• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      煎炸次數(shù)對(duì)大豆油及薯?xiàng)l脂質(zhì)中極性組分的影響

      2016-03-21 12:41:30馮紅霞隋曉楠齊寶坤王中江江連洲曹文明
      關(guān)鍵詞:大豆油薯?xiàng)l甘油三酯

      馮紅霞,李 楊※,隋曉楠,齊寶坤,王中江,江連洲,曹文明

      (1.東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱 150030; 2.上海糧食科學(xué)研究所,上海 200136)

      ?

      煎炸次數(shù)對(duì)大豆油及薯?xiàng)l脂質(zhì)中極性組分的影響

      馮紅霞1,李楊1※,隋曉楠1,齊寶坤1,王中江1,江連洲1,曹文明2

      (1.東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱 150030;2.上海糧食科學(xué)研究所,上海 200136)

      摘要:采用中壓快速制備型色譜-高效體積排阻色譜技術(shù),探索了煎炸次數(shù)對(duì)大豆油及薯?xiàng)l表面所吸附油脂中極性化合物總量(total polar compounds,TPC)及其組分的影響。結(jié)果表明,煎炸薯?xiàng)l后剩余的大豆油中的TPC總量隨著煎炸次數(shù)的增加而是逐漸增加,而薯?xiàng)l表面所吸附油脂中的TPC含量也隨之逐漸增加;同時(shí),煎炸次數(shù)的增加,顯著改變了極性組分氧化甘油三酯寡聚物(oxidized triglyceride oligomers,TGO)、氧化甘油三酯二聚物(oxidized triglyceride dimers,TGD)、氧化甘油三酯單體(oxidized triglyceride monomers,ox-TG)在大豆油中的分布,而甘油二酯(diacylglycerols,DG)的含量增加緩慢,游離脂肪酸和甾醇(free fatty acids and sterols,F(xiàn)FA & sterols)和其他未知小分子化合物的含量呈現(xiàn)波動(dòng)性變化。煎炸次數(shù)嚴(yán)重影響了大豆油和薯?xiàng)l表面所吸附油脂中的TPC及其組分分布,也在一定程度上影響了薯?xiàng)l的健康價(jià)值。

      關(guān)鍵詞:油脂;食品加工;氧化;煎炸次數(shù);薯?xiàng)l;極性組分;高效體積排阻色譜;氧化甘油三酯寡聚物;氧化甘油三酯二聚物

      馮紅霞,李楊,隋曉楠,齊寶坤,王中江,江連洲,曹文明. 煎炸次數(shù)對(duì)大豆油及薯?xiàng)l脂質(zhì)中極性組分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):309-314.doi:10.11975/j.issn.1002-6819.2016.03.044http://www.tcsae.org

      Feng Hongxia, Li Yang, Sui Xiaonan, Qi Baokun, Wang Zhongjiang, Jiang Lianzhou, Cao Wenming. Effect of frying cycles on polar components in soybean oil and l absorbed lipids of fried potatoes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 309-314. (in Chinese with English abstract)

      Email:fenghongxia914@163.com

      Email:liyanghuangyu@163.com

      0 引 言

      由于在煎炸過(guò)程中,油脂在大氣氧、食物中的水分以及高溫之間的相互作用下發(fā)生聚合、氧化和水解等顯著反應(yīng)而導(dǎo)致了極性化合物的生成[1]。極性化合物能夠較全面的反映油脂在加熱和煎炸食品時(shí)的劣變程度[2],因此其含量的測(cè)定也被認(rèn)為是評(píng)價(jià)加熱油品質(zhì)的最值得信賴的方法[3-4],并被廣泛用來(lái)評(píng)價(jià)煎炸油的品質(zhì)[5]。

      在煎炸過(guò)程中煎炸油的極性物質(zhì)含量隨煎炸時(shí)間而增加,同時(shí)煎炸油中對(duì)健康有害的成分含量增加。在油炸食品過(guò)程中,極性化合物能夠粘附在食品上,不僅會(huì)對(duì)食品的外表皮厚度、感官特性、微觀結(jié)構(gòu)和質(zhì)構(gòu)特性等品質(zhì)特性造成影響[6-7],食用后在人體內(nèi)逐漸蓄積的極性化合物會(huì)引起許多不良反應(yīng),甚至引發(fā)人體細(xì)胞發(fā)生癌變[8]。蔡文辭[9]分析評(píng)價(jià)了煎炸油中總極性化合物的細(xì)胞毒性,發(fā)現(xiàn)隨著極性化合物濃度和作用時(shí)間的增加,細(xì)胞的生長(zhǎng)抑制作用顯著增加、細(xì)胞的形態(tài)發(fā)生變化,同時(shí)細(xì)胞凋亡率增大。劉元法等[10]研究了極性化合物的致突變性,發(fā)現(xiàn)煎炸油中分離出的極性物質(zhì)對(duì)鼠傷寒沙門氏菌的致基因突變作用較強(qiáng)。國(guó)外文獻(xiàn)中也有有關(guān)極性化合物導(dǎo)致基因突變、染色體突變從而誘發(fā)癌癥如乳腺癌、結(jié)腸癌等相關(guān)報(bào)道[11-14]。這些研究表明極性化合物對(duì)人類健康存在一定的威脅。

      近年來(lái),人們對(duì)煎炸油中極性化合物的分離測(cè)定方法[8,15-17]、以及煎炸條件對(duì)其含量的影響[18-19]等方面進(jìn)行了較詳細(xì)的研究并取得了一定的進(jìn)展。此外,高效體積排阻色譜技術(shù)(high performance size-exclusion chromatography,HPSEC)[20-21]的引入,使得中國(guó)對(duì)極性化合物的分析不再停留在其總質(zhì)量上,它可以實(shí)現(xiàn)對(duì)極性化合物組分,包括氧化甘油三酯寡聚物(oxidized triglyceride oligomers,TGO)、氧化甘油三酯二聚物(oxidized triglyceride dimers,TGD)、氧化甘油三酯單體(oxidized triglyceride monomers,ox-TG)、甘油二酯(diacylglycerols,DG)以及游離脂肪酸和甾醇(free fatty acids and sterols,F(xiàn)FA &Sterols)等的分離測(cè)定。而且,隨著研究的深入,發(fā)現(xiàn)同濃度的氧化甘油三酯對(duì)細(xì)胞的毒性最大,氧化甘油三酯二聚物次之,總極性化合物的細(xì)胞毒性最小[9],而TGD與TGO細(xì)胞毒性差異不明顯[12]。由于國(guó)內(nèi)外關(guān)于煎炸的試驗(yàn)大多集中于煎炸食物后油脂的理化特性,包括極性化合物總量的測(cè)定,缺少對(duì)煎炸后油脂中極性化合物具體組分的分析,同時(shí),針對(duì)煎炸后食物脂質(zhì)中極性化合物及其組分的變化也缺乏相關(guān)報(bào)道。因此,本文主要研究煎炸次數(shù)對(duì)大豆油及薯?xiàng)l表面所吸收油脂中的極性化合物總量的影響,并利用高效體積排阻色譜技術(shù)分析測(cè)定薯?xiàng)l對(duì)極性化合物組分的吸收情況。

      1 材料與方法

      1.1材料與儀器

      大豆油(九三非轉(zhuǎn)基因一級(jí))市售;冷凍薯?xiàng)l 市售;;石油醚(30~60℃沸程)、乙醚、丙酮分析純;四氫呋喃色譜純。

      3 L不銹鋼單缸油炸鍋(廣東友田家用電器有限公司);真空旋轉(zhuǎn)蒸發(fā)器(上海申勝生物科技有限公司);DZF-6050型真空干燥箱(上海一恒科技有限公司);FA2004型電子分析天平(上海舜宇恒平科學(xué)儀器有限公司);Waters2695型高效液相色譜儀、2414型示差折光檢測(cè)器、Styragel HR高分辨率體積排阻色譜柱(內(nèi)徑7.8 mm,長(zhǎng)300 mm)(美國(guó)Waters公司);食用油極性組分快速制備型柱層析系統(tǒng)(EOPC PFC SYSTEM)、Flash中壓純化制備柱(長(zhǎng)11 cm,直徑2.1 cm)(天津博納艾杰爾科技有限公司)。

      1.2試驗(yàn)方法

      1.2.1煎炸試驗(yàn)

      2 L油倒入煎炸鍋,預(yù)熱至180℃,保持30 min。每批薯?xiàng)l添加量200 g,(薯?xiàng)l/油質(zhì)量體積比=1:10),煎炸時(shí)間7 min,間隔時(shí)間8 min,1次循環(huán)時(shí)間為15 min。連續(xù)煎炸30次,中間無(wú)新油添加。次日補(bǔ)充200 mL新油后再煎炸30次。每隔10次進(jìn)行取樣,移取20 mL煎炸油,冷卻至室溫后收集于試管,并密封保存于?20℃冰箱。同時(shí)所煎炸后的薯?xiàng)l立即進(jìn)行脂質(zhì)的提取。

      1.2.2油炸薯?xiàng)l表面吸附油脂的提取

      新鮮薯?xiàng)l及煎炸后薯?xiàng)l中脂質(zhì)的提取參考文獻(xiàn)[22]的方法。煎炸后的薯?xiàng)l用200 mL石油醚混合攪拌1~2 s,將薯?xiàng)l表面吸附的油脂溶解于石油醚中,之后將混合溶劑置于真空旋轉(zhuǎn)容器中,在真空度0.1 MPa、溫度45 ℃下蒸發(fā)溶劑,并在45 ℃真空烘箱中加熱0.5 h揮干溶劑,所得樣品即為油炸薯?xiàng)l表面所吸附的油脂,密封保存置于?20 ℃冰箱內(nèi)。

      1.2.3油樣中極性化合物的分離制備

      油樣中極性化合物的分離制備參考文獻(xiàn)[20]的方法。Flash中壓純化制備柱鏈接于快速中壓制備型柱層析系統(tǒng),并用A相洗脫液(石油醚︰乙醚體積比=87︰13)潤(rùn)洗10 min,流速25 mL/min。稱取1 g左右(精確至0.0001 g)油樣(m)于10 mL燒杯,用5 mL石油醚溶解油脂樣品,用少量石油醚沖洗燒杯,制成上樣液并用注射器加入Flash中壓制備柱,繼續(xù)使用A相洗脫液洗脫油樣中的非極性化合物,洗脫時(shí)間為20 min,流速25 mL/min;之后采用B相洗脫液(乙醚︰丙酮體積比=40︰60)洗脫并收集油脂中的極性化合物于已稱質(zhì)量(m0)的干凈燒瓶?jī)?nèi),在1.2.2旋轉(zhuǎn)蒸發(fā)條件下?lián)]發(fā)溶劑得到極性化合物,稱質(zhì)量(m1)。每個(gè)樣品重復(fù)測(cè)定3次??倶O性化合物(TPC)含量的計(jì)算方法如下:

      1.2.4HPSEC測(cè)定極性化合物組分分布

      將1.2.3節(jié)制備的極性化合物用四氫呋喃溶液進(jìn)行溶解,制成質(zhì)量體積比1%四氫呋喃溶液,并用0.22 μm濾膜過(guò)濾至1.5 mL進(jìn)樣瓶。色譜柱、進(jìn)樣條件以及油脂中各類極性組分(TGO、TGD、ox-TG、DAG、FFA等)相對(duì)含量計(jì)算方法均按文獻(xiàn)報(bào)道方法[20]。每個(gè)樣品重復(fù)測(cè)定3次。

      1.3數(shù)據(jù)統(tǒng)計(jì)分析

      油脂極性物組分的HPSEC色譜數(shù)據(jù)由美國(guó)Waters公司的Waters Empower 2液相色譜數(shù)據(jù)處理軟件自動(dòng)生成;利用SPSS 16.0中的單因素方差分析試驗(yàn)數(shù)據(jù),計(jì)算其均值及其標(biāo)準(zhǔn)差,并進(jìn)行Turkey多重比較分析不同水平值變量間的差異顯著性(P<0.05)。

      2 結(jié)果與分析

      2.1煎炸次數(shù)對(duì)大豆油及薯?xiàng)l表面吸收油脂中總極性化合物含量的影響

      在本論文中,沒有薯?xiàng)l添加而加熱的大豆油稱為對(duì)照組,煎炸薯?xiàng)l后剩余的大豆油稱為剩余油,薯?xiàng)l表面所吸附的油脂稱為吸收油。由快速中壓制備型柱層析系統(tǒng)從以上3種油脂樣品分離制備的總極性化合物(TPC)以及它們隨著煎炸次數(shù)的變化如圖1所示。

      圖1 煎炸次數(shù)對(duì)各油樣中總極性化合物含量的影響Fig.1 Effect of frying cycles on content of TPC from samples

      新鮮大豆油中TPC質(zhì)量分?jǐn)?shù)為1.59%,這是由于毛油在精煉過(guò)程中受高溫、水分等的影響,易發(fā)生氧化酸敗,形成聚合物、甘油二酯、游離脂肪酸等[23]。而在新鮮薯?xiàng)l中提取的油脂中無(wú)TPC的檢出。在煎炸過(guò)程中,由于空氣、水分、高溫等條件的影響,甘油三酯分子開始氧化降解,形成初級(jí)氧化產(chǎn)物、次級(jí)氧化產(chǎn)物,其中揮發(fā)性產(chǎn)物隨著水蒸氣而揮發(fā),非揮發(fā)性產(chǎn)物則留在油脂中,造成油脂中極性產(chǎn)物也開始增加[24]。由圖1可知,3種油脂樣品,包括對(duì)照組、剩余油、吸收油中的TPC含量都是隨著煎炸次數(shù)的增加而顯著(P<0.05)增加,表明持續(xù)增加的煎炸次數(shù)加劇了油脂的氧化裂變反應(yīng),產(chǎn)生了大量的極性化合物。這與文獻(xiàn)中的結(jié)果相一致,隨著反復(fù)煎炸試驗(yàn)的實(shí)施,葵花籽油中的TPC含量顯著(P<0.05)增加[1]。在1~30次煎炸過(guò)程中,對(duì)照組與剩余油之間的TPC含量差異不顯著(P>0.05),在40~60次煎炸過(guò)程中,對(duì)照組中的TPC含量顯著高于剩余油中的TPC含量,可能是由于在煎炸薯?xiàng)l過(guò)程中所產(chǎn)生的美拉德反應(yīng)產(chǎn)物,對(duì)油脂氧化反應(yīng)具有一定的抑制作用[25],降低了極性化合物的生成速率。而在整個(gè)煎炸過(guò)程中,剩余油中的TPC含量顯著高于吸收油中的TPC含量(P <0.05)。這是由于煎炸過(guò)程中,隨著反復(fù)煎炸次數(shù)的增加,大豆油中的降解反應(yīng)加劇,反應(yīng)產(chǎn)物增加,造成大豆油中TPC含量顯著增加,而薯?xiàng)l所吸附的油脂中TPC含量隨著大豆油中TPC含量的增加而增加[26]。Atanu利用熱聚合棕櫚油煎炸法式土豆條時(shí)發(fā)現(xiàn),當(dāng)土豆條的含水率在52.03%~76.07%時(shí),其表面所吸收油脂中的TPC含量顯著高于剩余油脂的TPC含量,當(dāng)其含水率為10.14%時(shí),剩余油中的TPC含量高于土豆條表面所吸收油脂中的TPC含量,但兩者之間的TPC含量差異不顯著(P>0.05)。而煎炸的魚肉脂質(zhì)中的TPC低于剩余油脂中的TPC[27]。

      2.2煎炸次數(shù)對(duì)煎炸油脂及食物脂質(zhì)中極性化合物組分含量的影響

      對(duì)于1.2.3中分離制備的TPC,進(jìn)一步使用高效體積排阻色譜技術(shù)(HPSEC)分析其組分。根據(jù)相對(duì)分子質(zhì)量大小,HPSEC可將TPC分離為氧化甘油三酯寡聚物(TGO)、氧化甘油三酯二聚物(TGD)、氧化甘油三酯單體(ox-TG)、甘油二酯(DG)、游離脂肪酸與甾醇(FFA & sterols)等,其中還有一些相對(duì)分子質(zhì)量較小的未知物(X1、X2、X3等)。由于FFA & sterols相對(duì)分子質(zhì)量較接近,無(wú)法實(shí)現(xiàn)兩者之間的分離。

      新鮮大豆油、煎炸1次后的剩余油和吸收油以及煎炸60次后的對(duì)照組、剩余油和吸收油中所分離得到的總極性化合物的HPSEC分析結(jié)果如圖2所示。由圖2可知,煎炸60次后,對(duì)照組、剩余油、吸收油中TGO和TGD 在TPC中的相對(duì)含量大量增加,而DAG和FFA & sterols 在TPC中的相對(duì)含量含量大幅度降低,這個(gè)現(xiàn)象與前人的研究結(jié)果相一致[26,28],表明隨著煎炸次數(shù)的增加,油脂中的聚合反應(yīng)加劇,水解反應(yīng)減弱。由于HPSEC操作方法的差異,PéREZ-CAMINO等未能將TGP分離為TGO 和TGD。由于TGD和TGO含有改變的?;鶊F(tuán),可影響油脂的營(yíng)養(yǎng)價(jià)值[26-27],因此需要對(duì)其在煎炸油及食物脂質(zhì)中進(jìn)行定量分析。采用峰面積歸一化法定量分析各組分在TPC中的相對(duì)含量,同時(shí)根據(jù)油樣中的TPC含量,計(jì)算各組分在油脂中的相對(duì)含量(%),結(jié)果如表1和表2。

      圖2 煎炸60次前后各油樣中極性化合物的高效體積排阻色譜分析圖Fig.2 High performance size-exclusion chromatography analysis of TPC from each oil sample before and after frying for 60 cycles

      表1 煎炸次數(shù)對(duì)油脂中氧化甘油三酯聚合物和氧化甘油三酯含量的影響Table 1 Effect of frying cycles on content of oxidized triglyceride polymers and oxidized triglyceride monomers

      表2 煎炸次數(shù)對(duì)油脂中甘油二酯、游離脂肪酸、甾醇及其他未知小分子化合物含量的影響Table 2 Effect of frying cycles on content of diacylglycerols, free fatty acids & sterols, and some unknown compounds with small molecular

      由表1可知,3種油樣中的TGO、TGD和ox-TG含量隨著煎炸次數(shù)的增加而顯著增加的,這是由于在連續(xù)的煎炸過(guò)程中,油脂中的聚合反應(yīng)和氧化反應(yīng)逐漸占據(jù)主導(dǎo)地位,使得油脂氧化產(chǎn)物中的聚合物和氧化產(chǎn)物含量增加[24]。由差異顯著性分析可知,TGO、TGD和ox-TG在吸收油中的含量低于它們?cè)谑S嘤椭械暮?,表明煎炸次?shù)會(huì)顯著影響薯?xiàng)l對(duì)大豆油中的TGO、TGD和ox-TG的吸收性。與對(duì)照組相比,剩余油中的TGO含量較低,一方面煎炸油脂中TGD比TGO更容易形成,另一方面可能是由于煎炸薯?xiàng)l過(guò)程中,水分的引入抑制了TGP的形成并降低了它的含量[28]。對(duì)于TGD而言,在煎炸1次后,它在剩余油中的含量顯著高于對(duì)照組中的含量,而在連續(xù)煎炸至30次時(shí),它在2種油樣中的含量之間的差異不顯著(P>0.05),這可能是由于隨著煎炸次數(shù)的連續(xù)增加,TGD在連續(xù)增加的同時(shí),也會(huì)參與TGO的形成,導(dǎo)致TGD增加緩慢。對(duì)于同一油樣而言,在相同的煎炸條件下,TGD的含量低于TGO的含量,這也證實(shí)了油脂中的聚合反應(yīng)是從兩分子化合物到多分子化合物逐級(jí)結(jié)合的[23]。Susana 等將油樣中的脂肪酸進(jìn)行甲酯化,之后利用硅膠柱層析分離極性脂肪酸甲酯與非極性脂肪酸甲酯,最后采用HPSEC分析極性脂肪酸甲酯的組成,發(fā)現(xiàn)脂肪酸二聚物(fatty acid dimmers,F(xiàn)AD)與脂肪酸寡聚物(fatty acid oligomers,F(xiàn)AO)的比率(FAD/FAO)顯著高于未進(jìn)行甲酯化處理所得到氧化甘油三酯二聚物與氧化甘油三酯寡聚物的比例(TGD/TGO),這一事實(shí)提供了在三聚體和更高寡聚甘油三酯結(jié)構(gòu)上聯(lián)合二聚體的證據(jù)[29]。當(dāng)繼續(xù)煎炸至60次時(shí),由于在深度煎炸過(guò)程中,TGD的增加速率顯著大于其消耗速率,使得TGD在2種油樣中的含量之間存在顯著性差異(P<0.05)。在同一煎炸條件下,吸收油中TGD的含量高于ox-TG的含量,而ox-TG的含量高于TGO,表明薯?xiàng)l對(duì)這3種極性組分的吸收強(qiáng)度依次為TGD>ox-TG>TGO。同時(shí),我們也發(fā)現(xiàn),當(dāng)煎炸次數(shù)從10增加到30次時(shí),對(duì)照組中的ox-TG含量與剩余油中的ox-TG含量不存在顯著差異;而當(dāng)繼續(xù)煎炸時(shí),對(duì)照組中的ox-TG含量顯著高于剩余油中的ox-TG含量。這可能是由于在更劇烈的煎炸條件下,ox-TG參與了其他反應(yīng),降低了它本身的含量。Tommaso等也發(fā)現(xiàn)堿煉后ox-TG變化不顯著(P>0.05),而經(jīng)脫色、脫臭處理后油脂中的ox-TG大量減少,認(rèn)為在此階段,ox-TG的消耗速率大于它的生成速率[24]。

      由表2可知,對(duì)照組、剩余油和吸收油中的DG和其他未知小分子化合物含量隨著煎炸次數(shù)的增加而緩慢增加,F(xiàn)FA & sterols的變化具有一定的波動(dòng)性,但其波動(dòng)范圍較小(0.19%~0.49%)。剩余油和吸收油中的DG含量之間的差異不顯著(P>0.05),兩者的DG含量都顯著高于對(duì)照組中的DG含量,這是由于DG分子質(zhì)量較小,薯?xiàng)l對(duì)其具有良好的吸收性。這個(gè)結(jié)果與前人的研究結(jié)果相一致[30]。此外,吸收油中的FFA & sterols含量顯著(P<0.05)高于它在剩余油中的含量。在Camino的研究中,當(dāng)薯?xiàng)l在橄欖油中煎炸時(shí),其表面所吸收油脂中的FFA含量高于剩余橄欖油中的FFA含量,當(dāng)它在葵花籽油中煎炸時(shí),其表面所吸收油脂中的FFA含量低于剩余葵花籽油中的FFA含量,因此,F(xiàn)FA含量在吸收油中的含量受油脂種類的影響[26]。隨著煎炸次數(shù)的增加,3種油脂中的未知小分子化合物種類增多,但由于現(xiàn)有分離技術(shù)的限制,未能鑒定此類化合物的種類,猜測(cè)可能是由于脂肪酸長(zhǎng)鏈斷裂所形成的甘油等小分子化合物,需要進(jìn)一步的分析研究。盡管文獻(xiàn)中指出水解產(chǎn)物對(duì)食物的營(yíng)養(yǎng)價(jià)值沒有不利的影響,而且在深度煎炸過(guò)程中,由水解反應(yīng)而產(chǎn)生的FFA含量是非常少的,不足以影響食物的品質(zhì)[23],但也有文獻(xiàn)中認(rèn)為一定濃度DAG和FFA會(huì)對(duì)油脂產(chǎn)生促氧化作用[31-32]。因此,在煎炸過(guò)程中,也需要關(guān)注油脂及食物脂質(zhì)中的DG和FFA濃度。

      3 結(jié) 論

      通過(guò)研究煎炸次數(shù)對(duì)大豆油和薯?xiàng)l表面所吸收油脂中極性化合物的影響,結(jié)論如下:

      1)煎炸次數(shù)的增加,會(huì)顯著增加剩余油和吸收油中的總極性化合物含量;

      2)煎炸次數(shù)的增加,會(huì)顯著改變極性組分,尤其是氧化甘油三酯寡聚物、氧化甘油三酯二聚物和氧化甘油三酯在剩余油和吸收油中的分布;

      3)隨著煎炸次數(shù)的增加,油脂中的降解產(chǎn)物種類增加;

      4)由于甘油二酯和游離脂肪酸是脂質(zhì)代謝中的起始化合物,聚合物和氧化甘油三酯含有改變的?;鶊F(tuán),會(huì)改變油脂的營(yíng)養(yǎng)價(jià)值,為了飲食健康,需要嚴(yán)格控制煎炸次數(shù)。

      [參考文獻(xiàn)]

      [1] Farhoosh R, Tavassoli-Kafrani M H. Polar compounds distribution of sunflower oil as affected by unsaponifiable matters of Bene hull oil (BHO) and tertiary-butylhydroquinone (TBHQ) during deep-frying[J]. Food Chemistry, 2010, 122(1): 381-385.

      [2] Caponio F, Giarnetti M, Summo C, et al. A comparative study on oxidative and hydrolytic stability of monovarietal extra virgin olive oil in bakery products[J]. Food Research International, 2013, 54(2): 1995-2000.

      [3] Farhoosh R, Pazhouhanmehr S. Relative contribution of compositional parameters to the primary and secondary oxidation of canola oil[J]. Food Chemistry, 2009, 114(3): 1002-1006.

      [4] Farhoosh R, Khodaparast M H H, SHARIF A, et al. Olive oil oxidation: Rejection points in terms of polar, conjugated diene, and carbonyl values[J]. Food Chemistry, 2012, 131(4): 1385-1390.

      [5] Gil B, Cho Y J, Yoon S H. Rapid determination of polar compounds in frying fats and oils using image analysis[J]. LWT-Food Science and Technology, 2004, 37(6): 657-661.

      [6] 鄧云,吳穎,楊銘鐸,等. 煎炸油中產(chǎn)生的極性成分對(duì)食品微觀結(jié)構(gòu)和質(zhì)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(6):160-164. Deng Yun, Wu Ying, Yang Mingduo, et al. Effects of polar components in frying oil on microstructure and texture of fried food[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(6): 160-164. (in Chinese with English abstract)

      [7] 鄧云,楊銘鐸,李健,等. 油炸中油脂極性成分的產(chǎn)生對(duì)食品品質(zhì)的影響[J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2004,32(6):49-54. Deng Yun, Yang Mingduo, Li Jian, et al. Influence of the polar components produced in oil on food quality during deep-frying[J]. Journal of South China University of Technology: Natural Science Edition, 2004, 32(6): 49-54. (in Chinese with English abstract)

      [8] 李昌模. 薄層色譜法測(cè)定油脂中極性化合物含量[J]. 中國(guó)油脂,2007,32(11):77-79. Li Jianmo. Determination of polar compounds in edible oil by thin – layer chromatography[J]. China Oils and Fats, 2007, 32(11): 77-79. (in Chinese with English abstract)

      [9] 蔡文辭. 煎炸油中極性物質(zhì)的分析及其細(xì)胞毒性評(píng)價(jià)[D].無(wú)錫:江南大學(xué),2014. Cai Wenci. Analysis and Cytotoxicity Evaluation of Polar Components in Frying Oil[D]. Wuxi: Jiangnan University, 2014. (in Chinese with English abstract)

      [10] 陳雅瓊,張鐵英,陳元,等. 煎炸老油對(duì)小鼠重要臟器的影響[J]. 中國(guó)油脂,2014,39(12):38-41. Chen Yaqiong, Zhang Tieying, Chen Yuan, et al. Effect of deep fried oil on important organs of mice[J]. China Oils and Fats, 2014, 39(12): 38-41. (in Chinese with English abstract)

      [11] Indart A, Viana M, Clap S S, et al. Clastogenic and cytotoxic effects of lipid peroxidation products generated in culinary oils submitted to thermal stress[J]. Food and Chemical Toxicology, 2007, 45(10): 1963-1967.

      [12] Cao Wenming, Wang Xiang, Zhang Weiyun, et al. Toxic effects of triacylglycerol polymer on macrophages in vitro [J]. Eur J Lipid Sci Technol, 2013, 115(7): 756-763.

      [13] Lim J, Kim Y S, Kim S H, et al. Triglyceride enhances susceptibility to TNF-α-induced cell death in THP-1 cells[J]. Genes & Genomics, 2013, 36(1): 87-93.

      [14] Huang Chinfang, Lin Yushun, Chiang Zongcian, et al. Oxidized frying oil and its polar fraction fed to pregnant mice are teratogenic and alter mRNA expressions of vitamin A metabolism genes in the liver of dams and their fetuses[J]. The Journal of Nutritional Biochemistry, 2014, 25(5): 549-556.

      [15] 鄧云,楊銘鐸,李健,等. 煎炸油脂中極性成分的色譜分析[J]. 食品與發(fā)酵工業(yè),2006,32(5):127-130. Deng Yun, Yang Mingduo, Li Jian, et al. Analysis for polar components and polymers in the deep-frying oil[J]. Food and Fermentation Industries, 2006, 32(5): 127-130. (in Chinese with English abstract)

      [16] 李浩南,鄒勇,張彩,等. 煎炸油脂中極性組分檢測(cè)方法 [J].糧食與油脂,2006(5):18-21. Li Haonan, Zhou Yong, Zhang Cai, et al. Determination methods of polar compounds in frying fats and oils[J]. Cereals & Oils, 2006(5): 18-21. (in Chinese with English abstract)

      [17] 穆昭,劉元法,王興國(guó). 煎炸油加熱后極性物質(zhì)色譜分析[J].食品工業(yè)科技,2008,29(9):118-121. Mu Zhao, Liu Yuanfa, Wang Xingguo. Study on polar components of heated frying oil using liquid chromatography[J]. Science and Technology of Food Industry, 2008, 29(9): 118-121. (in Chinese with English abstract)

      [18] 周雅琳,周令國(guó),李智,等. 影響煎炸油中極性化合物生成因素的研究[J]. 中國(guó)糧油學(xué)報(bào),2010,25(3):50-53. Zhou Yalin, Zhou Lingguo, Li Zhi, et al. Influencing factors for polar compounds created in oil during deep-frying[J]. Journal of the Chinese Creaeals and Oils Association, 2010, 25(3): 50-53. (in Chinese with English abstract)

      [19] 黃蘇萍,徐詠薇. 影響煎炸油中極性組分生成因素的實(shí)驗(yàn)研究[J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志,2000,10(4):417-418. Huang Suping, Xu Yongwei. The study of influencing factors for polar components formed in frying oil[J]. Chinese Journal of Health Laboratory Technology, 2000, 10(4): 417-418. (in Chinese with English abstract)

      [20] 曹文明,薛斌,王文高,等. 高效體積排阻色譜測(cè)定油脂中氧化甘油三酯聚合物[J]. 中國(guó)油脂,2011,36(10):57-59. Cao Wenming, Xuebin, Wang Wengao, et al. Determination of oxidized triglycerides polymers by high performance sizeexclusion chromatography[J]. China Oils and Fats, 2011, 36(10): 57-59. (in Chinese with English abstract)

      [21] 曹文明,薛斌,陳鳳香,等. 食用植物油與餐廚廢油脂中三酰甘油氧化聚合物含量的研究[J]. 中國(guó)糧油學(xué)報(bào),2012,27(11):96-99. Cao Wenming, Xuebin, Chen Fengxiang, et al. Research of content of oxidized triacylglycerol polymers both in edible vegetable oils and in waste cooking oils[J]. Journal of the Chinese Creaeals and Oils Association, 2012, 27(11): 96-99. (in Chinese with English abstract)

      [22] Al-Khusaibi M, Niranjan K. The Impact of blanching and high-pressure pretreatments on oil uptake of fried potato slices[J]. Food Bioprocess Technol, 2012, 5(6): 2392-2400. [23] Gomes T, Caponio F, Durante V, et al. The amounts of oxidized and oligopolymeric triacylglycerols in refined olive oil as a function of crude oil oxidative level[J]. LWT-Food Science and Technology, 2012, 45(2): 186-190.

      [24] Fritsch C W. Measurements of frying fat deterioration: A brief review[J]. Journal of the American Oil Chemists’Society, 1981, 58(3): 272-274.

      [25] Marmesat S, Mancha M, Ruiz-M Ndez M V, et al. Performance of sunflower oil with high levels of oleic and palmitic acids during industrial frying of almonds, peanuts, and sunflower seeds[J]. J Am Oil Chem Soc, 2005, 82(7): 505-510.

      [26] Pérez-Camino M C, Márquez-Ruiz G, Ruiz-Méndez M V, et al. Lipid changes during frying of frozen prefried foods[J]. Journal of Food Science, 1991, 56(6): 1644-1647.

      [27] Arroyo R, Cuesta C, Garrido-Polonio C, et al. High-performance size-exclusion chromatographic studies on polar components formed in sunflower oil used for frying[J]. Journal of the American Oil Chemists Society, 1992, 69(6): 557-563.

      [28] Abidi S L, Kim I H, Rennick K A. Determination of nonvolatile components of heated soybean oils separated with high-efficiency mixed-bed polystyrene/divinylbenzene columns[J]. J Am Oil Chem Soc, 1999, 76(8): 939-944.

      [29] Marmesat S, Morales A, Velasco J, et al. Influence of fatty acid composition on chemical changes in blends of sunflower oils during thermoxidation and frying[J]. Food Chemistry, 2012, 135(4): 2333-2339.

      [30] Garrido-Polonio M C, S Nchez-Muniz F J, Arroro R, et al. Small scale frying of potatoes in sunflower oil: thermoxidative alteration of the fat content in the fried product[J]. Z Ern?hrungswiss, 1994, 33(4): 267-276.

      [31] Caponio F, Paradiso V M, Bilancia M T, et al. Diacylglycerol isomers in extra virgin olive oil: Effect of different storage conditions[J]. Food Chem, 2013, 140(4): 772-776.

      [32] Paradiso V M, Gomes T, Nasti R, et al. Effects of free fatty acids on the oxidative processes in purified olive oil [J]. Food Research International, 2010, 43(5): 1389-1394.

      Effect of frying cycles on polar components in soybean oil and absorbed lipids of fried potatoes

      Feng Hongxia1, Li Yang1※, Sui Xiaonan1, Qi Baokun1, Wang Zhongjiang1, Jiang Lianzhou1,Cao Wenming2
      (1. College of Food Science, Northeast Agricultural University, Harbin 150030, China; 2. Shanghai Grain Science Research Institute, Shanghai 200136, China)

      Abstract:Frying is a traditional and popular processing method for the food preparation throughout the world. Frying can not only confer good flavor and color, but also generate many kinds of reaction products, affecting the quality of the oil and the food. A lot of published literatures focused on the quality of the frying oil. However, for direct consumption, the quality of the fried food affects human’s health and safety, and thus addressing the study on the quality of the fried food is needed. As we all know, the content of total polar compound (TPC) is one of the most valid and objective criteria for the evaluation of deterioration of oils during deep frying. Thus, in this study, our research was mainly focused on the content and composition of polar compounds in the lipids absorbed on the surface of fried food during deep frying. Preparative flash chromatography, as a convenient and fast way, was adopted to separate polar compounds from the oil and the absorbed lipids of fried food. The obtained polar compound was further analyzed by high performance size-exclusion chromatography to determine its main compositions. The results indicated that the contents of TPC from both the fried oil and the absorbed lipid of fried food were gradually increasing with the number of frying times. No significant difference of TPC content between the rest oil of treatments and the sample of control was observed for the number of frying times of 1-30 (the heated oil without adding French fries was the control). However, TPC content of the control was significantly higher than that of the rest oil of treatments for the number of frying times of 40-60, indicating that the addition of potatoes to a certain extent could help inhibit the formation of polar compounds. In addition, frying times significantly changed the distribution of polar components, which were oxidized triglyceride oligomers (TGO), oxidized triglyceride dimers (TGD), oxidized triglyceride monomers (ox-TG), diacylglycerols (DG), free fatty acids and sterols (FFA & sterols), and some unknown compounds with small molecule, not only in the frying oil but also in the absorbed lipid of fried food. The contents of TGO, TGD and ox-TG in samples of the control, the rest oil of treatments, and the absorbed lipid of fried food were significantly (P<0.05) increasing with the number of frying times. But under the same condition, the contents of TGO, TGD and ox-TG in the absorbed lipid of fried food were much lower than those in the rest oil of treatment, while the difference of the contents of TGO, TGD and ox-TG between the control and the treatment was affected by the number of frying times. On the other hands, a little change was observed in the content of DG and FFA & sterols of all the samples for the frying times of 60. More kinds of unknown compounds with small molecule were generated with the increase of frying times. In conclusion, the content and the composition of TPC in the frying oil and the absorbed oil of fried potatoes are seriously affected by frying times. And in some extent, the health value of the fried potatoes is also influenced. Taking into account of the potential threat of polar compounds to human health, the frying times must be strictly controlled.

      Keywords:oils and fats; food processing; oxidation; frying cycles; potatoes; polar compounds; high performance size-exclusion chromatography; oxidized triglyceride oligomers; oxidized triglyceride dimers

      通信作者:※李楊,男,黑龍江人,博士,碩士生導(dǎo)師,研究方向:糧食、油脂及植物蛋白工程。哈爾濱東北農(nóng)業(yè)大學(xué)食品學(xué)院,150030。

      作者簡(jiǎn)介:馮紅霞,女,河南人,博士生,研究方向:糧食、油脂及植物蛋白工程。哈爾濱東北農(nóng)業(yè)大學(xué)食品學(xué)院,150030。

      基金項(xiàng)目:東北農(nóng)業(yè)大學(xué)研究生科技創(chuàng)新項(xiàng)目(yjscx14058);國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(31430067);黑龍江省自然科學(xué)基金項(xiàng)目重點(diǎn)項(xiàng)目(ZD201302);黑龍江省教育廳科學(xué)技術(shù)研究項(xiàng)目面上項(xiàng)目(12531049);黑龍江省博士后科研啟動(dòng)金項(xiàng)目(LBH-Q13018)。

      收稿日期:2014-07-25

      修訂日期:2015-11-16

      中圖分類號(hào):TS221;TQ646

      文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1002-6819(2016)-03-0309-06

      doi:10.11975/j.issn.1002-6819.2016.03.044 10.11975/j.issn.1002-6819.2016.03.044http://www.tcsae.org

      猜你喜歡
      大豆油薯?xiàng)l甘油三酯
      飲食清淡,為什么甘油三酯還是高?
      老年人(2022年8期)2022-04-29 00:44:03
      高甘油三酯血癥
      解鎖“夾薯?xiàng)l”游戲
      體檢時(shí)甘油三酯水平正常,為何仍需注意?
      祝您健康(2018年12期)2018-11-27 02:30:34
      精煉大豆油回色因素及延緩回色工藝的研究
      薯?xiàng)l外傳
      薯?xiàng)l外傳(3)
      薯?xiàng)l外傳(2)
      大豆油基生物柴油氧化動(dòng)力學(xué)方程研究
      高含量DHA/EPA甘油三酯的降血脂和保肝作用的研究
      文安县| 虎林市| 常熟市| 特克斯县| 沙田区| 昔阳县| 屏山县| 凭祥市| 琼结县| 米林县| 乐东| 景东| 且末县| 榆社县| 莒南县| 桂林市| 伊吾县| 兴海县| 南川市| 莱西市| 广宁县| 焉耆| 莱阳市| 宁远县| 扶风县| 泗水县| 崇左市| 石林| 奉化市| 洪泽县| 依安县| 兴安盟| 永和县| 介休市| 肥西县| 新巴尔虎右旗| 安义县| 根河市| 定边县| 赞皇县| 赤水市|