田志環(huán),焦傳珍
( 韶關學院 英東生命科學學院,廣東 韶關 512005 )
甲殼動物蛻皮誘導的肌肉萎縮與生長
田志環(huán),焦傳珍
( 韶關學院 英東生命科學學院,廣東 韶關 512005 )
肌肉;萎縮;生長;甲殼動物
甲殼動物的不連續(xù)生長與貫穿終生的周期性蛻皮密切相關。蟹類和龍蝦等外骨骼鈣化程度較高,螯足和身體連接處的關節(jié)較窄,肥大的螯足在狹小的關節(jié)處蛻出比較困難,因此,蛻皮前螯足肌肉通常發(fā)生可逆性萎縮,以順利從堅硬的外殼中蛻出,蛻皮后萎縮的肌肉再恢復重建以適應新的寬大外骨骼。這種蛻皮前的萎縮只特異地發(fā)生在螯足肌肉,而步行足和胸腹部肌肉則不發(fā)生這種現(xiàn)象。目前,對于蛻皮誘導的甲殼動物不同部位肌肉生長模式差異的機制尚不清楚,筆者綜述了有關這一現(xiàn)象機理的研究現(xiàn)狀,為研究蝦、蟹肌肉生長發(fā)育的機理,提高其肌肉品質(zhì)提供參考。
Skinner[1]在研究地蟹(Gecarcinuslateralis)時發(fā)現(xiàn),蛻皮前螯足肌肉蛋白質(zhì)含量約降低30%~60%。之后Sandri等[2-3]進一步研究發(fā)現(xiàn),地蟹蛻皮前的螯足肌肉萎縮和脊椎動物由于疾病、去神經(jīng)、廢用等原因造成的肌肉萎縮具有一些相同的特征,如肌絲降解導致的肌纖維橫斷面減小,肌原纖維間隙增大等。但與脊椎動物肌萎縮所不同的是,地蟹螯足肌肉萎縮時優(yōu)先降解細肌絲,細肌絲和粗肌絲的比例由蛻皮間期的9∶1降至蛻皮前晚期的6∶1,粗肌絲的組裝密度比蛻皮間期增加了72%;而肌小節(jié)的基本結(jié)構(gòu)、肌質(zhì)網(wǎng)的膜表面密度和A-帶長度及細胞核的正常形態(tài)和總DNA含量卻保持不變,這說明蛻皮所誘導的甲殼動物螯足肌絲的降解是動物有序的正常肌肉萎縮功能,而非病理現(xiàn)象。隨后,在普通濱蟹(Carcinusmaenas)[4]、天空藍魔蝦(Cheraxdestructor)[5]、招潮蟹(Ucapugnax)[6]等物種中都發(fā)現(xiàn)了這種現(xiàn)象。左右螯足不對稱的雄性招潮蟹的大螯足肌肉萎縮程度遠大于小螯足[7]。
令人驚異的是,盡管蛻皮前螯足肌肉萎縮,但其蛋白質(zhì)合成速率卻比蛻皮間期增加[7-9]。蛻皮前后步行足和腹部肌肉蛋白質(zhì)合成速率增加,有助于蛻皮后肌肉的生長,如肌纖維長度增加(肌節(jié)數(shù)目增加或者原有肌節(jié)拉長)、肌原纖維(粗肌絲和細肌絲)數(shù)目增加等[8,10]。而蛻皮前萎縮的螯足肌肉蛋白質(zhì)合成速率增加,目前則初步認為是肌肉組織中合成了較多的降解肌纖維的酶類,如蛋白水解酶,以便以更快的速率降解蛋白質(zhì)[11]。在地蟹中發(fā)現(xiàn),蛻皮前伴隨著肌纖維蛋白(肌動蛋白、肌球蛋白的重鏈和輕鏈以及副肌球蛋白、原肌球蛋白等)的降解,螯足肌肉組織中Ca2+-依賴蛋白酶的活性增加超過2倍[12]。
肌纖維蛋白質(zhì)水平的變化和肌纖維形態(tài)結(jié)構(gòu)的變化相一致。SDS-聚丙酰胺凝膠電泳顯示,蛻皮前雄性招潮蟹螯足肌肉中肌動蛋白(細肌絲的主要成分)和肌球蛋白重鏈(粗肌絲的主要成分)的比例約降低45%[6],地蟹則降低了31%,且其細肌絲中的其他成分,如原肌球蛋白、肌鈣蛋白-T及肌鈣蛋白-I等都按比例減少[12]。但是,肌纖維的mRNA基因表達卻有較大差異,盡管地蟹在蛻皮前螯足蛋白質(zhì)合成速率增加了9倍,其肌球蛋白重鏈的mRNA水平卻降低[13],說明這種蛋白質(zhì)的代謝調(diào)控發(fā)生在翻譯水平。地蟹[14]、普通濱蟹[15]的螯足和步行足肌肉及凡納濱對蝦(Litopenaeusvannamei)[16]腹部肌肉中的肌動蛋白mRNA水平在蛻皮前后均比蛻皮間期顯著上升,而美洲龍螯蝦(Homarusammericans)的螯足、步行足和腹部肌肉肌動蛋白的mRNA水平卻在整個蛻皮周期中均保持穩(wěn)定[17-18],顯示了肌動蛋白的基因表達既有轉(zhuǎn)錄水平的調(diào)節(jié),又有翻譯水平的調(diào)節(jié)。因此,甲殼動物肌纖維基因表達的差異,既和具體的基因有關,更與不同的物種有關。
甲殼動物的蛻皮過程主要在蛻皮激素和蛻皮抑制激素協(xié)調(diào)作用下完成。在蛻皮間期,血淋巴中蛻皮激素(主要是20-羥基蛻皮酮)的含量處于相對低的水平,隨著動物進入蛻皮前期,血淋巴20-羥基蛻皮酮含量開始升高,直到蛻皮后期才降低至基礎水平[19-20]。甲殼動物蛻皮前期和直接注射20-羥基蛻皮酮后,蛋白質(zhì)合成速率均增加[8-9],說明蛻皮激素直接影響肌肉的生長和分化。然而,注射20-羥基蛻皮酮雖然能增加蛋白質(zhì)的合成速率,但并不影響總RNA合成[8]。Medler等[21]研究亦發(fā)現(xiàn),摘除眼柄激發(fā)的蛻皮激素含量升高,對美洲龍螯蝦肌動蛋白和肌球蛋白重鏈基因的mRNA水平并無顯著影響。所以,目前認為蛻皮激素對肌肉蛋白質(zhì)合成的調(diào)控作用主要表現(xiàn)在翻譯水平。
雖然摘除眼柄激發(fā)蛻皮激素含量升高對肌纖維基因的mRNA水平并無顯著影響,但自然蛻皮的動物,蛻皮前后肌纖維基因的mRNA水平比蛻皮間期要顯著升高[27],說明甲殼動物自然蛻皮會有一些肌肉相關的特異生長因子參與,這些生長因子直接或者間接影響肌纖維基因的表達,調(diào)節(jié)肌肉的生長發(fā)育。
2.2.1 肌肉生長抑制素
肌肉生長抑制素是目前較受關注的肌肉生長調(diào)節(jié)因子之一。脊椎動物的肌抑素是一個25 ku 的二聚體轉(zhuǎn)化生長因子-β(TGF-β)家族肽,在骨骼肌中廣泛表達,是脊椎動物肌肉生長的重要負調(diào)控因子。其功能和表達量的變化可調(diào)節(jié)靶基因的表達,以改變肌肉的纖維組成及肌的質(zhì)量[22-24]。近來,一些無脊椎動物肌抑素的cDNA序列相繼被克隆出來,如海灣扇貝(Argopectenirradians)[25]、中華絨螯蟹(Eriocheirsinensis)[26]、地蟹[27]、美洲龍螯蝦[28]、駝背長額蝦(Pandalopsisjaponica)[29]等。研究發(fā)現(xiàn),肌抑素也參與甲殼動物肌肉生長的調(diào)節(jié),但其功能尚不明確。在地蟹的螯足和美洲龍螯蝦的螯足、步行足及腹部肌肉組織中都發(fā)現(xiàn),蛻皮前肌抑素的轉(zhuǎn)錄水平顯著降低,但此時蛋白質(zhì)合成的速率卻增加,顯示肌抑素能夠直接或者間接抑制蛋白質(zhì)合成,其功能似乎和脊椎動物的肌肉生長抑制素一致[27-28]。但是,De Santis[30]等研究卻發(fā)現(xiàn),斑節(jié)對蝦(Penaeusmonodon)蛻皮前期腹部肌肉組織中肌抑素的轉(zhuǎn)錄水平并無顯著變化。注射特定序列的dsRNA使動物肌抑素基因失活后,發(fā)現(xiàn)動物的生長速度顯著低于對照組,顯示至少斑節(jié)對蝦這一物種的肌抑素是肌肉生長的正調(diào)控因子,其功能和脊椎動物肌抑素截然不同。甲殼動物肌抑素的確切功能還需要更多的試驗來判斷。
2.2.2 分子伴侶
一些分子伴侶,如泛素和熱激蛋白也參與甲殼動物蛻皮過程中肌肉的生長。泛素是一種高度保守的小蛋白(76個氨基酸),普遍存在于真核細胞內(nèi),參與蛋白質(zhì)降解、肌肉萎縮、階段特異性發(fā)展及細胞的程序性死亡等生物過程[31-34]。泛素在哺乳動物萎縮的骨骼肌中的表達水平顯著上升[35-36]。蛻皮前期,泛素mRNA在地蟹和美洲龍螯蝦螯足肌肉中的水平升高[18,37-38],這種轉(zhuǎn)錄水平的升高,有助于螯足肌肉蛋白質(zhì)的降解,保證較大的螯足順利蛻出。但是,蛻皮前腹部肌肉中的泛素卻保持較低或者穩(wěn)定的轉(zhuǎn)錄水平,推測此時腹部肌肉的蛋白質(zhì)轉(zhuǎn)化較低,以利于肌肉組織的生長[37,39]。
熱激蛋白是生物體細胞在應激條件下產(chǎn)生的一組高度保守的蛋白質(zhì),也參與一些生理性事件,在細胞內(nèi)蛋白質(zhì)從頭合成和定位、蛋白質(zhì)的成熟和錯誤折疊、蛋白質(zhì)的降解等過程中發(fā)揮作用[40-42]。有文獻報道,甲殼動物的熱激蛋白90在蛻皮過程中會發(fā)生變化,蛻皮前誘導美洲龍螯蝦螯足肌肉中熱激蛋白90的mRNA水平[37],而凡納濱對蝦腹部肌肉中熱激蛋白70的轉(zhuǎn)錄水平卻顯著降低[39]。推測這些熱激蛋白作為分子伴侶,可能和蛻皮激素受體結(jié)合,調(diào)節(jié)蛋白質(zhì)的合成。
一些經(jīng)濟脊椎動物,尤以進行醫(yī)學研究的模式物種的肌肉生長發(fā)育及其分子機制研究已經(jīng)取得了長足進展,但是,有關水產(chǎn)甲殼動物這一領域的研究還很薄弱,尤其是蛻皮與肌肉生長的聯(lián)系,即蛻皮前后甲殼動物的肌肉生長是如何調(diào)控的一直缺乏研究。今后,應系統(tǒng)研究甲殼動物蛻皮過程中不同部位肌肉(螯足、步行足和胸部肌肉)的生長模式及調(diào)節(jié)機制,以豐富動物肌肉生長發(fā)育的理論,促進甲殼動物生產(chǎn),提高甲殼動物肌肉品質(zhì)。
[1] Skinner D M. Breakdown and reformation of somatic muscle during the molt cycle of the land crab,Gecarcinuslateralis[J]. J Exp Zool,1966,163(2):115-123.
[2] Sandri M. Signaling in muscle atrophy and hypertrophy[J]. Physiology (Bethesda),2008,23(6):160-170.
[3] Mykles D L, Skinner D M. Preferential loss of thin filaments during molt-induced atrophy in crab claw muscle[J]. J Ultrastruct Res, 1981,75(3):314-325.
[4] Donna L S, Richard L R, Stachia B M. Ultrastructure of autotomy-induced atrophy of muscles in the crabCarcinusmaenas[J]. Can J Zool, 1992,70(5):841-851.
[5] West J M, Humphris D C, Stephenson D G. Characterization of ultrastructural and contractile activation properties of crustacean (Cheraxdestructor) muscle fibres during claw regeneration and moulting[J]. J Muscle Res Cell Motil,1995,16(3):267-284.
[6] Ismail S Z M, Mykles D L. Differential molt-induced atrophy in the dimorphic claws of male fiddler crabs,Ucapugnax[J]. J Exp Zool,1992, 263(1):18-31.
[7] Whiteley N M, Taylor E W, El Haj A J. The relationship between rates of metabolism and protein synthesis in a stenothermal versus a eurythermal isopod crustacean[J]. Am J Physiol, 1996,40(5):1295-1303.
[8] Haj A, Clarke S, Harrison P, et al. In vivo muscle protein synthesis rates in the American lobsterHomarusamericanusduring the moult cycle and in response to 20-hydroxyecdysone[J]. J Exp Biol, 1996, 199(3):579-585.
[9] El Haj A J. Regulation of muscle growth and sarcomeric protein gene expression over the intermolt cycle(1) [J]. Am Zool,1999, 39(3):570-576.
[10] El Haj A J, Govind C K, Houlihan D F. Growth of lobster leg muscle fibers over intermoult and moult[J]. J Crustacean Biol, 1984,4(4):536-545.
[11] Mykles D L, Skinner D M. Atrophy of crustacean somatic muscle and the proteinases that do the job[J]. J Crustacean Biol, 1990,10(4):577-594.
[12] Mykles D L, Skinner D M. Molt cycle-associated changes in calcium-dependent proteinase activity that degrades actin and myosin in crustacean muscle[J]. Dev Biol, 1982,92(2):386-397.
[13] Mykles D L. Crustacean muscle plasticity: molecular mechanisms determining mass and contractile properties[J]. Comp Biochem Physiol B Biochem Mol Biol, 1997, 117(3):367-378.
[14] Varadaraj K, Kumari S S, Skinner D M. Actin-encoding cDNAs and gene expression during the intermolt cycle of the Bermuda land crabGecarcinuslateralis[J]. Gene, 1996, 171(2):177-184.
[15] Whiteley N M, Taylor E W, El Haj A J. Actin gene expression during muscle growth inCarcinusmaenas[J]. J Exp Biol, 1992,167(12):277-284.
[16] Cesar J R O, Zhao B, Malecha S. Morphological and biochemical changes in the muscle of the marine shrimpLitopenaeusvannameiduring the molt cycle[J]. Aquaculture, 2006, 261(8):688-694.
[17] Whiteley N M, El Haj A J. Regulation of muscle gene expression over the molt cycle[J]. Comp Biochem Physiol, 1997,117(2):30-32.
[18] Koenders A, Yu X, Chang E S, et al. Ubiquitin and actin expression in claw muscles of land crab,Gecarcinuslateralis, and American lobster,Homarusamericanus: differential expression of ubiquitin in two slow muscle fiber types during molt-induced atrophy[J]. J Exp Zool, 2002, 292(7):618-632.
[19] Snyder M J, Chang E S. Ecdysteroids in relation to the molt cycle of the American lobster,Homarusamericanus. Ⅰ. hemolymph titers and metabolites[J]. Gen Comp Endocrinol, 1991, 81(1):133-145.
[20] Snyder M J, Chang E S. Ecdysteroids in relation to the molt cycle of the American lobster,Homarusamericanus. Ⅱ. excretion of metabolites[J]. Gen Comp Endocrinol, 1991, 83(1):118-131.
[21] Medler S, Brown K J, Chang E S. Eyestalk ablation has little effect on actin and myosin heavy chain gene expression in adult lobster skeletal muscles[J]. Biol Bull-US,2005,208(2):127-137.
[22] Glass D J. Signaling pathways perturbing muscle mass[J]. Curr Opin Clin Nutr Metab Care, 2010, 13(3):225-229.
[23] McCarthy J J, Esser K A. Anabolic and catabolic pathways regulating skeletal muscle mass[J]. Curr Opin Clin Nutr Metab Care, 2010, 13(3):230-235.
[24] Stinckens A, Georges M, Buys N. Mutations in the myostatin gene leading to hypermuscularity in mammals: indications for a similar mechanism in fish[J].Anim Genet, 2011, 42(3):229-234.
[25] Kim H W, Mykles D L, Goetz F W, et al. Characterization of a myostatin-like gene from the bay scallop,Argopectenirradians[J]. Biochim Biophys Acta, 2004, 1679(2):174-179.
[26] Kim K S, Jeon J M, Kim H W. A myostatin-like gene expressed highly in the muscle tissue of Chinese mitten crab,Eriocheirsinensis[J]. Fish Aquat Sci, 2009, 12(4):185-193.
[27] Covi J A, Kim H W, Mykles D L. Expression of alternatively spliced transcripts for a myostatin-like protein in the blackback land crab,Gecarcinuslateralis[J]. Comp Biochem Physiol A Mol Integr Physiol, 2008,150(4):423-430.
[28] MacLea K S, Covi J A, Kim H W, et al. Myostatin from the American lobster,Homarusamericanus: cloning and effects of molting on expression in skeletal muscles[J]. Comp Biochem Physiol A Mol Integr Physiol, 2010, 157(4):328-337.
[29] Kim S K, Kim Y J, Jeon J M. Molecular characterization of myostatin-like genes expressed highly in the muscle tissue from Morotoge shrimp,Pandalopsisjaponica[J]. Aquac Res, 2010, 41(11):862-871.
[30] De Santis C, Wade N M, Jerry D R, et al. Growing backwards: an inverted role for the shrimp ortholog of vertebrate myostatin and GDF11[J]. J Exp Biol, 2011,214(16):2671-2677.
[31] Wing S S, Goldberg A L.Glucocorticoids activate the ATP ubiquitin-dependent proteolytic system in skeletal muscle during fasting[J]. Am J Physiol, 1993, 264(4):668-676.
[32] Mykles D L.Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems[J]. Int Rev Cytol, 1998, 184(7):157-189.
[33] Pickart C M, Summers R G, Shim H. Dynamics of ubiquitin pools in developing sea urchin embryos[J]. Dev Growth Differ, 1991, 33(6):587-598.
[34] Haas A L, Baboshina O,Williams B,et al. Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle[J]. J Biol Chem, 1995,270(16):9407-9412.
[35] Fang C H, Li B G, Sun X, et al. Insulin-like growth factor I reduces ubiquitin and ubiquitin-conjugating enzyme gene expression but does not inhibit muscle proteolysis in septic rats[J]. Endocrinology, 2000, 141(8):2743-2751.
[36] Chrysis D, Underwood L E. Regulation of components of the ubiquitin system by insulin-like growth factor I and growth hormone in skeletal muscle of rats made catabolic with dexamethasone[J]. Endocrinology, 1999, 140(12):5635-5641.
[37] Spees J L, Chang S A, Mykles D L, et al. Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster[J]. Cell Stress Chaperones, 2003, 8(3):258-264.
[38] Shean B S, Mykles D L. Polyubiquitin in crustacean striated muscle: increased expression and conjugation during molt-induced claw muscle atrophy[J]. Biochim Biophys Acta, 1995, 1264(3):312-322.
[39] Cesar J R, Yang J. Expression patterns of ubiquitin, heat shock protein 70, alpha-actin and beta-actin over the molt cycle in the abdominal muscle of marine shrimpLitopenaeusvannamei[J]. Mol Reprod Dev, 2007, 74(5):554-559.
[40] Elston T C. Models of post-translational protein translocation[J]. Biophys J, 2000, 79(5):2235-2251.
[41] Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review[J].Cell Prolif, 2000, 33(6):341-365.
[42] Connell P, Ballinger C A, Jiang J,et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins[J]. Nat Cell Biol, 2001, 3(1):93-96.
MuscleAtrophyandGrowthInducedbyMoltinginCrustacean:aReview
TIAN Zhihuan,JIAO Chuanzhen
( College of Yingdong Life Science, Shaoguan University, Shaoguan 512005, China )
muscle; atrophy; growth; crustacean
10.16378/j.cnki.1003-1111.2016.05.026
S917
C
1003-1111(2016)05-0603-04
2015-08-31;
2015-11-10.
國家自然科學基金資助項目(31572635).
田志環(huán)(1971—),副教授,博士;研究方向:甲殼動物生長發(fā)育.E-mail:tianzhihuan@126.com.