使用体验 | 成人亚洲精品av一区二区| 亚洲经典国产精华液单| 一进一出好大好爽视频| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 美女免费视频网站| 高清毛片免费观看视频网站| 免费在线观看日本一区| 日本与韩国留学比较| 嫩草影院新地址| 久久久久精品国产欧美久久久| 国产乱人视频| 国产高清有码在线观看视频| 国产在线精品亚洲第一网站| 大型黄色视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 亚洲av成人av| 桃色一区二区三区在线观看| 欧美+日韩+精品| 国产免费av片在线观看野外av| 国模一区二区三区四区视频| 亚洲在线自拍视频| 男人舔奶头视频| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 又紧又爽又黄一区二区| 久久久久久久久大av| 亚洲av免费高清在线观看| 赤兔流量卡办理| avwww免费| 日本 欧美在线| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 日本欧美国产在线视频| 亚洲中文日韩欧美视频| 国产精品福利在线免费观看| 男女视频在线观看网站免费| 欧美潮喷喷水| 日本与韩国留学比较| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| av天堂在线播放| 99国产精品一区二区蜜桃av| 久久久久久久亚洲中文字幕| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| 日韩欧美精品v在线| 欧美成人一区二区免费高清观看| 大又大粗又爽又黄少妇毛片口| 亚洲成人精品中文字幕电影| 中国美女看黄片| 中文字幕av在线有码专区| 热99在线观看视频| 久9热在线精品视频| 看免费成人av毛片| 免费高清视频大片| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| 亚洲经典国产精华液单| 国产精品人妻久久久影院| 51国产日韩欧美| 免费无遮挡裸体视频| 精品久久久久久久久av| 欧美日韩亚洲国产一区二区在线观看| 精品不卡国产一区二区三区| 亚洲精品国产成人久久av| 亚洲美女搞黄在线观看 | 一区二区三区激情视频| 国内毛片毛片毛片毛片毛片| 中文在线观看免费www的网站| 又粗又爽又猛毛片免费看| 丝袜美腿在线中文| 日本一本二区三区精品| 国产午夜精品久久久久久一区二区三区 | 人妻制服诱惑在线中文字幕| 国产精品,欧美在线| 国内精品久久久久久久电影| 又紧又爽又黄一区二区| 国产一区二区在线av高清观看| 婷婷丁香在线五月| 国产精品一区二区性色av| 制服丝袜大香蕉在线| 亚洲人成网站高清观看| 一级a爱片免费观看的视频| 俺也久久电影网| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 日韩在线高清观看一区二区三区 | 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 亚洲一区二区三区色噜噜| 免费高清视频大片| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看| 我的女老师完整版在线观看| 国产v大片淫在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 日本 欧美在线| 日韩欧美国产在线观看| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 中文资源天堂在线| 精品乱码久久久久久99久播| 啦啦啦啦在线视频资源| 国产高潮美女av| 天天躁日日操中文字幕| 国产午夜精品论理片| 女生性感内裤真人,穿戴方法视频| 久久久久久久久久久丰满 | 搡老妇女老女人老熟妇| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 国产淫片久久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产精品精品国产色婷婷| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 亚洲人成伊人成综合网2020| 亚洲成人免费电影在线观看| 嫩草影院新地址| 亚洲精华国产精华液的使用体验 | 18+在线观看网站| 国产欧美日韩精品亚洲av| 直男gayav资源| 亚洲成人中文字幕在线播放| 午夜激情福利司机影院| 国产午夜福利久久久久久| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看| 五月玫瑰六月丁香| 色尼玛亚洲综合影院| 亚洲成人中文字幕在线播放| 久99久视频精品免费| 小说图片视频综合网站| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 国产一区二区亚洲精品在线观看| 99久久成人亚洲精品观看| eeuss影院久久| 欧美中文日本在线观看视频| 成人国产一区最新在线观看| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 观看美女的网站| 91在线观看av| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区| av天堂中文字幕网| 国产成年人精品一区二区| 精品无人区乱码1区二区| 亚洲中文日韩欧美视频| 国产午夜福利久久久久久| 97人妻精品一区二区三区麻豆| 波多野结衣高清作品| 69人妻影院| 99热这里只有是精品在线观看| 99久久九九国产精品国产免费| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区精品| 最新在线观看一区二区三区| 国产爱豆传媒在线观看| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 久久99热这里只有精品18| 九九爱精品视频在线观看| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 久久精品人妻少妇| 久久九九热精品免费| av福利片在线观看| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 国产一区二区亚洲精品在线观看| 日韩欧美国产在线观看| 国产不卡一卡二| 女的被弄到高潮叫床怎么办 | av女优亚洲男人天堂| 成年女人看的毛片在线观看| 亚洲五月天丁香| 伦理电影大哥的女人| 日日干狠狠操夜夜爽| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 啦啦啦韩国在线观看视频| www.色视频.com| 精品久久久久久久久久久久久| 久久99热这里只有精品18| 一卡2卡三卡四卡精品乱码亚洲| www日本黄色视频网| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆| 国产69精品久久久久777片| 精品久久久久久,| 欧美中文日本在线观看视频| 午夜影院日韩av| 美女高潮的动态| 亚洲自拍偷在线| 极品教师在线视频| 色噜噜av男人的天堂激情| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 日韩欧美在线二视频| 一a级毛片在线观看| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 自拍偷自拍亚洲精品老妇| 国产美女午夜福利| 亚洲av中文av极速乱 | 国产女主播在线喷水免费视频网站 | 欧美不卡视频在线免费观看| 免费人成视频x8x8入口观看| 成人国产综合亚洲| 99国产精品一区二区蜜桃av| h日本视频在线播放| 欧美黑人巨大hd| 国产精品98久久久久久宅男小说| 亚洲精品久久国产高清桃花| 成年女人看的毛片在线观看| 国产精品久久视频播放| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 免费在线观看成人毛片| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 国产大屁股一区二区在线视频| 黄色女人牲交| 午夜久久久久精精品| 美女黄网站色视频| 观看免费一级毛片| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 天堂动漫精品| 成人美女网站在线观看视频| 亚洲av.av天堂| 99热这里只有是精品50| 国产欧美日韩精品亚洲av| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 少妇猛男粗大的猛烈进出视频 | 搡女人真爽免费视频火全软件 | 99精品久久久久人妻精品| 日韩一本色道免费dvd| 97超级碰碰碰精品色视频在线观看| 日韩欧美精品v在线| 国产久久久一区二区三区| 99热只有精品国产| 国产激情偷乱视频一区二区| 免费观看人在逋| 国产毛片a区久久久久| 男插女下体视频免费在线播放| 成人av一区二区三区在线看| 在线看三级毛片| 亚洲精品日韩av片在线观看| 黄色丝袜av网址大全| 波多野结衣高清作品| 亚洲国产日韩欧美精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 在线天堂最新版资源| 人妻少妇偷人精品九色|