韓晨露,趙勇,李衛(wèi)國
?
髓源性抑制細(xì)胞的體外誘導(dǎo)及其應(yīng)用
韓晨露,趙勇,李衛(wèi)國
作者單位:453007 新鄉(xiāng),河南師范大學(xué)生命科學(xué)學(xué)院(韓晨露、李衛(wèi)國);100101 北京,中國科學(xué)院動(dòng)物研究所膜生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室(趙勇)
近來,髓源性抑制細(xì)胞(myeloid-derived suppressor cells,MDSCs)在固有免疫和適應(yīng)性免疫中發(fā)揮非常重要的作用,參與多種自身免疫疾病和移植排斥反應(yīng)[1-2]。MDSCs 是來源于骨髓的一群異質(zhì)性細(xì)胞,由一些髓系祖細(xì)胞及樹突狀細(xì)胞(dendritic cells,DCs)、巨噬細(xì)胞和粒細(xì)胞的前體細(xì)胞組成,具有顯著抑制免疫細(xì)胞應(yīng)答的能力[3]。小鼠 MDSCs 的表面標(biāo)志:粒樣 MDSCs(G-MDSCs)為 CD11b+Ly6G+Ly6Clow,單核樣 MDSCs(M-MDSCs)為CD11b+Ly6G?Ly6Chigh,在癌癥、自身免疫性疾病中這兩類細(xì)胞有不同的功能[4-5]。傳統(tǒng)上,人類 MDSCs 被定義為CD14?CD11b+CD33+CD15+細(xì)胞,細(xì)胞表達(dá) CD33 標(biāo)記,但不表達(dá)骨髓和淋巴細(xì)胞的一些成熟標(biāo)記和 HLA-DR 抗原[6]。
MDSCs 通過許多機(jī)制抑制 T 細(xì)胞激活,包括提高精氨酸酶-1(arginase-1,Arg-1)活性、增強(qiáng)一氧化氮(nitric oxide,NO)和活性氧(reactive oxygen species,ROS)的產(chǎn)生[3, 7-9]。不同亞型的 MDSCs通過不同機(jī)制發(fā)揮功能:G-MDSCs 主要通過 ROS,而 M-MDSCs 主要通過精氨酸酶和 NO 發(fā)揮其免疫抑制功能[4, 10]。MDSCs 還可以通過其他機(jī)制發(fā)揮免疫抑制功能,如分泌細(xì)胞因子 TGF-β 抑制免疫反應(yīng)[11-12],消耗半胱氨酸[13],高表達(dá) COX2 和前列腺素 E2(prostaglandin E2,PGE2)、血紅素氧合酶-1 (hemeoxygenase-1,HO-1)、酶吲哚胺 2,3 加雙氧酶(enzyme indoleamine 2,3 dioxygenase,IDO)、還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase-2,NOX-2)、下調(diào) T 細(xì)胞表面 TCR-ζ 鏈、質(zhì)膜分子選擇素(CD62L)的表達(dá)、誘導(dǎo)調(diào)節(jié)性 T 細(xì)胞(regulatory T cells,Treg)生成[14-21],抑制自然殺傷細(xì)胞(natural killer cell,NK)的殺傷作用[22-24],影響 DC 和巨噬細(xì)胞功能等發(fā)揮其抑制功能[25]。目前,調(diào)控MDSCs 的分子機(jī)制及 MDSCs 的細(xì)胞治療應(yīng)用為該領(lǐng)域的研究熱點(diǎn)。
研究表明,粒-巨噬細(xì)胞集落刺激因子(granulocytemacrophage colony-stimulating factor,GM-CSF)等因子可以在體外誘導(dǎo)骨髓細(xì)胞及外周單核細(xì)胞發(fā)育分化為CD11b+Gr-1+MDSCs[26](表1)。下面分別進(jìn)行簡要介紹。
表1 不同細(xì)胞因子組合誘導(dǎo) MDSCs 的效率、表型
續(xù)表1
1.1骨髓細(xì)胞誘導(dǎo)分化 MDSCs
早期研究表明,體外用 GM-CSF、GM-CSF+ 白細(xì)胞介素-4(interleukin-4,IL-4)誘導(dǎo)小鼠骨髓細(xì)胞分化為 DCs。但根據(jù)細(xì)胞因子的濃度大小和刺激時(shí)間長短可以誘導(dǎo)免疫抑制性細(xì)胞產(chǎn)生[35-36]。體外高濃度GM-CSF 短期(3 ~ 4 d)/低濃度 GM-CSF 長期(8 ~ 10 d)刺激小鼠骨髓細(xì)胞產(chǎn)生 CD11b+Gr-1lowCD31+ER-MP58+F4/80+asialoGM1+CD11c?MDSCs,它們通過細(xì)胞接觸和 NO 機(jī)制抑制CD4+T 和CD8+T 細(xì)胞應(yīng)答反應(yīng)[37]。
粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)(100 ng/ml)、GM-CSF(250 U/ml)短期(4 d)培養(yǎng)鼠骨髓細(xì)胞誘導(dǎo)生成 CD11b+Ly6GlowLy6C+MDSCs,其中絕大多數(shù)細(xì)胞還表達(dá) IL-4Rα(CD124)+和F4/80+,體外這些細(xì)胞通過 Arg-1 消耗精氨酸機(jī)制抑制同種異基因 T 細(xì)胞應(yīng)答。與 G-CSF 或 GM-CSF 相比,G-CSF + GM-CSF 或 G-CSF + GM-CSF + IL-13(80 ng/ml)培養(yǎng)骨髓細(xì)胞顯著增加 CD11b+Gr-1+細(xì)胞的產(chǎn)生。相對(duì)于其他誘導(dǎo) Arg-1 的細(xì)胞因子(IL-4 和 PGE2 等),外源性 IL-13體外誘導(dǎo) MDSC 亞型(MDSC-IL-13)產(chǎn)生,表達(dá) CD11c+(60%)、MHC-II+(65%)、Ly6C+(80%)、Ly6Glow(5%)、F4/80+(75%)、CD115+(55%)和 IL4Ra+(55%),顯著增強(qiáng) Arg-1 活力及抑制 T 細(xì)胞的同種異體反應(yīng)[27]。
G-CSF+GM-CSF、GM-CSF+IL-6 短期(4 d)培養(yǎng)鼠骨髓細(xì)胞生成 MDSCs,高表達(dá) CD11b、Gr-1 和 IL-4R,依賴于轉(zhuǎn)錄因子 CCAAT- 增強(qiáng)子結(jié)合蛋白 β(CCAAT enhancer binding proteinsβ,C/EBPβ)顯著增強(qiáng)其免疫抑制活性。同樣,GM-CSF+G-CSF、GM-CSF+IL-6 短期(4 d)處理人骨髓細(xì)胞誘導(dǎo)不成熟 CD11b+CD16?MDSCs 細(xì)胞的產(chǎn)生[29],免疫抑制活性依賴 C/EBPβ 轉(zhuǎn)錄因子。進(jìn)一步研究表明,GM-CSF+G-CSF 誘導(dǎo)的 BM-MDSCs中 CD11blow/?/CD16?細(xì)胞亞群具有較強(qiáng)的免疫抑制能力,而 CD11b+/CD16?細(xì)胞和 CD11b+/CD16+細(xì)胞無免疫抑制能力[38]。G-CSF+GM-CSF+IL-6 培養(yǎng)小鼠骨髓細(xì)胞 3 d 誘導(dǎo)產(chǎn)生Ly6GhighLy6Cint/lowMDSCs,類似于滑膜液中的 MDSCs?;ひ?MDSCs 通過產(chǎn)生 NO,顯著抑制抗原特異性及多克隆 T 細(xì)胞增殖[39]。
研究表明,GM-CSF 可誘導(dǎo)小鼠骨髓細(xì)胞產(chǎn)生 DCs,但高濃度脂多糖(lipopolysaccharides,LPS)早期或長期處理 BM-DCs 培養(yǎng)體系能夠阻斷 DC 分化成熟,產(chǎn)生體外能夠誘導(dǎo)同種異體抗原特異性 T 細(xì)胞無應(yīng)答的不成熟細(xì)胞[30]。進(jìn)一步研究表明,LPS/IFN-γ 刺激 3 d BM-GM-CSF 培養(yǎng)體系,能顯著抑制骨髓細(xì)胞向 DCs 分化,提高 MDSCs 的免疫抑制功能[24]。體外 GM-CSF+LPS 誘導(dǎo) Lin-骨髓祖細(xì)胞生成 CD11b+Gr-1+細(xì)胞[40]。
GM-CSF+IL-4 處理視網(wǎng)膜色素上皮(retinal pigment epithelial,RPE)細(xì)胞與骨髓細(xì)胞共培養(yǎng) 6 d 可誘導(dǎo)產(chǎn)生CD11b+Gr-1+MDSCs,以劑量依賴的方式抑制 T 細(xì)胞增殖。深入研究表明視網(wǎng)膜色素上皮細(xì)胞表面蛋白和分泌的可溶性因子 IL-6 參與功能性 MDSCs 的誘導(dǎo)[31]。GM-CSF 聯(lián)合腫瘤外植體培養(yǎng)上清短期處理(3 d)EL-4 荷瘤鼠骨髓細(xì)胞中分離的 CD11b+Ly6ChighLy6G?M-MDSCs 可誘導(dǎo)產(chǎn)生免疫抑制性多型核白細(xì)胞(polymorphonuclear,PMN)樣MDSCs(CD11b+Ly6ClowLy6G+),抑制 T 細(xì)胞應(yīng)答,促進(jìn)腫瘤進(jìn)展。正常小鼠單核細(xì)胞不能分化為 PMNs,而荷瘤鼠中 M-MDSCs 可以轉(zhuǎn)化為 CD11b+Ly6ClowLy6G+PMN-MDSCs[41]。阿司匹林敏感性哮喘患者肺部CD11b+Gr-1highLy6G+Ly6CintPMN-MDSCs 具有免疫抑制性,可抑制氣道炎癥。體外實(shí)驗(yàn)表明,COX1-PGE2 通過PGE2 受體信號(hào)通路介導(dǎo) BM-MDSCs 擴(kuò)增,PGE2 促進(jìn)IL-4/GM-CSF 誘導(dǎo)的骨髓前體細(xì)胞產(chǎn)生大量 Ly6C+Ly6G+PMN-MDSCs,激活 PMN-MDSCs 成為治療支氣管哮喘的潛在治療策略[42]。肝星狀細(xì)胞(hepatic stellate cells,HSCs)加入到 GM-CSF+IL-4-DC 培養(yǎng)體系中可以促進(jìn) HSC-MDSCs產(chǎn)生,高表達(dá) iNOS 和 Arg-1,能顯著抑制混合淋巴細(xì)胞體系中 T 淋巴細(xì)胞的增殖反應(yīng)[43]。
1.2外周血單核細(xì)胞誘導(dǎo)分化 MDSCs
外周血單核細(xì)胞(peripheral blood mononuclear cells,PBMCs)由于在循環(huán)系統(tǒng)中具有相對(duì)豐富的細(xì)胞量,可為體外誘導(dǎo) MDSCs 提供一個(gè)方便的細(xì)胞來源。研究表明腫瘤模型中擴(kuò)增和激活 MDSCs 的相關(guān)因素,包括生長因子如(stem cell factor,SCF)、VEGF、GM-CSF、G-CSF 和M-CSF[32];細(xì)胞因子如 IFN-γ、IL-1β、IL-6、IL-10、IL-12、IL-13、COX2 和 PGE2[3, 44]。體內(nèi)腫瘤微環(huán)境中誘導(dǎo)MDSCs 所需的細(xì)胞因子將為體外誘導(dǎo)具有免疫抑制功能MDSCs 的產(chǎn)生提供依據(jù)。進(jìn)一步研究表明,不同細(xì)胞因子培養(yǎng)健康人 PBMCs 可誘導(dǎo)不同功能、表型的 MDSCs 產(chǎn)生[45]。
外源性 PGE2 和不同 COX2 激活劑(如 LPS、IL-1β 和 IFN-γ)誘導(dǎo)單核細(xì)胞表達(dá) COX2,阻止其向 CD1a+DCs分化和誘導(dǎo) MDSCs 相關(guān)抑制因子 PGE2、IDO1、IL-4Rα、NOS2、IL-10 的產(chǎn)生,PGE2 和 COX2 在誘導(dǎo)人卵巢癌患者體內(nèi)分離的 CD1a+DCs 向 CD14+CD33+CD34+M-MDSCs 分化中發(fā)揮決定性作用[17]。更進(jìn)一步的研究發(fā)現(xiàn),rhGM-CSF、IL-4、PGE2 處理健康人外周血分離的 CD14+單核細(xì)胞(6 d)阻斷 DCs 分化,誘導(dǎo)CD1a?DCSIGN?CD14+CD33+CD34+CD80?CD83?-MDSCs產(chǎn)生,高表達(dá) PGE2-COX2、IDO1、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、IL-10、IL-4Rα 等MDSCs 相關(guān)細(xì)胞因子抑制細(xì)胞毒性 T 淋巴細(xì)胞的功能[46]。這些數(shù)據(jù)表明,COX2 和 PGE2 是參與調(diào)控 MDSCs 分化和影響 MDSCs 功能的關(guān)鍵信號(hào)分子。多聚肌苷酸多聚胞苷酸(polyiosinic-polycytidylic acid,polyI:C)或者 LPS 刺激 GM-CSF+IL-4 與人 PBMCs 培養(yǎng)體系 24 h,單核樣CD14+CD33+HLA-DR?MDSCs 顯著增多,通過 IDO 依賴的方式誘導(dǎo)異基因細(xì)胞毒性 T 淋巴細(xì)胞凋亡,顯著增強(qiáng)MDSCs 吞噬凋亡的能力[47]。LPS 或 poly(I:C)激活的MDSCs 成為移植潛在的治療策略。
人實(shí)體瘤細(xì)胞與 PBMCs 共培養(yǎng),體外可產(chǎn)生兩種不同的 MDSCs 亞型:CD33+HLA-DRlowHIF1a+/STAT3+及CD11b+HLA-DRlowC/EBPβ+。CD33+MDSCs 的誘導(dǎo)主要依賴腫瘤來源細(xì)胞因子 GM-CSF、IL-1β、IL-6、VEGF、PGE2、TNF-α 高表達(dá),CD11b+MDSCs 誘導(dǎo)與酪氨酸激酶受體 3配體(Fms-liket tyrosine kinase 3 ligand,F(xiàn)LT3L)、TGF-β 高表達(dá)相關(guān)[33]。肝星狀細(xì)胞通過 CD44 介導(dǎo)的細(xì)胞之間的彼此接觸來誘導(dǎo)人外周血單核細(xì)胞分化為 CD14+HLA?DR?/lowMDSCs[48]。而 HIV gp120 處理健康人外周血細(xì)胞產(chǎn)生CD11b+CD33+CD14+HLA-DR?/low細(xì)胞。gp120-CD33+細(xì)胞產(chǎn)生 IL-10 和誘導(dǎo) CD4+CD25+FoxP3+Treg 細(xì)胞擴(kuò)增,依賴 iNOS 和 ROS 介導(dǎo) T 細(xì)胞抑制。HIV 患者體內(nèi)MDSCs 細(xì)胞數(shù)明顯增多,因此探討 MDSCs 在 HIV 感染中的作用及其誘導(dǎo)因素可為治療 HIV 提供依據(jù)[49]。
1.3其他細(xì)胞誘導(dǎo)分化 MDSCs
此外,小鼠胚胎干細(xì)胞(embryonic stem cells,ESCs)體外也可誘導(dǎo)功能型 MDSCs 分化。ESCs 誘導(dǎo)的 MDSCs分泌 NO 和 IL-10,誘導(dǎo) CD4+CD25+Foxp3+Treg 細(xì)胞產(chǎn)生,表現(xiàn)較強(qiáng)的抑制活性[50]。IL-17(10 ng/ml)體外能夠促進(jìn) MMTV-PyMT FVB 荷瘤鼠脾臟中分離的CD11b+Gr-1+MDSCs 分泌 Arg-1、IDO、COX2,增強(qiáng)其抑制能力[51]。GM-CSF、G-CSF、IL-6 培養(yǎng)臍帶血來源的CD34+細(xì)胞產(chǎn)生不同功能 MDSCs。G-CSF 和(或)IL-6 能顯著增加 CD14+HLA-DRlow/?和 CD14+PD-L1+細(xì)胞產(chǎn)生,并顯著提高 Arg-1 和 C/EBPβ 的表達(dá)進(jìn)而調(diào)控 MDSCs 的功能。GM-CSF+IL-6 誘導(dǎo) Lin?CD34+CD38+CD123+CD45RA+粒-單核系祖細(xì)胞的產(chǎn)生,高表達(dá) CD11b、CD14、CD15。GM-CSF+G-CSF 或 GM-CSF+IL-6 誘導(dǎo)產(chǎn)生的CD11b+CD14+CB-MDSCs 能抑制 CD3+、CD3+CD4+、CD3+CD4?T 細(xì)胞的增殖,下調(diào) T 細(xì)胞表面 CD3+ξ 表達(dá),并且誘導(dǎo) Foxp3+Treg 細(xì)胞的產(chǎn)生[52]。深入研究表明rh-GM-CSF 和 rh-G-CSF 處理人臍帶血細(xì)胞(4 d),可產(chǎn)生 MDSCs,表達(dá) IDO 選擇性誘導(dǎo)擴(kuò)增 Foxp3+Treg 細(xì)胞,具有較強(qiáng)的耐受活性和抑制活性[53]。
過繼轉(zhuǎn)移體內(nèi)分離的功能性 MDSCs 可以有效降低器官移植排斥反應(yīng),促進(jìn)同種異體皮膚、腎臟移植長期存活和預(yù)防自身免疫性疾病,如 I 型糖尿病、腦脊髓炎、敗血癥、腸炎、肝炎、關(guān)節(jié)炎和腎損傷的發(fā)生[34, 54-62]。
一些自身免疫性疾病小鼠模型中,過繼轉(zhuǎn)移體外誘導(dǎo)的 MDSCs 能夠抑制自身免疫性反應(yīng),限制組織損傷。在實(shí)驗(yàn)性自身免疫性葡萄膜炎模型中,過繼轉(zhuǎn)移體外誘導(dǎo)的MDSCs 能抑制特異性 T 細(xì)胞應(yīng)答,減小葡萄膜炎的發(fā)病[31]。在蛋白聚糖誘導(dǎo)的關(guān)節(jié)炎小鼠模型中,過繼轉(zhuǎn)移體外誘導(dǎo)的 BM-MDSCs 可以減弱 PG 特異性 T 細(xì)胞應(yīng)答,減緩關(guān)節(jié)炎進(jìn)展[39]。將體外誘導(dǎo) BM-MDSC-IL-13 注入小鼠體內(nèi)能更有效地抑制 T 細(xì)胞增殖、激活以及分泌 IFN-γ的能力,并能依賴 Arg-1 機(jī)制有效抑制移植物抗宿主?。℅VHD)[27]。此外,給小鼠過繼體外誘導(dǎo)產(chǎn)生的 ES-MDSCs也可以有效防止同種反應(yīng)性 T 細(xì)胞介導(dǎo)的 GVHD[50]。同樣,過繼轉(zhuǎn)移體外骨髓細(xì)胞產(chǎn)生的 GM-CSF/G-CSF-MDSCs能有效抑制 GVHD 死亡率[62]。在 I 型糖尿病小鼠模型中,過繼轉(zhuǎn)移體外誘導(dǎo)的 MDSCs 聯(lián)合 UCB-T 淋巴細(xì)胞,能夠誘導(dǎo) Treg 細(xì)胞,維持血糖濃度正常,延緩糖尿病發(fā)病[53]。
MDSCs 參與移植免疫耐受的誘導(dǎo),MDSCs 在器官(腎臟、心臟和皮膚)移植部位發(fā)揮局部免疫抑制效應(yīng),誘導(dǎo)免疫耐受[2]。在同種異體胰島移植模型中,給糖尿病鼠過繼轉(zhuǎn)移體外誘導(dǎo)的 BM-MDSCs,能減少抗原特異性 CD8+T 細(xì)胞的功能,有效維持糖尿病小鼠正常血糖濃度,顯著地促進(jìn)胰島移植長期存活[29]。體內(nèi)共轉(zhuǎn)移 HSC-MDSCs,能通過Inos 介導(dǎo)的 T 細(xì)胞抑制顯著延長同種異體胰島移植存活[43]。過繼轉(zhuǎn)移LPS 或者 poly(I:C)激活的 MDSCs 同樣具有這種保護(hù)機(jī)制,成為潛在的移植治療策略[47]。過繼轉(zhuǎn)移實(shí)驗(yàn)表明,MDSCs 能夠在體內(nèi)誘導(dǎo)移植免疫耐受反應(yīng),延緩移植排斥,使得 MDSCs 成為潛在的臨床治療移植排斥反應(yīng)的有效方法。
體外誘導(dǎo)的 MDSCs 具有抑制自身免疫性疾病、移植排斥反應(yīng)的功效,利用該細(xì)胞過繼療法治療相關(guān)疾病具有潛在臨床應(yīng)用價(jià)值。建立穩(wěn)定的體外誘導(dǎo) MDSCs 體系將為MDSCs 的臨床應(yīng)用提供重要的技術(shù)支撐。然而,到目前為止,體外分化 MDSCs 體系效率低下,而且擴(kuò)增無法達(dá)到顯著水平[63]。此外,MDSCs 在實(shí)驗(yàn)和臨床前研究的治療效率,特異性及安全性仍待解決。因此,理解 MDSCs 的誘導(dǎo)通路和建立有效的擴(kuò)增 MDSCs 誘導(dǎo)體系及深入了解MDSCs 體外誘導(dǎo)的分子機(jī)制將大大推進(jìn) MDSCs 的臨床應(yīng)用。
參考文獻(xiàn)
[1] Crook KR, Liu P. Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol, 2014, 4(1):26-33.
[2] Wu T, Zhao Y, Zhao Y. The roles of myeloid-derived suppressor cells in transplantation. Expert Rev Clin Immunol, 2014, 10(10):1385-1394.
[3] Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009, 9(3):162-174.
[4] Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 2008, 111(8):4233-4244.
[5] Dietlin TA, Hofman FM, Lund BT, et al. Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J Leukoc Biol, 2007, 81(5):1205-1212.
[6] Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res, 2001, 61(12): 4756-4760.
[7] Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol, 2005, 5(8):641-654.
[8] Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev, 2008, 222:180-191.
[9] Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest, 2007, 117(5):1155-1166.
[10] Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol, 2008, 181(8): 5791-5802.
[11] Yang L, Huang J, Ren X, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 2008. 13(1):23-35.
[12] Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol, 2009, 182(1):240-249.
[13] Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res, 2010, 70(1):68-77.
[14] Rodriguez PC, Hernandez CP, Quiceno D, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med, 2005, 202(7):931-939.
[15] De Wilde V, Van Rompaey N, Hill M, et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant, 2009, 9(9):2034-2047.
[16] Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol, 2010, 223(1-2):20-30.
[17] Obermajer N, Muthuswamy R, Lesnock J, et al. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood, 2011, 118(20):5498-5505.
[18] Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol, 2009, 182(9):5693-5701.
[19] Ezernitchi AV, Vaknin I, Cohen-Daniel L, et al. TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol, 2006, 177(7):4763-4772.
[20] Hanson EM, Clements VK, Sinha P, et al. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol, 2009, 183(2):937-944.
[21] Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res, 2006, 66(2):1123-1131.
[22] Elkabets M, Ribeiro VS, Dinarello CA, et al. IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK celldevelopment and function. Eur J Immunol, 2010, 40(12):3347-3357.
[23] Mundy-Bosse BL, Thornton LM, Yang HC, et al. Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol, 2011, 270(1):80-87.
[24] Greifenberg V, Ribechini E, R?ssner S, et al. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol, 2009, 39(10):2865-2876.
[25] Ostrand-Rosenberg S, Sinha P, Beury DW, et al. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol, 2012, 22(4):275-281.
[26] Bronte V, Apolloni E, Cabrelle A, et al. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 2000, 96(12):3838-3846.
[27] Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood, 2010, 116(25):5738-5747.
[28] Messmann JJ, Reisser T, Leith?user F, et al. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood, 2015, 126(9):1138-1148.
[29] Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity, 2010, 32(6):790-802.
[30] Lutz MB, Kukutsch NA, Menges M, et al. Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol, 2000, 30(4):1048-1052.
[31] Tu Z, Li Y, Smith D, et al. Myeloid suppressor cells induced by retinal pigment epithelial cells inhibit autoreactive T-cell responses that lead to experimental autoimmune uveitis. Invest Ophthalmol Vis Sci, 2012, 53(2):959-966.
[32] Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. Int Immunopharmacol, 2011, 11(7):808-815.
[33] Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol, 2010, 185(4): 2273-2284.
[34] Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol, 2008, 180(12):7898-7906.
[35] Lutz MB, Kukutsch N, Ogilvie AL, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999, 223(1):77-92.
[36] Jin Y, Fuller L, Ciancio G, et al. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. Hum Immunol, 2004, 65(2):93-103.
[37] R?ssner S, Voigtl?nder C, Wiethe C, et al. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol, 2005, 35(12):3533-3544.
[38] Solito S, Falisi E, Diaz-Montero CM, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood, 2011, 118(8):2254-2265.
[39] Kurkó J, Vida A, Ocskó T, et al. Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells generated in vitro from murine bone marrow. PLoS One, 2014, 9(11):e111815.
[40] Arora M, Poe SL, Ray A, et al. LPS-induced CD11b+Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol, 2011, 11(7):827-832.
[41] Youn JI, Kumar V, Collazo M, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol, 2013, 14(3):211-220.
[42] Shi M, Shi G, Tang J, et al. Myeloid-derived suppressor cell function is diminished in aspirin-triggered allergic airway hyperresponsiveness in mice. J Allergy Clin Immunol, 2014, 134(5):1163-1174. e16.
[43] Arakawa Y, Qin J, Chou HS, et al. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase. Transplantation, 2014, 97(7): 740-747.
[44] Mao Y, Sarhan D, Steven A, et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res, 2014, 20(15):4096-4106.
[45] Lechner MG, Megiel C, Russell SM, et al. Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med, 2011, 9:90.
[46] Obermajer N, Kalinski P. Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res, 2012, 1(1):15.
[47] Maeda A, Kawamura T, Ueno T, et al. Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation, 2014, 21(1):46-56.
[48] H?chst B, Schildberg FA, Sauerborn P, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol, 2013, 59(3): 528-535.
[49] Garg A, Spector SA. HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis, 2014, 209(3):441-451.
[50] Zhou Z, French DL, Ma G, et al. Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells, 2010, 28(3):620-632.
[51] Novitskiy SV, Pickup MW, Gorska AE, et al. TGF-β receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov, 2011, 1(5):430-441.
[52] Wu WC, Sun HW, Chen HT, et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci U S A, 2014, 111(11):4221-4226.
[53] Zoso A, Mazza EM, Bicciato S, et al. Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion. Eur J Immunol, 2014, 44(11):3307-3319.
[54] Zhang W, Liang S, Wu J, et al. Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloidderived suppressor cells that promote long-term survival of allografts. Transplantation, 2008, 86(8):1125-1134.
[55] Yin B, Ma G, Yen CY, et al. Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol, 2010, 185(10):5828-5834.
[56] Baban B, Chandler PR, Johnson BA 3rd, et al. Physiologic control ofIDO competence in splenic dendritic cells. J Immunol, 2011, 187(5): 2329-2335.
[57] Derive M, Bouazza Y, Alauzet C, et al. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Med, 2012, 38(6):1040-1049.
[58] Zhang J, Wang B, Zhang W, et al. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One, 2013, 8(8):e70828.
[59] Zhu K, Zhang N, Guo N, et al. SSC(high)CD11b(high)Ly-6C(high)Ly-6G(low) myeloid cells curtail CD4 T cell response by inducible nitric oxide synthase in murine hepatitis. Int J Biochem Cell Biol, 2014, 54:89-97.
[60] Nishimura K, Saegusa J, Matsuki F, et al. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol, 2015, 67(4):893-902.
[61] Wang W, Jiao Z, Duan T, et al. Functional characterization of myeloid-derived suppressor cell subpopulations during the development of experimental arthritis. Eur J Immunol, 2015, 45(2): 464-473.
[62] Li L, Zhang T, Diao W, et al. Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS. J Am Soc Nephrol, 2015, 26(9):2183-2197.
[63] Escors D, Liechtenstein T, Perez-Janices N, et al. Assessing T-cell responses in anticancer immunotherapy: dendritic cells or myeloid-derived suppressor cells? Oncoimmunology, 2013, 2(10): e26148.
·協(xié)會(huì)之窗·
收稿日期:2015-10-08
通信作者:李衛(wèi)國,Email:liwg0618@htu.cn
基金項(xiàng)目:河南省重點(diǎn)科技攻關(guān)計(jì)劃(112102310320、122102310282)
DOI:10.3969/j.issn.1673-713X.2016.01.011