羅福強(qiáng),周 群,薛福英,吳習(xí)文,2,仲 達(dá)(. 江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 2203; 2. 中國(guó)人民解放軍鎮(zhèn)江船艇學(xué)院動(dòng)力指揮系,鎮(zhèn)江 22003)
?
農(nóng)用柴油機(jī)噴油器各孔噴油規(guī)律驗(yàn)證及流動(dòng)特性模擬
羅福強(qiáng)1,周群1,薛福英1,吳習(xí)文1,2,仲達(dá)1
(1. 江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013;2. 中國(guó)人民解放軍鎮(zhèn)江船艇學(xué)院動(dòng)力指揮系,鎮(zhèn)江 212003)
摘要:針對(duì)農(nóng)用柴油機(jī)噴油器各孔內(nèi)部流動(dòng)特性存在差異的現(xiàn)象,該文以某兩氣門用非均勻布置的5孔無(wú)壓力室噴油器為研究對(duì)象建立三維模型,運(yùn)用雙流體模型及空穴模型計(jì)算了模擬各孔噴油規(guī)律,與實(shí)測(cè)各孔噴油規(guī)律吻合較好。通過(guò)該模型分析了噴嘴各孔瞬態(tài)流動(dòng)特性及噴孔軸線與針閥軸線夾角對(duì)噴孔內(nèi)部流動(dòng)的影響。模擬結(jié)果如下:在針閥全開(kāi)階段,隨著凸輪軸轉(zhuǎn)角的增加,噴油壓力不斷變化,各孔內(nèi)部出現(xiàn)不穩(wěn)定空化,影響噴孔出口噴油速率;在噴射初期,噴孔內(nèi)部未形成完全空穴,各孔噴油速率的差異不明顯。另外,噴嘴噴孔軸線與針閥軸線夾角從67°增至80°時(shí),各孔內(nèi)部空穴區(qū)增加且延伸的空穴逐漸向噴孔中心軸線移動(dòng),噴油速率逐漸減小。該研究可為農(nóng)用柴油機(jī)噴油器各孔的分布設(shè)計(jì)提供參考。
關(guān)鍵詞:柴油機(jī);模型;燃油噴射;噴油器;噴油速率;模擬計(jì)算
羅福強(qiáng),周群,薛福英,吳習(xí)文,仲達(dá). 農(nóng)用柴油機(jī)噴油器各孔噴油規(guī)律驗(yàn)證及流動(dòng)特性模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):58-63.doi:10.11975/j.issn.1002-6819.2016.02.009http://www.tcsae.org
Luo Fuqiang, Zhou Qun, Xue Fuying, Wu Xiwen, Zhong Da. Building 3-D model of diesel injector used in agriculture verified by injection rate of each hole and simulation on internal flow characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 58-63. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.009http://www.tcsae.org
農(nóng)用柴油機(jī)由于成本、使用傳統(tǒng)等原因,兩氣門發(fā)動(dòng)機(jī)仍大量應(yīng)用。為了提高充氣效率增加氣門直徑,改善動(dòng)力性,兩氣門發(fā)動(dòng)機(jī)用噴油器一般偏離氣缸中心傾斜布置,噴油器各孔軸線與針閥軸線夾角并不相同,以使各孔噴霧在燃燒室內(nèi)盡可能均勻分布。
國(guó)內(nèi)外研究的試驗(yàn)結(jié)果表明[1-4],這種噴油器各孔噴油規(guī)律(噴油量)并不一致,流動(dòng)方向改變較大的孔噴油量相對(duì)較少。噴油過(guò)程對(duì)噴霧、混合氣形成及燃燒有較大影響,從而影響發(fā)動(dòng)機(jī)動(dòng)力性、經(jīng)濟(jì)性、排放等。噴油過(guò)程是研究噴霧燃燒的基礎(chǔ),噴孔內(nèi)部流動(dòng)可作為噴油嘴出口燃油霧化、缸內(nèi)燃燒等模擬計(jì)算的邊界條件[5],而空穴現(xiàn)象是噴孔內(nèi)部燃油流動(dòng)過(guò)程中不可忽視的現(xiàn)象。在噴嘴內(nèi)部空化流動(dòng)的相關(guān)研究中,Payri F等[6]、崔慧峰等[7]、何志霞等[8-9]研究了穩(wěn)態(tài)條件下噴孔內(nèi)部空化過(guò)程,而實(shí)際噴油器噴油過(guò)程中會(huì)伴隨著針閥的開(kāi)啟和關(guān)閉,以及噴油壓力的波動(dòng)等非穩(wěn)態(tài)工況,如:Blessing M等[10]、He等[11]、鄭金保等[12]研究了針閥運(yùn)動(dòng)對(duì)噴嘴瞬態(tài)流動(dòng)特性的影響,Wang等[13-14]、張輝亞等[15]指出非穩(wěn)態(tài)工況下壓力波動(dòng)會(huì)導(dǎo)致不穩(wěn)定空化。上述研究都是針對(duì)單個(gè)噴孔或多孔對(duì)稱分布噴油器某一孔內(nèi)部空化進(jìn)行的研究,而在農(nóng)用柴油機(jī)中,兩氣門發(fā)動(dòng)機(jī)用噴油器各孔布置不對(duì)稱,影響各孔之間內(nèi)部空穴流動(dòng),導(dǎo)致各孔出口燃油噴霧有很大差異,進(jìn)而影響燃燒和排放性能[16-17]。為滿足農(nóng)用柴油機(jī)日益嚴(yán)格的排放法規(guī),有必要針對(duì)兩氣門用噴油器的各孔內(nèi)部流動(dòng)特性進(jìn)行研究。
本文針對(duì)某兩氣門柴油機(jī)用非均勻布置的5孔無(wú)壓力室噴油器,建立三維模型,運(yùn)用雙流體模型及空穴模型以實(shí)測(cè)噴油壓力為進(jìn)口邊界條件,獲取噴孔內(nèi)部流動(dòng)過(guò)程;在驗(yàn)證模型準(zhǔn)確性后分析噴油器各孔內(nèi)燃油瞬態(tài)流動(dòng)差異,以期為農(nóng)用柴油機(jī)噴油器各孔分布設(shè)計(jì)提供參考。
1.1計(jì)算方程
由于雙流體模型考慮了氣液兩相間的相對(duì)滑移及交界面處的作用力,并在湍流黏性計(jì)算中考慮了因空化氣泡運(yùn)動(dòng)而產(chǎn)生的渦黏性的影響,能夠反映更多的流場(chǎng)細(xì)節(jié)[18-19],所以選取雙流體計(jì)算模型。
基于雙流體模型的建模要求,連續(xù)性方程形式為
式中l(wèi)和k表示物質(zhì)狀態(tài),k=1表示氣相,k=2表示液相;αk為k相體積分?jǐn)?shù),%;ρk為k相密度,kg/m3;νk為k相的速度,m/s;t為時(shí)間,s;Гkl為k相和l相的質(zhì)量傳輸,kg/(m3·s)。
對(duì)于k相體積分?jǐn)?shù)αk須滿足
動(dòng)量方程形式為
式中p為壓強(qiáng),Pa;tkT為k相雷諾應(yīng)力,Pa;τk代表k相切應(yīng)力,Pa;Mkl為k相對(duì)l相的界面力,N; g為重力加速度,m/s2。
相間質(zhì)量傳輸模型采用線性空化模型,方程形式如下
式中ρ1為氣相密度,kg/m3;N?為氣泡數(shù)密度,m-3;R為空泡區(qū)氣泡半徑,m;R˙為氣泡半徑變化率,m/s;Г12為氣相對(duì)液相的質(zhì)量傳輸,kg/(m3·s);Г21為液相和氣相的質(zhì)量傳輸,kg/(m3·s)。
相間動(dòng)量傳輸模型采用空化拖拽模型,方程形式如下
1.2計(jì)算網(wǎng)格和邊界條件
噴油器壓力室容積易對(duì)燃燒放熱和HC(hydrocabon碳?xì)洌┡欧女a(chǎn)生不利影響,為了降低因壓力室內(nèi)受熱膨脹氣化而流入氣缸的燃油,選擇某兩氣門柴油機(jī)用非均勻布置的5孔無(wú)壓力室噴油器建立三維模型,其中5孔孔徑相等,均為0.2 mm,孔長(zhǎng)為1 mm。噴油嘴各孔分布結(jié)構(gòu)如圖1所示。
圖1 無(wú)壓力室噴嘴各孔分布圖Fig.1 Distribution of each hole in valve covered orifice injector
由于針閥運(yùn)動(dòng)和噴孔內(nèi)燃油壓力的波動(dòng),使得燃油在噴孔內(nèi)部的流動(dòng)并非穩(wěn)態(tài),動(dòng)網(wǎng)格技術(shù)能夠反映噴孔內(nèi)燃油流動(dòng)的瞬態(tài)變化[20-21]。圖2為噴嘴計(jì)算網(wǎng)格,如圖2所示,將生成的三維幾何全模型進(jìn)行網(wǎng)格劃分,劃分網(wǎng)格采用分塊耦合以及“面”控制“體”的方法,同時(shí)對(duì)噴孔局部加密,生成了三維結(jié)構(gòu)化六面體網(wǎng)格。對(duì)于湍流流動(dòng)采用標(biāo)準(zhǔn)的k-ε湍流模型;近壁面區(qū)的液體流動(dòng),采用標(biāo)準(zhǔn)壁面方程進(jìn)行處理。通過(guò)基于內(nèi)節(jié)點(diǎn)的有限容積法進(jìn)行離散,采用SIMPLEC算法對(duì)速度場(chǎng)和壓力場(chǎng)進(jìn)行耦合計(jì)算。噴油嘴內(nèi)部流動(dòng)計(jì)算的入口和出口邊界均采用與試驗(yàn)所測(cè)結(jié)果一致的進(jìn)出口壓力為邊界條件。
圖2 噴嘴計(jì)算網(wǎng)格Fig.2 Nozzle computational grid
2.1油泵試驗(yàn)臺(tái)架
燃油供給系統(tǒng)為機(jī)械泵-管-嘴燃油供給系統(tǒng)(泰安試驗(yàn)設(shè)備廠,型號(hào)為12PSDB75A),試驗(yàn)臺(tái)主要有低壓供油系統(tǒng):燃油濾清器,輸油泵;動(dòng)力傳動(dòng)系統(tǒng):電動(dòng)機(jī),測(cè)速齒輪,聯(lián)軸器;高壓供油系統(tǒng):噴油泵,高壓油管,噴油器;試驗(yàn)臺(tái)控制器:轉(zhuǎn)速控制,量油計(jì)數(shù),油溫油壓調(diào)節(jié);燃油體積測(cè)量系統(tǒng)五部分組成,各孔噴油規(guī)律試驗(yàn)臺(tái)架示意圖如圖3所示。結(jié)合動(dòng)量守恒原理和牛頓第二定律等理論,通過(guò)長(zhǎng)沙鈦合電子設(shè)備有限公司(簡(jiǎn)稱長(zhǎng)沙鈦合)生產(chǎn)的型號(hào)為PPM-SY02壓電式外卡壓力傳感器3和長(zhǎng)沙鈦合生產(chǎn)的型號(hào)為PPM-SY05壓電式微型動(dòng)態(tài)力傳感器2在試驗(yàn)工況為循環(huán)噴油量65 mm3,噴油泵轉(zhuǎn)速1 200 r/min下分別測(cè)量噴油器噴油壓力以及各孔噴霧沖擊力,可得到噴油器各孔噴油規(guī)律和各孔循環(huán)噴油量[2-4]。
圖3 各孔噴油規(guī)律試驗(yàn)臺(tái)架示意圖Fig.3 Schematics experimental rig of fuel injection rate of each nozzle hole
2.2試驗(yàn)驗(yàn)證
圖4為實(shí)測(cè)噴油壓力圖,以實(shí)測(cè)噴油壓力為進(jìn)口邊界條件,計(jì)算得到各孔噴油規(guī)律以及各孔循環(huán)噴油量。圖5為各孔模擬計(jì)算噴油規(guī)律和實(shí)測(cè)噴油規(guī)律對(duì)比圖,可判斷模擬值與實(shí)測(cè)值的吻合度。為了準(zhǔn)確描述出所建模型計(jì)算值與實(shí)測(cè)值之間的相對(duì)誤差,可通過(guò)各孔噴油規(guī)律曲線對(duì)凸輪軸轉(zhuǎn)角積分可得到各孔循環(huán)噴油量,表1為實(shí)測(cè)各孔循環(huán)噴油量與模擬計(jì)算循環(huán)噴油量的對(duì)比。通過(guò)試驗(yàn)所測(cè)的各孔循環(huán)噴油量與模擬計(jì)算得到的各孔循環(huán)噴油量計(jì)算相對(duì)誤差
圖4 實(shí)測(cè)噴油壓力Fig.4 Injection pressure in experiment rig
如圖5所示,通過(guò)對(duì)比實(shí)測(cè)各孔噴油規(guī)律和模擬各孔噴油規(guī)律可知,二者曲線稍有差異,但總體形狀吻合較好。同時(shí)計(jì)算各孔模擬循環(huán)噴油量和各孔試驗(yàn)循環(huán)噴油量以及二者的相對(duì)誤差,計(jì)算結(jié)果如表1所示,二者相對(duì)誤差均小于5%。由此可知,所建模型與試驗(yàn)較為吻合。
圖5 各孔噴油規(guī)律試驗(yàn)值與模擬值對(duì)比Fig.5 Comparison of measured and simulated fuel injection rate of each nozzle hole
表1 各孔循環(huán)噴油量試驗(yàn)值與模擬值對(duì)比Table 1 Comparison of measured and simulated cycle fuel injection quantity of each nozzle hole
選取試驗(yàn)工況為循環(huán)噴油量65 mm3,噴油泵轉(zhuǎn)速1 200 r/min,用此工況下的噴油壓力為進(jìn)口邊界條件進(jìn)行模擬分析。
3.1各孔流動(dòng)特性對(duì)比分析
圖6分別為在同一工況不同凸輪軸轉(zhuǎn)角下各孔內(nèi)部空穴分布分布對(duì)比圖。
圖6 各孔空穴對(duì)比Fig.6 Comparisons among cavitation distributions of each hole
由圖6可知,在12.8℃aA時(shí),5個(gè)噴孔內(nèi)部空穴區(qū)延伸長(zhǎng)度雖不同,但都未完全延伸至出口。相應(yīng)地,在圖5中凸輪軸轉(zhuǎn)角在12.8℃aA時(shí),各孔的噴油速率差異不明顯,說(shuō)明此時(shí)部分空穴對(duì)各孔噴油速率影響不大。隨著凸輪軸轉(zhuǎn)角的增加,各噴孔內(nèi)部空穴區(qū)逐漸增加,但由于各孔結(jié)構(gòu)分布的不同,導(dǎo)致各噴孔空穴區(qū)增加的速度也不同,由圖6中可以看出孔3和孔4內(nèi)部空穴區(qū)增長(zhǎng)速度隨著凸輪軸轉(zhuǎn)角的增加相對(duì)較快,導(dǎo)致空穴層的厚度較厚,同時(shí)孔3和孔4的燃油流速較大,有利于噴孔出口的燃油霧化,但噴孔內(nèi)流體的有效流通面積較小,噴孔噴油速率較低;孔1內(nèi)部空穴區(qū)隨著凸輪軸轉(zhuǎn)角的增加呈現(xiàn)較緩慢的增長(zhǎng),空穴層厚度較薄且噴孔出口的燃油流速較低,相比較孔3和孔4而言會(huì)影響燃油霧化效果,但由于孔1中有效流通面積較大,導(dǎo)致孔1噴油速率相對(duì)較高;孔5和孔2內(nèi)部空穴區(qū)的增長(zhǎng)速度隨著凸輪軸轉(zhuǎn)角的增加則介于上面兩者之間。根據(jù)這一變化趨勢(shì),為了保證混合氣的形成以優(yōu)化燃燒及降低排放,綜合考慮燃油霧化和噴油速率的影響,應(yīng)合理設(shè)計(jì)和安裝兩氣門多孔噴油器。
不同凸輪軸轉(zhuǎn)角下,噴孔內(nèi)部空穴區(qū)存在差異,這是因?yàn)閲娪蛪毫Υ嬖诓▌?dòng),導(dǎo)致噴孔內(nèi)部發(fā)生不穩(wěn)定空化。由圖6可知,在針閥全開(kāi)后,凸輪軸轉(zhuǎn)角17.2℃aA時(shí)的空穴層厚度比18.4℃aA時(shí)厚,結(jié)合圖4的噴油壓力曲線圖可知,此段過(guò)程為壓力上升段;凸輪軸轉(zhuǎn)角在18.4℃aA時(shí)的空穴層厚度比在19.8℃aA時(shí)的薄,此段過(guò)程為壓力下降段。具體解釋為流場(chǎng)壓力的上升導(dǎo)致氣泡潰滅,而流場(chǎng)壓力的下降促使氣泡的成長(zhǎng),這與文獻(xiàn)[22]的研究結(jié)果一致。隨著噴油時(shí)刻繼續(xù)增加,噴孔內(nèi)部空穴區(qū)繼續(xù)增長(zhǎng),但由于噴油壓力持續(xù)下降,使得噴孔出口噴油速率變小。
3.2噴油器噴孔軸線和針閥軸線夾角的影響
圖7為凸輪軸轉(zhuǎn)角21℃aA下各噴孔表面空穴分布以及噴孔出口截面的空穴分布圖。
圖7 21℃aA 下各孔表面空穴分布及各孔出口截面空穴分布Fig.7 Cavitating distributions of surface and outlet section of each hole at 21℃aA
結(jié)合圖5和圖7可知,各孔噴油規(guī)律存在明顯差異,在同一凸輪轉(zhuǎn)角下,孔1噴油速率最大,因其對(duì)應(yīng)的噴孔軸線和針閥軸線夾角最小,噴孔出口處的空穴強(qiáng)度較弱;孔3和孔4兩者的噴油速率幾乎相同且數(shù)值相比較其他3個(gè)孔也是最小的,同時(shí)孔3和孔4空穴分布相同且空穴強(qiáng)度也接近,這是由于孔3和孔4的噴孔軸線和針閥軸線夾角相同且最大,燃油流動(dòng)方向改變也最大,因此流動(dòng)阻力也最大;孔5和孔2的噴油速率介于孔1與孔3、孔4之間,孔5和孔2的噴油速率值差異較小,噴孔內(nèi)部的空穴分布基本相同且已經(jīng)形成完全空穴。由于噴孔內(nèi)空穴的形成有利于噴孔出口霧化,但抑制了噴孔出口流量系數(shù)[23-25],是孔3和孔4的噴油速率較其他3個(gè)孔偏小的另一原因。
為了方便比較各噴孔出口徑向的空穴和流動(dòng)速度的差異,定義噴孔出口截面上任意一點(diǎn)到噴孔中心的距離與噴孔半徑的比值為相對(duì)半徑。噴孔頂部和底部相對(duì)半徑分別為-1和1,噴孔中心相對(duì)半徑為0。
圖8a為各孔出口處徑向氣相體積分?jǐn)?shù)(空穴)分布圖,圖8b為各孔出口處徑向的流動(dòng)速度分布圖。據(jù)圖7與圖8可知,孔1(噴孔軸線和針閥軸線夾角為67°)空穴分布緊貼噴孔頂部且出口處空穴強(qiáng)度較弱,流動(dòng)速度隨著相對(duì)半徑的增加而減少。隨著噴孔軸線和針閥軸線的夾角增大至71°(孔5)和70°(孔2)時(shí),空穴區(qū)擴(kuò)散延伸至出口形成完全空穴,此時(shí)噴孔出口處的空穴已經(jīng)向噴孔中心軸線移動(dòng),氣相體積分?jǐn)?shù)最大值在相對(duì)半徑為?0.7左右,流速在相對(duì)半徑為?0.53左右達(dá)到最大。當(dāng)噴孔軸線和針閥軸線的夾角繼續(xù)增加至80°(孔3和孔4)時(shí),空穴強(qiáng)度較強(qiáng),此時(shí),氣相體積分?jǐn)?shù)的最大值已經(jīng)位于相對(duì)半徑為?0.15左右,流速在相對(duì)半徑為0.15左右達(dá)到最大。
圖8 各孔出口處徑向氣相體積分?jǐn)?shù)和流動(dòng)速度對(duì)比Fig.8 Comparisons among gas phase volume fraction and flow velocity of the outlet of each hole in the radial direction
由上述分析可知,各孔出口處流速在空穴區(qū)附近較大,這是因?yàn)閲娍壮隹诹魉俚姆植际車娍變?nèi)部空穴區(qū)的影響,由于空穴附近的壓力較低,根據(jù)伯努利方程可知,流體流速較高。隨著噴孔軸線和針閥軸線夾角的增大,噴孔內(nèi)部空穴區(qū)向噴孔中心軸線移動(dòng),噴孔出口處流速在噴孔中心軸線附近增加,其中孔3和孔4與孔2和孔5流速分布雖然有所差異,但其流速峰值所對(duì)應(yīng)的相對(duì)半徑都較接近噴孔中心軸線,有利于燃油的霧化。由此可知:首先噴孔軸線和針閥軸線夾角的大小會(huì)影響噴孔內(nèi)的空穴分布,并影響噴孔出口燃油的有效流通截面積,進(jìn)而影響出口噴油速率、噴霧以及混合氣的形成。其次對(duì)于農(nóng)用柴油機(jī)而言,由于噴油器偏置安裝,從而導(dǎo)致各孔夾角布置會(huì)有差異,根據(jù)各噴孔軸線和針閥軸線夾角的差異布置噴油器在氣缸蓋上的位置可保證氣缸內(nèi)混合氣均勻,噴油器在氣缸蓋上傾斜的一側(cè)噴孔夾角應(yīng)較大,而另一側(cè)夾角應(yīng)較小。
1)兩氣門發(fā)動(dòng)機(jī)用噴油器偏離氣缸中心傾斜布置,噴油器各孔軸線與針閥軸線夾角不相同,導(dǎo)致各孔間噴油規(guī)律存在差異;各孔實(shí)測(cè)噴油規(guī)律和所建立的模型模擬計(jì)算的噴油規(guī)律吻合較好。
2)各孔燃油流動(dòng)及空穴分布存在顯著差異。噴孔軸線和針閥軸線夾角從67°增加至80°,噴孔內(nèi)部空穴區(qū)逐漸增加且空穴逐漸向噴孔軸線移動(dòng),同時(shí)流速在空穴區(qū)附近也逐漸增加,有利于燃油的霧化。由此可設(shè)計(jì)并改進(jìn)噴油器。
3)在噴油開(kāi)始階段,各孔內(nèi)部都未形成完全空穴,各孔間的噴油速率差異隨噴孔軸線和針閥軸線的夾角變化不明顯。噴油過(guò)程中,孔3與孔4內(nèi)部空穴發(fā)展較快,孔1內(nèi)部空穴發(fā)展較慢;同時(shí)各噴孔內(nèi)空穴區(qū)隨著壓力的升高而略有減小,隨著噴油壓力的降低而略有增加,這將影響各孔出口噴油速率。
[參考文獻(xiàn)]
[1] Luo Fuqiang, Cui Huifeng, Dong Shaofeng. Transient measuring method for injection rate of each nozzle hole based on spray momentum flux[J]. Fuel, 2014, 125(1): 20-29.
[2] Payri R, García J M, Salvador F J, et al. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics[J]. Fuel, 2004,84(5): 551-561.
[3] Desantes J M, Payri R, Salvador F J, et al. Measurements of spray momentum for the study of cavitation in diesel injection nozzles[J]. SAE Technical, 2003-01-0703.
[4] 宗永平,劉建新,何勇靈,等. 噴油器各噴孔流量影響因素的分析[J]. 洛陽(yáng)工學(xué)院學(xué)報(bào),1999,20(4):49-51. Zong Yongping, Liu Jianxin, He Yongling, et al. Analysis of factors affecting jet orifices flux of fuel injector[J]. Journal of Luoyang Institute of Technology, 1999, 20(4): 49-51. (in Chinese with English abstract)
[5] 鄭金保,繆雪龍,洪建海,等. 共軌和直列泵管嘴系統(tǒng)噴油嘴壓力室流動(dòng)分析[J]. 內(nèi)燃機(jī)學(xué)報(bào),2011,29(1):61-66. Zheng Jinbao, Miu Xuelong, Hong Jianhai, et al. Flow analysis of SAC nozzle with CR and PLN system[J]. Transactions of CSICE, 2011, 29(1): 61-66. (in Chinese with English abstract)
[6] Payri F, Payri R, Salvador F J, et al. A contribution to the understanding of cavitation effects in diesel injector nozzles through a combined experimental and computational investigation[J]. Computers & Fluids, 2012, 58(8): 88-101.
[7] 崔慧峰,羅福強(qiáng),王子玉,等. 柴油機(jī)噴嘴內(nèi)小桐子油流動(dòng)特性仿真分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):63-71. Cui Huifeng, Luo Fuqiang, Wang Ziyu, et al. Simulation analysis of flow characteristics of Jatropha curcas oil in diesel injector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(24): 63-71. (in Chinese with English abstract)
[8] 何志霞,袁建平,李德桃. 垂直多孔噴嘴內(nèi)部流動(dòng)空穴現(xiàn)象數(shù)值模擬分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(2):2-8. He Zhixia, Yuan Jianping, Li Detao. Numerical simulation and analysis of cavitating phenomena in a vertical multi-hole nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(2): 2-8. (in Chinese with English abstract)
[9] He Zhixia, Zhong Wenjun, Wang Qian, et al. An investigation of transient nature of the cavitating flow in injector nozzles[J]. Applied Thermal Engineering, 2013,54(1): 56-64.
[10] Blessing M, K?nig G, Krüger C, et al. Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation[C]//SAE Technical Paper 031358, 2003, doi:10.4271/031358.
[11] He Zhixia, Zhong Wenjun, Wang Qian, et al. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle[J]. International Journal of Thermal Sciences, 2013, 70(8): 132-143.
[12] 鄭金保,繆雪龍,洪建海,等. 針閥升程對(duì)小壓力室噴油嘴內(nèi)部空化的影響[J]. 內(nèi)燃機(jī)學(xué)報(bào),2014,32(1):52-56. Zheng Jinbao, Miu Xuelong, Hong Jianhai, et al. Effect of needle lift on cavitation of SAC nozzle in common rail system[J]. Transactions of CSICE, 2014, 32(1): 52-56. (in Chinese with English abstract)
[13] Wang Xiang, Su Wanhua. Influence of injection pressure fluctuations on cavitation inside a nozzle hole at diesel engine conditions[C]//SAE Technical Paper 080935, 2008,doi:10.4271/080935.
[14] Wang Xiang, Su Wanhua. Numerical investigation on relationship between injection pressure fluctuations and unsteady cavitation processes inside high-pressure diesel nozzle holes[J]. Fuel, 2010, 89(9): 2252-2259.
[15] 張輝亞,張煜盛,馮明志,等. 柴油高壓噴嘴空穴流動(dòng)的非穩(wěn)態(tài)模擬[J]. 內(nèi)燃機(jī)工程,2012,33(6):66-71. Zhang Huiya, Zhang Yusheng, Feng Mingzhi, et al. Unsteady simulation of cavitation flow in injector of high-pressure common-rail injection system[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(6): 66-71. (in Chinese with English abstract)
[16] Suh H K, Chang S L. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics[J]. International Journal of Heat & Fluid Flow, 2008, 29(4): 1001-1009.
[17] Payri R, Molina S, Salvador F J, et al. A study of the relation between nozzle geometry, internal flow and sprays characteristics in diesel fuel injection systems[J]. Journal of Mechanical Science & Technology, 2004, 18(7): 1222-1235.
[18] 汪翔,蘇萬(wàn)華. 利用雙流體模型研究柴油高壓噴嘴內(nèi)部的空化流動(dòng)[J]. 科學(xué)通報(bào),2008,53(15):1864-1870. Wang Xiang, Su Wanhua. Caviation flow inside high pressure injector nozzle using dual-flow model[J]. Chinese Science Bulletin, 2008, 53(15): 1864-1870. (in Chinese with English abstract)
[19] 丁紅元,劉芬,黃榮華,等. 直噴汽油機(jī)多孔噴油器噴嘴內(nèi)部流動(dòng)數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(3):6-11. Ding Hongyuan, Liu Fen, Huang Ronghua, et al. Numerical simulation of nozzle flow in GDI multi-hole injector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 6-11. (in Chinese with English abstract)
[20] 吳健,花陽(yáng),王站成,等. 噴油壓力及背壓對(duì)丁醇柴油噴霧影響的模擬及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):47-54. Wu Jian, Hua Yang, Wang Zhancheng, et al. Simulation and verification on spray influence of butanol/diesel blends effected by injection pressure and backpressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 47-54. (in Chinese with English abstract)
[21] 何志霞,鐘汶君,黃云龍,等. 針閥運(yùn)動(dòng)對(duì)柴油機(jī)噴嘴瞬態(tài)流動(dòng)特性的影響[J]. 內(nèi)燃機(jī)學(xué)報(bào),2012,30(4):336-342. He Zhixia, Zhong Wenjun, Huang Yunlong, et al. Investigation of transient behavior of cavitation flow in injector nozzles affected by the needle movement[J]. Transactions of CSICE, 2012, 30(4): 336-342. (in Chinese with English abstract)
[22] 汪翔,蘇萬(wàn)華. 柴油高壓噴嘴內(nèi)部的壓力波動(dòng)與不穩(wěn)定空化現(xiàn)象分析[J]. 內(nèi)燃機(jī)學(xué)報(bào),2010,28(3):193-198. Wang Xiang, Su Wanhua. Analysis on pressure fluctuation and unsteady cavitation inside high-pressure diesel injection nozzles[J]. Transactions of CSICE, 2010, 28(3): 193-198. (in Chinese with English abstract)
[23] 崔慧峰,羅福強(qiáng),董少鋒,等. 柴油機(jī)漸縮形噴孔噴嘴流動(dòng)特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(11):19-25. Cui Huifeng, Luo Fuqiang, Dong Shaofeng, et al. Flow characteristics in diesel nozzle with convergent conical orifice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 19-25. (in Chinese with English abstract)
[24] Payri F, Bermúdez V, Payri R, et al. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles[J]. Fuel, 2004, 83(4): 19-31.
[25] 錢耀義,李云清,于秀敏,等. 小型直噴式柴油機(jī)噴霧特性的試驗(yàn)研究[J]. 內(nèi)燃機(jī)學(xué)報(bào),2001,19(2):97-101. Qian Yaoyi, Li Yunqing, Yu Xiumin, et al. An experiment study on fuel spray on small direct injection diesel engine [J]. Transactions of CSICE, 2001, 19(2): 97-101. (in Chinese with English abstract)
Building 3-D model of diesel injector used in agriculture verified by injection rate of each hole and simulation on internal flow characteristics
Luo Fuqiang1, Zhou Qun1, Xue Fuying1, Wu Xiwen1,2, Zhong Da1
(1. School of Automobile ɑnd Trɑffic Engineering, Jiɑngsu University, Zhenjiɑng 212013, Chinɑ;
2. Dynɑmicɑl Commɑnding Depɑrtment of Zhenjiɑng Wɑtercrɑft College of PLA, Zhenjiɑng 212003, Chinɑ)
Abstract:Agriculture-used diesel engine is widely used because of its simple structure, low engine cost and popularity. Because of the offset of the injector position to the cylinders’ center axis in a two-valve diesel engine, the angles between the nozzle hole axis and the needle axis are different, which hence enhances efficient distribution of the mixture. It was observed from investigations that the injection rate of each nozzle hole of the injector was different but smaller for the nozzle hole with the higher angle (between the nozzle hole axis and the needle axis). The injection process is important to the spray process,mixture formation and combustion. The internal flow characteristics of the injector hole is the boundary condition for the spray,combustion and so on, which play a crucial role in improving the spray quality, optimizing the combustion process and decreasing the pollutant emissions. In the present study, a three-dimension model of valve covered orifice (VCO) injector with 5 holes used in a two-valve diesel was established. The simulation of internal cavitation and velocity distributions of each hole in the VCO injector was based on the two-fluid model and the cavitation model. Because of the needle movement and the fluctuations of the injection pressure, the internal flows in the nozzle holes were unsteady. The internal transient flow could be technically reflected by the moving mesh. The simulated and measured fuel injection rates and cyclical fuel injection quantity of each nozzle hole were compared and analyzed. Experimental validation showed that their differences were under limits, and the relative error of the cyclical fuel injection quantity per cycle of each hole between the simulated and experimental value was less than 5%, which proved that such model could be used to study the transient flow characteristics and the influences on angle between each nozzle hole axis and needle axis of the nozzle. Comparison and analysis were done, and the results showed that there were significant differences in fuel flow characteristics and cavitation among nozzle holes, which were variable during the injection process. Firstly, the continuous changing of injection pressure destabilized the internal cavitation of each hole, which influenced the injection rate at the nozzle outlet in cam angle at maximum needle lift. The increasing injection pressure resulted in the bubble’s collapse, which made the effective flow area increase and the injection rate decrease, and vice versa. During the initial part of injection, the internal cavitations of the 5 holes were different and did not progress to the outlet of the nozzle holes. This extension in length of the internal cavitation did not affect the injection rate of each hole. Secondly,the bigger internal cavitation zone of the holes moved to the center with the increase in the angle between each nozzle hole axis and needle axis of the nozzles. This increased the flow velocity at the center of the holes, which enhanced the spray characteristics. The results obtained indicate that the spray characteristics and the injection rate should be comprehensively considered when designing and installing the two-valve multi-hole nozzle to ensure the optimum mixture formations, the combustion optimization and the reduction of emissions.
Keywords:diesel engines; models; fuel injection; injector; fuel injection rate; simulation calculation
作者簡(jiǎn)介:羅福強(qiáng),男,湖南人,教授,博士生導(dǎo)師,主要從事動(dòng)力機(jī)械工作過(guò)程及排放控制研究。鎮(zhèn)江江蘇大學(xué)汽車與交通工程學(xué)院,212013。Email:15262906575@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51476072);江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目;江蘇省博士創(chuàng)新基金(CXZZ12_0674)
收稿日期:2015-08-24
修訂日期:2015-12-16
中圖分類號(hào):TK421+.4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6819(2016)-02-0058-06
doi:10.11975/j.issn.1002-6819.2016.02.009