辛福梅,賈黎明,楊小林,臧建成
(1.北京林業(yè)大學(xué)林學(xué)院,北京100083;2.西藏大學(xué)農(nóng)牧學(xué)院,西藏林芝860000)
干旱脅迫對(duì)拉薩半干旱河谷主要灌木樹(shù)種耗水及光合的影響
辛福梅1,2,賈黎明1*,楊小林2,臧建成2
(1.北京林業(yè)大學(xué)林學(xué)院,北京100083;2.西藏大學(xué)農(nóng)牧學(xué)院,西藏林芝860000)
采用盆栽苗木直接稱量和Li-6400光合系統(tǒng)測(cè)定法,研究了拉薩半干旱河谷5種灌木在不同水分條件下的耗水及光合特性變化規(guī)律.結(jié)果表明:1)隨著干旱脅迫加劇,細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的耗水量均下降,江孜沙棘和小葉醉魚(yú)草在輕度干旱時(shí)降幅最大,細(xì)葉小紅柳在重度干旱時(shí)的耗水量較中度干旱時(shí)下降了71.8%.香柏和砂生槐則在輕度干旱時(shí)耗水量最大.重度干旱時(shí)各苗木的耗水量均最小.2)在正常供水條件下,細(xì)葉小紅柳、香柏和小葉醉魚(yú)草的耗水速率日變化為明顯的雙峰曲線,細(xì)葉小紅柳峰值出現(xiàn)在10:00—12:00和14:00—16:00,香柏和小葉醉魚(yú)草峰值出現(xiàn)在12:00—14:00和16:00—18:00;江孜沙棘和砂生槐均為單峰曲線,江孜沙棘在12:00—14:00耗水速率最大,砂生槐峰值出現(xiàn)在14:00—16:00.其他3種在干旱條件下,5個(gè)樹(shù)種的耗水速率日變化為單峰曲線;輕度干旱下香柏和小葉醉魚(yú)草的峰值出現(xiàn)在12:00—14:00,其余3個(gè)樹(shù)種最大值出現(xiàn)在14:00—16:00;中度和重度干旱下各樹(shù)種的耗水速率均在14:00—16:00達(dá)到最大值.3)在正常供水時(shí)小葉醉魚(yú)草、細(xì)葉小紅柳和江孜沙棘的凈光合速率達(dá)到各自最大值,分別為19.67μmol/(m2·s)、17.1μmol/(m2·s)和18.06μmol/(m2·s),顯著高于香柏;香柏和砂生槐在輕度干旱下凈光合速率達(dá)到最大值,分別為18.52μmol/(m2·s)和21.99 μmol/(m2·s).隨著干旱加劇,細(xì)葉小紅柳、江孜沙棘、小葉醉魚(yú)草的蒸騰速率呈下降趨勢(shì).而香柏和砂生槐在輕度干旱脅迫下蒸騰速率最大,重度干旱時(shí)各樹(shù)種的蒸騰速率均達(dá)到最小值.4)砂生槐的水分利用效率在正常供水條件下的最大值達(dá)到6.0μmol/mmol,其在各水分條件下均顯著高于其他樹(shù)種近50%.隨干旱脅迫加劇,小葉醉魚(yú)草的水分利用效率遞增.香柏、細(xì)葉小紅柳和江孜沙棘均在輕度干旱時(shí)達(dá)到最大水分利用效率.
拉薩河谷;干旱脅迫;灌木樹(shù)種;耗水;光合
SummaryVegetation restoration and reconstruction in Lhasa semi-arid valley is an important part of the Tibetan plateau national ecological security barrier construction.Water remains a major limiting factor in the area of vegetation restoration.Considering the climatic characteristics of the region,the less types of species and difficult tointroduction,it is very important to carry out water research about native tree species and screen low-water droughtresistant species.
This paper observed the water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley.The selected five species were Salix microstachya,Hippophae gyantsensis,Sabina pingii var.wilsonii,Sophora moorcroftiana and Bud dleja minima.The water consumption(WC)and water consumption rate(WCR)of all seedlings under different drought stresses were measured by pot seedling mass method,and net photosynthetic rate(Pn),transpiration rate(Tr)and water use efficiency(WUE)of them were measured by an Li-6400 photosynthetic system.
The results showed that:1)With the intensification of drought stress,the WCs of Salix microstachya,H. gyantsensis and B.minima were all gradually declined.The WC of H.gyantsensis and B.minima had the steepest decline under light drought stress.Compared with the moderate drought stress,the WC of Salix microstachya under heavy drought stress was decreased by 71.8%.The WCs of Sabina pingii var.wilsonii and Sophora moorcroftiana were the largest under light drought stress.WC for each seedling was minimal under heavy drought stress.The day-and-night WCs of Sophora moorcroftiana and B.minima were only 208.3 g/m2and 173.8 g/m2,respectively.2)Under normal water supply,the WCRs of Salix microstachya,Sabina pingii var. wilsonii and B.minima were clearly bimodal curve.The peak of Salix microstachya appeared in 10:00—12:00 and 14:00—16:00,and those of Sabina pingii var.wilsonii and B.minima were in 12:00—14:00 and 16:00—18:00.The WCRs of H.gyantsensis and Sophora moorcroftiana were single-peak curve.The largest WCR of H. gyantsensis appeared in 12:00—14:00 and that of Sophora moorcroftiana was in 14:00—16:00.The WCRs of all species were single peak curve under light,moderate and heavy drought stress.But under light drought stress,the peaks of Sabina pingii var.wilsonii and B.minima appeared in 12:00—14:00,and the maximum values of WCRs of the other three species appeared in 14:00—16:00.The maximum WCR of each species was in 14:00—16:00 under moderate and heavy drought stress.3)Under normal water supply,the Pn of Salix microstachya,H.gyantsensis and B.minima was significantly higher than that of Sabina pingii var.wilsonii,reached their maximum.The Pn of Sabina pingii var.wilsonii and Sophora moorcroftiana reached the maximum under light drought stress.With increased drought stress,the Tr of Salix microstachya,H.gyantsensis and B.minima was declined.The maximum Tr of Sabina pingii var.wilsonii and Sophora moorcroftiana appeared under light drought stress.Tr of each species had reached the minimum under heavy drought stress.4)The WUEs of Sophora moorcroftiana under various water stress were significantly higher than that in other species.With increased drought stress,the WUE of B.minima was increasing.The WUE of Salix microstachya,H.gyantsensis and Sabina pingii var.wilsonii reached the maximum in light drought stress.
水分影響著植物形態(tài)、生理生化代謝及地理分布范圍,植物對(duì)土壤水分脅迫的響應(yīng)包含著極其復(fù)雜的變化,并形成了遭受遺傳性制約的適應(yīng)機(jī)制[1-3].隨著全球性氣候變暖和土地沙漠化等,水資源短缺已成為當(dāng)今世界上極為嚴(yán)重的社會(huì)、經(jīng)濟(jì)、生態(tài)問(wèn)題[4].在干旱和半干旱地區(qū),水資源量的嚴(yán)重不足及降水時(shí)空的差異加劇了水資源的虧缺狀況及林業(yè)對(duì)水的依賴程度.樹(shù)木耐旱和耗水問(wèn)題也越來(lái)越受到國(guó)內(nèi)外相關(guān)專家及學(xué)者的關(guān)注[5-9].由于水資源短缺,植被破壞嚴(yán)重,環(huán)境條件惡劣,以致極大地影響著森林植被的恢復(fù)及重建.拉薩半干旱河谷地帶作為西藏“一江兩河”重點(diǎn)區(qū)域之一,人口稠密,開(kāi)發(fā)歷史悠久.特別是近半個(gè)世紀(jì)以來(lái),由于人類頻繁的活動(dòng)和不合理的資源開(kāi)發(fā)利用,河谷地帶的干旱化有進(jìn)一步加劇的趨勢(shì),人口、資源、環(huán)境與發(fā)展之間的矛盾日趨突出.這不僅影響拉薩河谷一帶社會(huì)經(jīng)濟(jì)的可持續(xù)發(fā)展,同時(shí)植被嚴(yán)重破壞也使“一江兩河”地區(qū)失去有力的生態(tài)保護(hù),影響著西藏高原生態(tài)安全屏障的建設(shè)[1011].
近年來(lái),盡管?chē)?guó)內(nèi)外對(duì)林木耗水性已有相當(dāng)多的研究[12-16],但在西藏這種特殊的環(huán)境下有關(guān)樹(shù)木的耗水性研究還極少,針對(duì)拉薩半干旱河谷大量灌木樹(shù)種蒸騰耗水特性的研究更少.為此,本研究選擇拉薩半干旱河谷5個(gè)典型造林灌木樹(shù)種為研究對(duì)象,通過(guò)盆栽控制試驗(yàn),在拉薩半干旱河谷特定環(huán)境條件下對(duì)其蒸騰耗水特性和水分利用效率進(jìn)行研究,以期掌握各樹(shù)種的蒸騰耗水規(guī)律,以便對(duì)正確選擇耐旱樹(shù)種,科學(xué)制定苗期水分管理措施等發(fā)揮一定的指導(dǎo)作用.
1.1 研究區(qū)概況
試驗(yàn)在西藏自治區(qū)林業(yè)廳林木科學(xué)研究院內(nèi)完成,該研究院地處拉薩市堆龍德慶縣柳梧鄉(xiāng)桑達(dá)村,為典型的拉薩半干旱河谷地帶.拉薩半干旱河谷地處雅魯藏布江支流拉薩河,喜馬拉雅山北側(cè),受下沉氣流影響,全年多晴朗天氣,冬無(wú)嚴(yán)寒,夏無(wú)酷暑,屬高原季風(fēng)半干旱氣候;河谷內(nèi)氣候溫暖、干燥,年均氣溫7.4℃,日溫差大,最熱的6月平均氣溫18.7℃,最冷的1月平均氣溫為1.0℃,多年極端最高氣溫為29.6℃,極端最低氣溫為-16.5℃,分別出現(xiàn)在6月和1月;干濕季明顯,冬季干燥少雨,降水主要集中在雨季,僅6、7、8月降水量就占到全年降水總量的88.3%,多夜雨,夜雨率達(dá)到80%左右,是西藏雨季夜雨最多的地區(qū)之一;平均相對(duì)濕度30%~50%,降水量200~500 mm,蒸發(fā)量2 100~2 300 mm,干燥度1.5~10,干濕指數(shù)3~7,10℃以上積溫2 177℃,無(wú)霜期133 d,全年日照時(shí)數(shù)3 000 h以上;該地區(qū)植被類型主要為亞高山灌叢和草甸植被以及河谷人工林群落[17].
1.2 試驗(yàn)材料與設(shè)計(jì)
選取3年生、長(zhǎng)勢(shì)良好、形態(tài)特征相近的5種該地區(qū)典型鄉(xiāng)土灌木樹(shù)種:細(xì)葉小紅柳(Salix microstachya)、江孜沙棘(Hippophae gyantsensis)、香柏(Sabina pingii var.wilsonii)、砂生槐(Sophora moorcroftiana)、小葉醉魚(yú)草(Buddleja minima)為研究對(duì)象.所用土壤為拉薩河谷典型灌叢草原土,土壤田間持水量為19.41%,體積質(zhì)量為1.23 g/cm3.栽植用盆口直徑30 cm,盆底直徑20 cm,高25 cm的花盆,每盆裝入灌叢草原土14 kg,每個(gè)花盆栽植苗木1株.試驗(yàn)于2013年6月進(jìn)行,苗木栽植經(jīng)2個(gè)月緩苗期后,于8月10日開(kāi)始干旱脅迫,8月15日開(kāi)始稱花盆質(zhì)量以測(cè)定苗木耗水特性,9月18日結(jié)束試驗(yàn),期間選擇5個(gè)不連續(xù)的典型晴天,于上午9:00—11:00測(cè)定苗木光合特性.試驗(yàn)共設(shè)4組處理,第1組正常供水(control,CK),土壤含水量為田間持水量的90%~95%;第2組輕度干旱脅迫(light drought stress,LS),土壤含水量為田間持水量的70%~75%;第3組中度干旱脅迫(moderate drought stress,MS),土壤含水量為田間持水量的50%~55%;第4組重度干旱脅迫(heavy drought stress,HS),土壤含水量為田間持水量的30%~35%.每組設(shè)5株重復(fù).試驗(yàn)時(shí)用保鮮膜覆蓋花盆的上表面以防止土壤水分蒸發(fā),同時(shí)密封花盆底部以防止水分滲漏和花盆內(nèi)土壤漏失.
1.3 測(cè)定內(nèi)容與方法
1.3.1 耗水特性
每天8:00和20:00用精密天平(量程為30 kg,精度為1/10 kg)稱花盆質(zhì)量以計(jì)算各樹(shù)種苗木每天的耗水量.20:00稱完后通過(guò)注射器在保鮮膜上扎孔注水以保證花盆內(nèi)土壤含水量在設(shè)定范圍內(nèi).耗水日變化測(cè)定時(shí)間為每天8:00—20:00,每隔2 h進(jìn)行1次.用剪紙直接稱量(硫酸紙法)測(cè)定葉面積用于計(jì)算耗水量.
1.3.2 光合特性
從4組處理的各重復(fù)中均選取5~6片功能葉片,用便攜式光合系統(tǒng)測(cè)定儀(Li-6400XT,美國(guó))測(cè)定其凈光合速率(Pn,μmol/(m2·s))、蒸騰速率(E,mmol/(m2·s)),并計(jì)算各處理的水分利用效率(WUE,Pn/E).由于所選灌木葉片不能充滿葉室,光合測(cè)定完成后,用掃描儀(Microtek Phantom 3500)掃描各處理葉片,通過(guò)UTHSCSA圖像分析系統(tǒng)(University of Texas Health Science Center,San Antonio,Texas,USA)確定葉面積,之后重新?lián)Q算凈光合速率、蒸騰速率和水分利用效率.
1.4 數(shù)據(jù)分析
用Excel 2003軟件完成全部數(shù)據(jù)處理并作圖,用SPSS 10.0統(tǒng)計(jì)軟件進(jìn)行ANOVA分析,檢驗(yàn)相應(yīng)數(shù)據(jù)的差異顯著性.
2.1 各樹(shù)種幼苗耗水特性對(duì)干旱脅迫的響應(yīng)
2.1.1 耗水量的變化
林木耗水主要包括自身蒸騰和土壤蒸發(fā)2部分,本研究中盆栽苗木土壤采用保鮮膜密封,確保苗木蒸騰耗水是其向外界散失水分的唯一途徑.表1顯示正常供水時(shí)小葉醉魚(yú)草的全天總耗水量和白天總耗水量均最大,分別為1 330.3 g/m2和1 263.3 g/m2,砂生槐的耗水量最小,約為小葉醉魚(yú)草的46.9%和44.6%.輕度干旱時(shí)細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草各耗水量均有較為明顯的下降,白天總耗水量分別下降了17.4%、34.7%和40.5%,與正常供水相比,砂生槐和香柏的白天耗水量分別增加了12.2%和24.3%.中度干旱時(shí)5種苗木各耗水量均下降,但各樹(shù)種下降幅度不同,各樹(shù)種全天總耗水量與耗水量最大值相比分別下降63.2%(砂生槐)、56.5%(小葉醉魚(yú)草)、54.8%(江孜沙棘)、33.6%(細(xì)葉小紅柳)和28.6%(香柏).重度干旱時(shí)各苗木的耗水量最小,砂生槐和小葉醉魚(yú)草的全天總耗水量?jī)H分別為208.3 g/m2和173.8 g/m2.可見(jiàn),隨干旱脅迫加劇細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的各耗水量均呈現(xiàn)下降趨勢(shì),江孜沙棘和小葉醉魚(yú)草在輕度干旱時(shí)降幅最大,細(xì)葉小紅柳在重度干旱時(shí)的耗水量較中度干旱時(shí)下降了71.8%.香柏和砂生槐均在輕度干旱時(shí)耗水量最大,之后隨干旱脅迫的加劇耗水量下降,中度干旱時(shí)耗水量降低較為明顯.從表1各樹(shù)種白天總耗水量占全天總耗水量的比例可知,各苗木的耗水主要產(chǎn)生在白天.
表1 不同干旱脅迫下各苗木的日均耗水速率Table1 Average daily water consumption rate of each shrub species under different drought stresses g/m2
2.1.2 耗水速率的日變化
從圖1可以看出,在正常供水條件下,細(xì)葉小紅柳、香柏和小葉醉魚(yú)草的耗水速率日變化均為明顯的雙峰曲線,細(xì)葉小紅柳的峰值出現(xiàn)在10:00—12:00和14:00—16:00,在10:00—12:00之間其耗水速率以263.84 g/(m2·h)的最大值而顯著高于其他樹(shù)種,香柏和小葉醉魚(yú)草則出現(xiàn)在12:00—14:00和16:00—18:00;江孜沙棘和砂生槐為單峰曲線,但二者出現(xiàn)峰值的時(shí)間不同,江孜沙棘在12:00—14:00耗水速率最大,砂生槐峰值出現(xiàn)在14:00—16:00.在輕度干旱下,5個(gè)樹(shù)種的耗水速率日變化均為單峰曲線,但不同樹(shù)種苗木峰值出現(xiàn)的時(shí)間有差異,香柏和小葉醉魚(yú)草的峰值出現(xiàn)的時(shí)間較其余3個(gè)樹(shù)種早,在12:00—14:00耗水速率最大,細(xì)葉小紅柳、江孜沙棘和砂生槐的耗水速率最大值則出現(xiàn)在14:00—16:00.在中度干旱下各樹(shù)種耗水速率同樣表現(xiàn)為單峰曲線,與輕度干旱不同的是此時(shí)5個(gè)樹(shù)種的耗水速率均在14:00—16:00達(dá)到最大值,并且各樹(shù)種耗水速率峰值之間差異明顯,細(xì)葉小紅柳耗水速率的最大值達(dá)到111.86 g/(m2·h),砂生槐的值僅為細(xì)葉小紅柳的29.4%.重度干旱時(shí)各樹(shù)種的耗水速率也均為單峰曲線且峰值均出現(xiàn)在14:00—16:00,各樹(shù)種耗水速率的峰值之間差異不明顯,最大值(香柏)僅比最小值(小葉醉魚(yú)草)高出6.26 g/(m2·h).
圖2顯示,各苗木白天平均耗水速率在同一樹(shù)種的不同干旱脅迫條件下和不同樹(shù)種的同一干旱脅迫下其差異不同.隨苗木受干旱脅迫程度的加劇,細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的白天耗水速率均呈現(xiàn)下降趨勢(shì),且各干旱脅迫處理間均達(dá)到顯著差異.小葉醉魚(yú)草在正常供水時(shí)其白天平均耗水速率達(dá)到110.9 g/(m2·h),顯著高于其他各樹(shù)種的各處理,輕度干旱開(kāi)始,小葉醉魚(yú)草的平均耗水速率急劇下降,在重度干旱下的最小值為14.5 g/(m2·h).細(xì)葉小紅柳和江孜沙棘在重度干旱下其白天平均耗水速率僅為正常供水時(shí)的17.7%和25.0%.香柏在正常供水和輕度干旱下苗木的白天平均耗水速率差異不顯著,二者與中度、重度干旱間均差異顯著,在重度干旱下其白天平均耗水速率約為輕度干旱下的38.3%.砂生槐在輕度干旱下白天平均耗水速率最大,正常供水與之相比,約下降了20.8%,在中度干旱下其白天平均耗水速率急劇下降,與輕度干旱相比下降了39.7 g/(m2·h),重度與輕度干旱間差異不顯著.
圖1 不同干旱脅迫條件下苗木耗水速率的日變化Fig.1 Daily variation of water consumption rates of different shrub species under different drought stresses
2.2 各樹(shù)種幼苗光合特性對(duì)不同干旱脅迫的響應(yīng)
2.2.1 凈光合速率的變化
圖3顯示,正常供水時(shí)小葉醉魚(yú)草凈光合速率的最大值達(dá)到19.67μmol/(m2·s),與小葉醉魚(yú)草相比,細(xì)葉小紅柳、江孜沙棘和砂生槐的凈光合速率略有下降,但4個(gè)樹(shù)種間差異不顯著.香柏的凈光合速率與其余4個(gè)樹(shù)種之間差異顯著,僅為10.5 μmol/(m2·s).與正常供水相比,在輕度干旱下,香柏的凈光合速率增加了76.3%,砂生槐和細(xì)葉小紅柳的凈光合速率略有增加,但砂生槐的凈光合速率的最大值為21.99μmol/(m2·s),而江孜沙棘和小葉醉魚(yú)草則有所下降,小葉醉魚(yú)草下降了23.4%.中度干旱時(shí),小葉醉魚(yú)草的凈光合速率與輕度干旱時(shí)差異不顯著,其余4個(gè)樹(shù)種的凈光合速率均有顯著下降,與輕度干旱相比,細(xì)葉小紅柳、江孜沙棘、香柏和砂生槐分別下降了34.7%、44.8%、50.8%和56.0%.重度干旱時(shí),細(xì)葉小紅柳的凈光合速率急劇下降,最小值為1.7μmol/(m2·s),約為輕度干旱時(shí)的1/10,與中度干旱相比,小葉醉魚(yú)草的凈光合速率下降了68.1%,其余3個(gè)樹(shù)種則略有下降,但與中度干旱相比未達(dá)到顯著差異.
2.2.2 蒸騰速率的變化
圖4顯示,正常供水時(shí)細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的蒸騰速率之間差異不顯著,細(xì)葉小紅柳的最大值達(dá)到8.80 mmol/(m2·s),3個(gè)樹(shù)種顯著高于香柏和砂生槐,砂生槐的蒸騰速率僅為3.16 mmol/(m2·s).輕度干旱下香柏和砂生槐的蒸騰速率均有提高,與正常供水相比,分別提高了37.1%和32.9%,而細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的蒸騰速率則均呈現(xiàn)下降趨勢(shì),分別比正常供水時(shí)下降了26.4%、45.9%和34.7%.中度干旱時(shí)各樹(shù)種的蒸騰速率均有下降,砂生槐的蒸騰速率最小,僅為1.7 mmol/(m2·s),其次為江孜沙棘,降幅達(dá)到37.3%,相比細(xì)葉小紅柳和香柏的降幅較小,分別為23.1%和10.3%,而小葉醉魚(yú)草則與輕度干旱相差不多,降幅僅為4.8%.重度干旱時(shí)各樹(shù)種的蒸騰速率仍呈現(xiàn)下降趨勢(shì),達(dá)到各處理的最小值,砂生槐最小值為1.6 mmol/(m2·s),與中度干旱相比,各樹(shù)種蒸騰速率的下降幅度不同,小葉醉魚(yú)草和細(xì)葉小紅柳分別下降了近80%和60%,而香柏、江孜沙棘和砂生槐下降幅度較小,分別為19.4%、10.5%和5.8%.
圖2 不同干旱脅迫下苗木白天平均耗水速率Fig.2 Water consumption rates of different shrub species under different drought stresses
圖3 不同干旱脅迫下各苗木凈光合速率的變化Fig.3 Changes of the net photosynthetic rate of different shrub species under different drought stresses
圖4 不同干旱脅迫下各苗木蒸騰速率的變化Fig.4 Changes of the transpiration rate of different shrub species under different drought stresses
2.2.3 水分利用效率的變化
由圖5可知,5個(gè)樹(shù)種的水分利用效率在各水分脅迫下表現(xiàn)不同,砂生槐的水分利用效率在各水分脅迫下均顯著高于其他樹(shù)種.正常供水時(shí)砂生槐的水分利用效率的最大值達(dá)到6.0μmol/mmol,其余4個(gè)樹(shù)種之間差異不顯著,均在2.0μmol/mmol左右.在輕度干旱下,砂生槐的水分利用效率有所下降,與正常供水相比其余4個(gè)樹(shù)種的水分利用效率均有所增加,江孜沙棘和細(xì)葉小紅柳分別增加了1.72μmol/mmol和0.9μmol/mmol,而香柏和小葉醉魚(yú)草的增幅較小,分別增加了29%和16%.中度干旱時(shí)砂生槐的水分利用效率仍顯著高于其他樹(shù)種,與輕度干旱相比,香柏、細(xì)葉小紅柳和江孜沙棘的水分利用效率均有所下降,香柏的降幅達(dá)到45.3%,與輕度干旱相比差異顯著,而小葉醉魚(yú)草的水分利用效率則略有提高.在重度干旱脅迫下細(xì)葉小紅柳的水分利用效率急劇下降,僅為0.83μmol/mmol,與中度干旱相比小葉醉魚(yú)草的水分利用效率增加,增幅達(dá)到58.1%,其余3個(gè)樹(shù)種則與中度干旱之間差異不顯著.
圖5 不同干旱脅迫下各苗木水分利用效率的變化Fig.5 Changes of the water use efficiency of different shrub species under different drought stress
林木的耗水量真實(shí)地反映了樹(shù)種的耗水能力,這對(duì)了解樹(shù)種耗水能力有一定的參考價(jià)值,不同樹(shù)種耗水量的差異能很好地反映樹(shù)種之間的耗水能力[18].在王鵬,等[19]對(duì)青島市3種灌木耗水研究中,金銀木的日耗水量達(dá)到1 018.91 g/m2;王瑞輝,等[20]對(duì)北京市15種園林樹(shù)木耗水性的研究結(jié)果顯示秋季灌木日耗水量大葉黃楊達(dá)到315.3 g/m2,金葉女貞和鋪地柏均在260 g/m2左右.本研究在正常供水條件下5個(gè)樹(shù)種中砂生槐的耗水量最小為624.4 g/m2,最高的小葉醉魚(yú)草達(dá)到1 330.3 g/m2,分析可能是由于拉薩白天的光照較強(qiáng),導(dǎo)致蒸騰耗水過(guò)大所致.所選擇5個(gè)樹(shù)種苗木的耗水均主要產(chǎn)生在白天,隨著干旱脅迫的加劇,細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的各耗水量均下降,江孜沙棘和小葉醉魚(yú)草在輕度干旱時(shí)降幅最大,細(xì)葉小紅柳在重度干旱時(shí)耗水量較中度干旱時(shí)下降了71.8%.香柏和砂生槐均在輕度干旱時(shí)耗水量最大,之后隨干旱脅迫的加劇耗水量下降.中度干旱時(shí)5種苗木的各耗水量均下降.重度干旱時(shí)各苗木的耗水量均最小,砂生槐和小葉醉魚(yú)草的全天總耗水量分別為208.3 g/m2和173.8 g/m2.
耗水速率是樹(shù)木固有的生理特性,是衡量植物水分平衡的一個(gè)重要生理指標(biāo),可以反映樹(shù)種調(diào)節(jié)自身水分損耗能力和在不同環(huán)境中的實(shí)際耗水能力[21].本次選取的5個(gè)樹(shù)種,隨著苗木受干旱脅迫程度的加劇,細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的白天耗水速率均呈下降趨勢(shì),且各干旱脅迫處理間均達(dá)到顯著差異.小葉醉魚(yú)草在正常供水時(shí)其白天平均耗水速率顯著高于其他各樹(shù)種的各處理,輕度干旱脅迫開(kāi)始,小葉醉魚(yú)草的平均耗水速率急劇下降.細(xì)葉小紅柳和江孜沙棘在重度干旱脅迫下其白天平均耗水速率僅為正常供水時(shí)的17.7%和25.0%.香柏在正常供水和輕度干旱脅迫下苗木的白天平均耗水速率差異不顯著,在重度干旱脅迫下其白天平均耗水速率約為輕度干旱脅迫的38.3%.砂生槐在輕度干旱脅迫下白天平均耗水速率最大,在中度干旱脅迫下其白天平均耗水速率急劇下降,在重度干旱與輕度干旱脅迫間差異不顯著.在正常供水條件下,細(xì)葉小紅柳、香柏和小葉醉魚(yú)草的耗水速率日變化均為明顯的雙峰曲線,細(xì)葉小紅柳在10:00—12:00其耗水速率以263.84 g/(m2·h)最大值而顯著高于其他樹(shù)種,香柏和小葉醉魚(yú)草峰值出現(xiàn)在12:00—14:00和16:00—18:00;江孜沙棘和砂生槐均為單峰曲線,江孜沙棘在12:00—14:00耗水速率最大,砂生槐的峰值出現(xiàn)在14:00—16:00.輕度干旱、中度干旱和重度干旱脅迫下各樹(shù)種耗水速率均為單峰曲線,輕度干旱下香柏和小葉醉魚(yú)草的峰值出現(xiàn)在12:00—14:00,細(xì)葉小紅柳、江孜沙棘和砂生槐的耗水速率最大值出現(xiàn)在14:00—16:00.中度干旱和重度干旱脅迫下5個(gè)樹(shù)種的耗水速率均在14:00—16:00達(dá)到最大值.
植物的光合能力是用來(lái)表征不同植物或者作物品種的重要生理指標(biāo)[22].在最佳或者最適的環(huán)境條件下,葉片的最大光合速率表示葉片的最大光合能力[23].本研究中正常供水時(shí)小葉醉魚(yú)草的凈光合速率達(dá)到最大值,細(xì)葉小紅柳、江孜沙棘和砂生槐的凈光合速率與小葉醉魚(yú)草相比略有下降.輕度干旱脅迫下,香柏的凈光合速率增加了76.3%,砂生槐和細(xì)葉小紅柳的凈光合速率略有增加,而江孜沙棘和小葉醉魚(yú)草則有所下降.中度干旱時(shí),小葉醉魚(yú)草的凈光合速率與輕度干旱時(shí)差異不顯著,其余4個(gè)樹(shù)種的凈光合速率均有顯著下降.重度干旱時(shí),細(xì)葉小紅柳的凈光合速率急劇下降,達(dá)到最小值,約為輕度干旱時(shí)的1/10,其余4個(gè)樹(shù)種則均有下降.許多樹(shù)種的蒸騰速率研究結(jié)果表明,蒸騰速率和氣孔導(dǎo)度隨著干旱脅迫的增加而降低[2426],不同樹(shù)種蒸騰速率下降的幅度也不同[27].正常供水時(shí)細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的蒸騰速率之間差異不顯著,3個(gè)樹(shù)種顯著高于香柏和砂生槐.輕度干旱脅迫下香柏和砂生槐的蒸騰速率均有提高,而細(xì)葉小紅柳、江孜沙棘和小葉醉魚(yú)草的蒸騰速率則均呈現(xiàn)下降趨勢(shì).中度干旱時(shí)各樹(shù)種的蒸騰速率均有下降.重度干旱時(shí)各樹(shù)種的蒸騰速率仍呈現(xiàn)下降趨勢(shì),達(dá)到各處理的最小值,砂生槐最小.
水分脅迫下植物水分利用效率的提高是其對(duì)干旱的一種適應(yīng),有利于增加對(duì)水分脅迫的抵抗,干旱環(huán)境條件下,植物水分利用效率越高,表明植物的節(jié)水能力越大[28].5個(gè)樹(shù)種的水分利用效率在各水分脅迫下表現(xiàn)不同,砂生槐的水分利用效率在各水分脅迫下均顯著高于其他樹(shù)種.輕度干旱脅迫下,砂生槐的水分利用效率有所下降,但與正常供水之間差異不顯著,與正常供水相比其余4個(gè)樹(shù)種的水分利用效率均有所增加.中度干旱時(shí)砂生槐的水分利用效率仍顯著高于其他樹(shù)種,與輕度干旱相比,香柏、細(xì)葉小紅柳和江孜沙棘的水分利用效率均有所下降,而小葉醉魚(yú)草的水分利用效率則略有提高.重度干旱脅迫下細(xì)葉小紅柳的水分利用效率急劇下降,與中度干旱相比小葉醉魚(yú)草的水分利用效率增加,其余3個(gè)樹(shù)種則與中度干旱之間差異不顯著.
綜合以上結(jié)果,在干旱脅迫下耗水量較低,而水分利用效率最高的砂生槐耐旱性最好,一定的干旱脅迫有利于小葉醉魚(yú)草耐旱性的提高,而在過(guò)于濕潤(rùn)的土壤環(huán)境條件下細(xì)葉小紅柳、香柏和江孜沙棘的水分利用效率反而降低.
(References):
[1] DAMIANO R,ROSSANO M.Comparison of water status indicators for young peach trees.Irrigation Science,2003,22(1):39-46.
[2] FERNANDEZ R J,REYNOLDS J F.Potential growth and drought tolerance of eight desert grasses:lack of a trade off?. Oecologia,2000,123:90-98.
[3] EGERT M,TEVINI M.Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives(Allium schoenoprasum).Environmental and Ex perimental Botany,2002,48:43-49.
[4] 朱震達(dá).中國(guó)的脆弱生態(tài)帶與土地荒漠化.中國(guó)沙漠,1991,11(4):11-22.
ZHU Z D.Fragile ecological zones and land desertification in China.Journal of Desert Research,1991,11(4):11-22.(in Chinese with English abstract)
[5] DAVID W,F(xiàn)RED T D.Water use efficiency and growth analysis of selected woody ornamental species under a nonlimiting water regime.Scientia Horticulturae,1993,53: 213-223.
[6] 朱妍,李吉躍,史劍波.北京六個(gè)綠化樹(shù)種盆栽蒸騰耗水量的比較研究.北京林業(yè)大學(xué)學(xué)報(bào),2006,28(1):65-70.
ZHU Y,LI J Y,SHI J B.Comparison of transpiration of six potted afforestation species in Beijing.Journal of Beijing Forestry University,2006,28(1):65-70.(in Chinese with English abstract)
[7] BURGESS S S O.Measuring transpiration responses to summer precipitation in a Mediterranean climate:a simple screening tool for identifying plant water-use strategies. Physiologia Plantarum,2006,127(3):404-412.
[8] 邱權(quán),潘昕,李吉躍,等.速生樹(shù)種尾巨桉和竹柳幼苗耗水特性和水分利用效率.生態(tài)學(xué)報(bào),2014,34(6):1401-1410.
QIU Q,PAN X,LI J Y,et al.Water consumption characteristics and water use efficiency of Eucaly ptus urophylla×Eucalyptus grandis and bamboo-willow seedlings.Acta Ecologica Sinica,2014,34(6):1401-1410.(in Chinese with English abstract)
[9] TATARINOV F A,KUCERA J,CIENCIALA E.The analysis of physical background of tree sap flow measurement based on thermal methods.Measurement Science and Technology,2005,16(5):1157-1169.
[10] 張翠葉.西藏“一江兩河”干旱半干旱地區(qū)造林林種和樹(shù)種的選擇.西藏科技,2005(2):47-48. ZHANG C Y.Choose forest types and species in arid and semi-arid areas of Tibet.Tibet Science and Technology,2005(2):47-48.(in Chinese)
[11] 楊小林,趙墾田,馬和平,等.拉薩半干旱河谷地帶的植被數(shù)量生態(tài)研究.林業(yè)科學(xué),2010,46(10):15-22.
YANG X L,ZHAO K T,MA H P,et al.Ecological studies on vegetation quantity in the semi-arid valley region of Lasa. Scientia Silvae Sinicae,2010,46(10):15-22.(in Chinese with English abstract)
[12] 周平,李吉躍,招禮軍.北方主要造林樹(shù)種苗木蒸騰耗水特性研究.北京林業(yè)大學(xué)學(xué)報(bào),2002,24(6):50-55.
ZHOU P,LI J Y,ZHAO L J.Characteristics of seedlings water consumption by transpiration of main afforestation tree species in north China.Journal of Beijing Forestry University,2002,24(6):50-55.(in Chinese with English abstract)
[13] 馬履一,王華田,林平.北京地區(qū)幾個(gè)造林樹(shù)種耗水性比較研究.北京林業(yè)大學(xué)學(xué)報(bào),2003,25(2):1-7.
MA L Y,WANG H T,LIN P.Comparison of water consumption of some afforestation species in Beijing area.Journal of Beijing Forestry University,2003,25(2):1-7.(in Chinese with English abstract)
[14] 秦景.黃土高寒區(qū)主要造林樹(shù)種抗旱耐鹽生理及耗水特性.北京:北京林業(yè)大學(xué),2011:9-16.
QIN J.Drought and salinity resistant physiology and water consumption characteristics of main plantation tree species in high-cold region of Loess Plateau.Beijing:Beijing Forestry University,2011:9-16.(in Chinese with English abstract)
[15] CERMAK J,KUCERA J,NADEZHDINA N.Sap flow measurements with some thermodynamic methods,flow integration within trees and scaling up from sample trees to entire forest stands.Trees,2004,18(5):529-546.
[16] GIORIO P,GIORIO G.Sap flow of several olive trees estimated with the heat-pulse technique by continuous monitoring of a single gauge.Environmental Ex perimental Botany,2003,49(1):9-20.
[17] 中國(guó)科學(xué)院青藏高原綜合科學(xué)考察隊(duì).西藏植被.北京:科學(xué)出版社,1988:90-309.
Institute of Tibetan Plateau Comprehensive Scientific Expedition.Vegetation in Tibet,Beijing:Science Press,1988:90-309.(in Chinese)
[18] 段愛(ài)國(guó),張建國(guó),何彩云,等.干旱脅迫下金沙江干熱河谷主要造林樹(shù)種盆植苗的蒸騰耗水特性.林業(yè)科學(xué)研究,2008,21(4):436-445.
DUAN A G,ZHANG J G,HE C Y,et al.Studies on transpiration of seedlings of the main tree species under the condition of drought stress in the dry-hot river valleys of the Jinsha river.Forest Research,2008,21(4):436-445.(in Chinese with English abstract)
[19] 王鵬,李海梅.三種灌木的蒸騰耗水特性研究.北方園藝,2011(2):92-94.
WANG P,LI H M.Study on characteristics of transpiration water consumption of three types of shrubs.Northern Horticulture,2011(2):92-94.(in Chinese with English abstract)
[20] 王瑞輝,馬履一.北京15種園林樹(shù)木耗水性的比較研究.中南林業(yè)科技大學(xué)學(xué)報(bào),2009,29(4):16-20.
WANG R H,MA L Y.Comparative research of water consumption from 15 garden tree species in Beijing.Journal of Central South University of Forestry&Technology, 2009,29(4):16-20.(in Chinese with English abstract)
[21] 招禮軍.我國(guó)北方主要造林樹(shù)種耗水特性及抗旱造林技術(shù)研究.北京:北京林業(yè)大學(xué),2003:4-6,120.
ZHAO L J.Studies on water consumption characteristics of main plantation tree species and technology of drought resistance for afforestation in northern China.Beijing:Beijing Forestry University,2003:4-6,120.(in Chinese with English abstract)
[22] LARCHER W.Physiological Plant Ecology:Ecophysiology and Stress Physiology of Foundation Groups.Springer-Verlag,1995:184.
[23] TARTACHNYK I I,BLANKE M M.Effect of delayed fruit harvest on photosynthesis,transpiration and nutrient remobilization of apple leaves.New Phytologist,2004,164(3):441-450.
[24] 李吉躍.太行山區(qū)主要造林樹(shù)種耐旱特性的研究(Ⅳ).北京林業(yè)大學(xué)學(xué)報(bào),1991,13(增刊2):240-250.
LI J Y.Study on drought tolerance of some main tree species used in afforestation in Taihang mountain region(Ⅳ). Journal of Beijing Forestry University,1991,13(Suppl.2): 240-250.(in Chinese with English abstract)
[25] LASSOIE J P,SALO D J.Physiological response of large Douglas-fir to natural and induced soil water deficits. Canadian Journal of Forest Research,2011,11(1):139-144.
[26] SCHLTE P J,MARSHALL P E.Growth and water relation of black locust and pine seedling exposed to control water stress.Canadian Journal of Forest Research,1983,13(2): 334-338.
[27] 張建國(guó),李吉躍,沈國(guó)舫.樹(shù)木耐旱特性及其機(jī)理研究.北京:中國(guó)林業(yè)出版社,2000:143.
ZHANG J G,LI J Y.SHEN G F.Trees Drought Characteristics and Mechanism,Beijing:China Forestry Press,2000:143.(in Chinese)
[28] 王曉江.庫(kù)布齊沙漠幾種沙生灌木光合、耗水及耐旱生理生態(tài)特性研究.北京:北京林業(yè)大學(xué),2007:19-21.
WANG X J.Study on photosynthetic,water consumption characteristics and drought resistance of several shrubs in Kubuqi desert.Beijing:Beijing Forestry University,2007: 19-21.(in Chinese with English abstract)
Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley.Journal of Zhejiang University(Agric.&Life Sci.),2016,42(5):617- 625
XIN Fumei1,2,JIA Liming1*,YANG Xiaolin2,ZANG Jiancheng2
(1.College of Forestry,Beijing Forestry University,Beijing 100083,China;2.College of Agricultural and Animal Husbandry,Tibet University,Linzhi 860000,Tibet,China)
Lhasa semi-arid valley;drought stress;shrub species;water consumption;photosynthesis
S 718.43
A
10.3785/j.issn.1008-9209.2015.10.211
國(guó)家“十二五”科技支撐計(jì)劃項(xiàng)目(2013BAC04B01);國(guó)家自然科學(xué)基金(31460192).
*通信作者(Corresponding author):賈黎明(http://orcid.org/0000-0002-6680-041X),E-mail:jlm@bjfu.edu.cn
聯(lián)系方式:辛福梅(http://orcid.org/0000-0001-6470-5200),E-mail:xzxinfumei@163.com
(Received):2015 10 21;接受日期(Accepted):2016 01 11;
日期(Published online):2016 09 18 URL:http://www.cnki.net/kcms/detail/33.1247.S.20160918.1526.006.html