• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      大腦聽覺偏側(cè)性的特征與演化

      2016-04-01 08:33:58薛飛方光戰(zhàn)唐業(yè)忠
      四川動(dòng)物 2016年4期
      關(guān)鍵詞:左半球右半球右耳

      薛飛, 方光戰(zhàn), 唐業(yè)忠

      (中國科學(xué)院成都生物研究所兩棲爬行動(dòng)物研究室,成都610041)

      大腦聽覺偏側(cè)性的特征與演化

      薛飛, 方光戰(zhàn)*, 唐業(yè)忠

      (中國科學(xué)院成都生物研究所兩棲爬行動(dòng)物研究室,成都610041)

      作為生物體適應(yīng)環(huán)境的特征,偏側(cè)性在人類和動(dòng)物中普遍存在。偏側(cè)性能提升個(gè)體處理環(huán)境信息的效率并更快對(duì)環(huán)境刺激做出響應(yīng),從而提升個(gè)體對(duì)環(huán)境的適合度。聽覺作為重要的感知方式也具有偏側(cè)性,并且在多個(gè)類群中具有相似趨勢(shì)。本文總結(jié)了聽覺偏側(cè)性在不同動(dòng)物類群間的相似性和特異性,對(duì)聽覺偏側(cè)性的產(chǎn)生機(jī)制進(jìn)行了歸納,并探討了群體水平聽覺偏側(cè)性的成因。最后對(duì)研究的不足之處提出了可能的解決方案,并對(duì)聽覺偏側(cè)性研究方向進(jìn)行了展望。

      聽覺偏側(cè)性;腦功能偏側(cè)性;群體水平偏側(cè)性;適合度;作用機(jī)制

      偏側(cè)性指生物體在行為和感知的過程中偏好使用單側(cè)肢體、感覺器官和大腦半球的現(xiàn)象。偏側(cè)性是生物界普遍存在的現(xiàn)象,例如約90%的人是右利手(Hardyck & Petrinovich,1977),同樣,類人猿亦偏好使用某側(cè)前肢掏取食物,且偏側(cè)肢隨物種而異(Hopkinsetal.,2011)。鸚鵡習(xí)慣用左腳爪抓握食物(Rogers & Workman,1993);安樂蜥Anoliscarolinensis傾向于攻擊左側(cè)視野內(nèi)的同類(Deckel,1995);蟾蜍在捕食右側(cè)視野內(nèi)的食物時(shí)更迅捷(Vallortigaraetal.,1998);聚群的魚類在遭遇天敵時(shí)總是轉(zhuǎn)向相同方向逃走(Cantalupoetal.,1995);甚至在多種無脊椎動(dòng)物類群中也發(fā)現(xiàn)了這種不對(duì)稱使用肢體或感覺器官的現(xiàn)象(Frasnellietal.,2012)。偏側(cè)性可能是動(dòng)物適應(yīng)性進(jìn)化的結(jié)果,對(duì)生物體的生存有積極作用(Rogers,2002;Rogersetal.,2004;Vallortigara & Rogers,2005):偏側(cè)性使大腦左、右半球功能特化,能夠同步處理來自軀體兩側(cè)的不同信號(hào),優(yōu)化整個(gè)神經(jīng)網(wǎng)絡(luò)的利用率;單側(cè)半球具有主導(dǎo)地位,能夠避免左、右半球競(jìng)爭(zhēng)控制權(quán)而導(dǎo)致的反應(yīng)延遲甚至反應(yīng)錯(cuò)誤,使個(gè)體能夠?qū)ν饨绛h(huán)境做出更精準(zhǔn)的反應(yīng)并能完成更加復(fù)雜的工作,從而提高個(gè)體的競(jìng)爭(zhēng)力和適合度。除了這些積極作用外,偏側(cè)性也會(huì)帶來諸如減弱非優(yōu)勢(shì)側(cè)主導(dǎo)的感覺器官對(duì)競(jìng)爭(zhēng)對(duì)手、獵物或天敵的響應(yīng),群體中多數(shù)個(gè)體表現(xiàn)出的相同偏側(cè)性會(huì)導(dǎo)致個(gè)體行為易被競(jìng)爭(zhēng)對(duì)手或天敵預(yù)測(cè)等不利影響,但由于大腦偏側(cè)性能使生物體具備同時(shí)處理多種信號(hào)的能力,提升了個(gè)體在復(fù)雜環(huán)境中的適應(yīng)性,因此偏側(cè)性對(duì)個(gè)體和群體而言,優(yōu)勝于劣(Vallortigara,2006)。作為主要的感知方式之一,聽覺是個(gè)體感知外界環(huán)境、維持生存和繁殖活動(dòng)的重要途徑。近年來,聽覺偏側(cè)性研究(特別是其特征和普遍性)一直是大腦功能研究領(lǐng)域的熱點(diǎn)之一。

      1 聽覺偏側(cè)性的特征

      在右利手的人群中,左側(cè)顳葉皮層受損的病人在分辨語音信息時(shí)的準(zhǔn)確率明顯低于右側(cè)受損的病人(Kimura,1961a,1961b)。由于人體感覺器官的輸出信號(hào)大部分都投射到對(duì)側(cè)大腦半球(Carpenter,1976),因此在語言交流中存在右耳/左半球優(yōu)勢(shì)(right-ear advantage)。隨后的實(shí)驗(yàn)證實(shí),通常右耳/左半球傾向于處理與語言相關(guān)的信號(hào),左耳/右半球則對(duì)音調(diào)及環(huán)境聲音更加敏感(Paquetteetal.,1996;Kimura,2011)。而在非人哺乳類中,條件反射訓(xùn)練和腦損毀研究均證實(shí)左半球在識(shí)別同種叫聲的過程中起主導(dǎo)作用(Petersenetal.,1978;Ehret,1987;Fitchetal.,1993;Heffner & Heffner,1995)。利用朝向不對(duì)稱實(shí)驗(yàn)范式(orienting-asymmetry paradigm,即在個(gè)體的正后方播放聲音刺激,記錄其耳朵或頭部轉(zhuǎn)動(dòng)方向來分析被試是否具有耳偏側(cè)性)對(duì)獼猴Macacamulatta(Hauser & Andersson,1994;Hauseretal.,1998)、海獅Zalophuscalifornianus(B?yeetal.,2005)、家馬Equuscaballus(Basileetal.,2009)、家犬Canisfamiliaris(Siniscalchietal.,2008;Reinholz-Trojanetal.,2012)和角雕Harpiaharpyja(Palleroni & Hauser,2003)測(cè)試的結(jié)果顯示:成年個(gè)體聽到來自身體正后方的同種鳴叫時(shí)會(huì)轉(zhuǎn)動(dòng)右耳廓或?qū)㈩^轉(zhuǎn)向右側(cè),聽到異種或新穎的叫聲則相反。這些結(jié)果表明包括人在內(nèi)的哺乳動(dòng)物、鳥類在感知同種鳴叫時(shí)具有右耳/左半球優(yōu)勢(shì),而感知異種叫聲或環(huán)境聲音時(shí)左耳/右半球更加敏感。在兩棲動(dòng)物中,行為(Xueetal.,2015)及電生理(Fangetal.,2012,2014)研究證實(shí)仙琴蛙Babinadaunchina具有類似的耳優(yōu)勢(shì),即其左側(cè)中腦主導(dǎo)著對(duì)同種鳴叫的處理和識(shí)別(Fangetal.,2015)。

      有意思的是獼猴和海獅的幼體對(duì)所有聲音都沒有明顯的偏側(cè)性(Hauser & Andersson,1994;B?yeetal.,2005),而角雕(Palleroni & Hauser,2003)在聽到獵物叫聲時(shí)會(huì)根據(jù)捕食經(jīng)驗(yàn)的有無而向右或向左轉(zhuǎn)頭,同時(shí)只有具有繁殖經(jīng)驗(yàn)的雌性小鼠會(huì)對(duì)幼崽的叫聲表現(xiàn)出偏側(cè)性(Ehret,1987),這表明聽覺偏側(cè)性具有可塑性,暗示聽覺偏側(cè)性在物種演化過程中會(huì)在不同類群甚至個(gè)體之間存在差異。事實(shí)上,在感知語言時(shí),左利手人群中具有左耳/右半球優(yōu)勢(shì)的人數(shù)百分比高于右利手人群中具有同樣優(yōu)勢(shì)的人數(shù)百分比(Perlakietal.,2013);在非人靈長(zhǎng)類中,利用行為(Gil-da-Costa & Hauser,2006)、事件相關(guān)電位(event-relative potential,ERP)(Berntsonetal.,1993)和正電子發(fā)射斷層成像(positron emission tomography,PET)(Taglialatelaetal.,2009)發(fā)現(xiàn)黑猩猩Pantroglodytes和非洲綠猴Cercopithecusaethiops在處理熟悉聲音或同種鳴叫時(shí)具有右半球優(yōu)勢(shì);左側(cè)聽皮層受損的獼猴在一定訓(xùn)練之后,其分辨能力可以恢復(fù)到受損前的水平,推測(cè)是右側(cè)聽皮層起到了補(bǔ)償作用(Heffner & Heffner,1995);另外帕氏髯蝠Pteronotusparnellii在感知同種鳴叫和定位回聲時(shí)分別具有左、右半球優(yōu)勢(shì)(Kanwal,2012)。這些特化的聽覺偏側(cè)性一般被解釋為是物種在進(jìn)化過程中受到不同環(huán)境選擇壓力所致(Ward & Hopkins,1993;Gil-da-Costa & Hauser,2006)。

      這一系列的研究證實(shí)在大多數(shù)四足動(dòng)物中,聽覺偏側(cè)性是一種普遍存在的現(xiàn)象,而且和人類的聽覺偏側(cè)性具有十分相似的趨勢(shì):右耳/左半球主導(dǎo)同種交流信號(hào)(語言、鳴聲等)和熟悉的聲音;左耳/右半球負(fù)責(zé)處理異種鳴叫、突發(fā)刺激以及環(huán)境聲音等。這些證據(jù)表明聽覺偏側(cè)性雖然是人類語言交流中的一個(gè)重要特征,但它并非是人類所特有,而是與其他物種聲音通訊系統(tǒng)所共有。由于四足動(dòng)物的聽覺通路總體上具有很高的相似性而且部分核團(tuán)和腦區(qū)具有同源性(Manleyetal.,2004;Butler & Hodos,2005),因此普遍存在且模式十分相似的聽覺偏側(cè)性被認(rèn)為是在進(jìn)化過程中來源于共同的祖先物種的腦功能特征(Vallortigaraetal.,1999,2011)。偏側(cè)性能夠提升個(gè)體的適合度,因此具有聽覺偏側(cè)性的個(gè)體在自然選擇的過程中所占比例逐漸提升;而特定形式的偏側(cè)性一旦形成,便會(huì)作為高度保守的腦功能并在物種演化過程中得以保留(Rogers,2000)。

      2 個(gè)體聽覺偏側(cè)性的機(jī)制模型

      研究證實(shí)個(gè)體偏側(cè)性可能是在發(fā)育過程中由基因調(diào)控形成,并能遺傳給后代(Corballisetal.,2012;McManusetal.,2013)。聽覺偏側(cè)性能夠使個(gè)體從外界環(huán)境的噪聲中快速準(zhǔn)確地提取出與自身相關(guān)的信息,這種優(yōu)勢(shì)使其更容易在自然選擇過程中得以保留,從而使具有偏側(cè)性的個(gè)體在群體中占據(jù)優(yōu)勢(shì)地位。聽覺偏側(cè)性的產(chǎn)生機(jī)制一直是研究熱點(diǎn),主要機(jī)制模型包括結(jié)構(gòu)模型、信號(hào)處理不對(duì)稱模型、注意模型及混合模型等。

      2.1 結(jié)構(gòu)模型

      對(duì)人類而言,雖然有左半球語言優(yōu)勢(shì)的人數(shù)在左、右利手人群中所占的百分比不同(分別為78%,95%),但語言中樞通常位于左半球,右半球則是關(guān)注非語言聲音刺激(Broca,1861;Sperry,1974)。由于聽覺信號(hào)主要是對(duì)側(cè)投射(Carpenter,1976),據(jù)此Kimura(1973)提出了基于非對(duì)稱性聽覺通路和語言中樞的右耳優(yōu)勢(shì)結(jié)構(gòu)模型。具體而言,語言相關(guān)信號(hào)經(jīng)右耳和左側(cè)聽皮層后,直接傳遞到位于左側(cè)的語言感知中樞;而左耳的信號(hào)則需先傳到右側(cè)聽皮層再經(jīng)胼胝體傳遞到左側(cè)語言中樞,同時(shí)該傳遞過程還受到左側(cè)聽覺通路抑制(Brancuccietal.,2004),整體傳遞效率低于右耳,因而右耳在處理與語言相關(guān)的信號(hào)時(shí)具有優(yōu)勢(shì)。除非對(duì)稱性語言中樞外,胼胝體的選擇性傳遞也被認(rèn)為是聽覺偏側(cè)性的形成原因(Zaidel,1989);此外還有基于耳蝸和腦干結(jié)構(gòu)的傳出信號(hào)不對(duì)等模型(McFadden,1993)等。雖然這些模型所關(guān)注的具體解剖結(jié)構(gòu)各不相同,但是對(duì)于聽覺偏側(cè)性的形成都有著相同的核心觀點(diǎn):聽覺偏側(cè)性是由于解剖結(jié)構(gòu)的不對(duì)稱性所導(dǎo)致的聲音信號(hào)不對(duì)等傳遞的結(jié)果。

      2.2 信號(hào)處理不對(duì)等模型

      Ivry和Robertson(1997)提出了雙重頻率濾波模型(double-filtering-by-frequency model)來解釋聽覺偏側(cè)性。該模型認(rèn)為聽覺感知依賴于注意調(diào)節(jié)的分頻點(diǎn),左半球主要處理信號(hào)的高頻部分,而低頻部分則主要由右半球處理。時(shí)域非對(duì)稱采樣假說(asymmetric sampling in time hypothesis)持有相似的觀點(diǎn)(Poeppel,2003):最初由聲音信號(hào)激活的神經(jīng)信號(hào)傳遞到聽皮層時(shí)是兩側(cè)相等的,之后由于左側(cè)聽皮層采集信號(hào)的時(shí)間窗較短(20~40 ms),而右側(cè)聽皮層的時(shí)間窗更長(zhǎng)(150~250 ms),從而使得兩側(cè)聽皮層偏愛加工的聲音信號(hào)頻率不同。由于同種叫聲和環(huán)境聲音的頻率范圍不同,因此左、右聽皮層偏愛獲取并加工的信號(hào)具有差異性。這類模型的建立基于兩側(cè)聽皮層之間處理聲音信號(hào)的不對(duì)稱性,帶有一定結(jié)構(gòu)差異的要素;而其重點(diǎn)是在處理加工的過程而不是信號(hào)采集過程,有別于結(jié)構(gòu)模型,可以認(rèn)為是結(jié)構(gòu)模型的延伸。

      2.3 注意模型

      根據(jù)一系列雙耳分聽實(shí)驗(yàn)結(jié)果,Kinsbourne(1975)提出聽覺偏側(cè)性的產(chǎn)生可能與大腦皮層的動(dòng)態(tài)偏側(cè)性激活有關(guān)。他們認(rèn)為,感知或預(yù)期語言信號(hào)輸入可使被試左半球進(jìn)入更高的激活狀態(tài),隨后這種偏側(cè)性的激活狀態(tài)會(huì)擴(kuò)展至額葉眼區(qū),從而調(diào)動(dòng)注意資源偏側(cè)至右側(cè)感覺器官以獲取準(zhǔn)確的語音信息輸入,最終導(dǎo)致右耳/左半球優(yōu)勢(shì)(Hiscock & Kinsbourne,2011)。在執(zhí)行對(duì)音調(diào)的特征進(jìn)行分辨的聽覺任務(wù)中,當(dāng)被試聽到與任務(wù)不相關(guān)的響度/頻率偏差的聲音刺激時(shí),包括左側(cè)前額葉在內(nèi)的多個(gè)與注意相關(guān)的腦區(qū)高激活,提示注意轉(zhuǎn)移(Rinneetal.,2007;Salmietal.,2009);在聽到同種鳴叫后,動(dòng)物會(huì)傾向于將右側(cè)感覺器官朝向聲源方向(Hauser & Andersson,1994;Hauseretal.,1998;Palleroni & Hauser,2003;B?yeetal.,2005;Siniscalchietal.,2008;Basileetal.,2009;Reinholz-Trojanetal.,2012)。這些結(jié)果表明聲音刺激能引起注意,進(jìn)而調(diào)動(dòng)注意資源偏向單側(cè)感覺器官,最終導(dǎo)致聽覺偏側(cè)性。

      另一方面,和無線索相比,在提示被試注意混合聲音中的某種特定聲音時(shí),其雙側(cè)額下回、左側(cè)顳上回等區(qū)域高激活(Osnesetal.,2012)。而相對(duì)被動(dòng)聽覺實(shí)驗(yàn),當(dāng)要求被試響應(yīng)語音靶刺激時(shí),左額眼區(qū)高激活,并且要求注意單側(cè)耳時(shí),其左額眼區(qū)激活水平更高(Thomsenetal.,2004);當(dāng)要求被試響應(yīng)音調(diào)靶刺激時(shí),前額葉尤其是右側(cè)前額葉高激活(J?nckeetal.,2003)。這些結(jié)果說明,在聽覺任務(wù)中線索產(chǎn)生的預(yù)期能激活注意相關(guān)腦區(qū),這些腦區(qū)與視覺任務(wù)中預(yù)期所激活的腦區(qū)高度相似(Sakai & Passingham,2003),這是由于不同感覺模態(tài)的注意調(diào)控是由共同的神經(jīng)機(jī)制完成(Shinn-Cunningham,2008)。據(jù)此推測(cè),對(duì)刺激的預(yù)期激活了注意相關(guān)腦區(qū),從而引起自上而下的調(diào)控,加強(qiáng)聽覺皮層非對(duì)稱性激活,進(jìn)而導(dǎo)致聽覺偏側(cè)性。

      注意模型還提出注意調(diào)節(jié)能夠?qū)β犛X偏側(cè)性產(chǎn)生影響(Hiscock & Kinsbourne,2011)。在雙耳分聽任務(wù)下,當(dāng)要求被試注意雙側(cè)或右耳聲音時(shí),其左側(cè)顳葉高激活,表現(xiàn)出右耳優(yōu)勢(shì);在注意右耳時(shí),即使左側(cè)聲音聲壓級(jí)相對(duì)右側(cè)更高(非注意條件下會(huì)引起左耳優(yōu)勢(shì)),被試也表現(xiàn)出右耳優(yōu)勢(shì)(Westerhausenetal.,2010),當(dāng)要求注意左耳時(shí),右側(cè)顳葉的激活狀態(tài)更高,說明耳優(yōu)勢(shì)發(fā)生了逆轉(zhuǎn)(J?nckeetal.,2001;Alhoetal.,2012)。這些結(jié)果表明注意對(duì)聽覺偏側(cè)性的調(diào)控作用,支持了注意模型的有效性。

      2.4 混合模型

      關(guān)于結(jié)構(gòu)模型和注意模型的有效性一直存在爭(zhēng)論:結(jié)構(gòu)模型雖然有解剖結(jié)果的強(qiáng)力支持,但是很難解釋耳優(yōu)勢(shì)在注意調(diào)節(jié)下的反轉(zhuǎn),即從右耳優(yōu)勢(shì)到左耳優(yōu)勢(shì)的反轉(zhuǎn)(Foundasetal.,2006);注意模型則是強(qiáng)調(diào)高級(jí)神經(jīng)中樞的調(diào)控能力而淡化了解剖結(jié)構(gòu)顯著差異性的固有影響(Hiscock & Kinsbourne,2011)。Fang等(2014)通過控制雙耳注意差異,證實(shí)仙琴蛙的右耳優(yōu)勢(shì)是以結(jié)構(gòu)差異為基礎(chǔ)并受注意調(diào)節(jié)影響的結(jié)果,說明右耳優(yōu)勢(shì)的形成機(jī)制更可能是一種綜合了結(jié)構(gòu)模型和注意模型的混合模型。

      3 群體水平聽覺偏側(cè)性的成因

      在具有個(gè)體偏側(cè)性的物種中,某側(cè)半球占主導(dǎo)地位在本質(zhì)上并無優(yōu)劣之分,因此理論上群體中左側(cè)和右側(cè)半球占主導(dǎo)地位的個(gè)體應(yīng)該各占50%。然而在具有個(gè)體偏側(cè)性的社會(huì)性物種中,其群體中多數(shù)個(gè)體(60%~90%)的偏側(cè)性都呈現(xiàn)出同樣的方向,表現(xiàn)出群體水平的偏側(cè)性(Vallortigara & Rogers,2005;Vallortigara,2006)。群體水平偏側(cè)性并不像個(gè)體偏側(cè)性那樣能提高個(gè)體的競(jìng)爭(zhēng)力和適合度,反而因個(gè)體行為易被預(yù)測(cè)而在反捕食或競(jìng)爭(zhēng)過程中存在劣勢(shì),說明必定存在某種機(jī)制使得群體水平出現(xiàn)偏側(cè)性并維持穩(wěn)定。進(jìn)化穩(wěn)定策略(evolution stable strategy)(Ghirlanda & Vallortigara,2004;Ghirlandaetal.,2009)認(rèn)為這種群體水平的偏側(cè)性是在外界環(huán)境壓力和群體中個(gè)體相互作用的雙重影響下所形成能夠使群體適合度達(dá)到最優(yōu)的一種生存策略。然而這一假說只能解釋為何群體水平偏側(cè)性能夠在群體中維持穩(wěn)定,關(guān)于最初某一側(cè)腦功能偏側(cè)性為何會(huì)在群體水平上占有優(yōu)勢(shì)這一問題依然需要更加完善的理論來解答。

      在人類、哺乳類、鳥類和蛙類中,占主導(dǎo)地位的聽覺感知中樞和發(fā)聲中樞一般位于左半球(Bolhuisetal.,2010;Moormanetal.,2012),解剖學(xué)(Hutsler & Galuske,2003)和彌散張量成像(Nuciforaetal.,2005)證實(shí)人類同側(cè)的發(fā)聲中樞和聽覺感知中樞有神經(jīng)束直接相連;蛙類發(fā)聲控制和聽覺感知也被證實(shí)由左半球主導(dǎo)(Bauer,1993;Fangetal.,2014)。這種相似性證實(shí)了聽覺和發(fā)聲作為聲音通訊的兩個(gè)方面是協(xié)同進(jìn)化的(Boteroetal.,2010)。另一方面,發(fā)聲涉及到發(fā)聲器官的運(yùn)動(dòng),在絕大多數(shù)聲音通訊物種中,發(fā)聲中樞和肢體運(yùn)動(dòng)中樞的優(yōu)勢(shì)側(cè)相同且絕大多數(shù)位于左半球(Rogers,2000)。這種肢體偏側(cè)性和感知偏側(cè)性的密切相關(guān)被認(rèn)為具有因果關(guān)系,但誰因誰果仍然充滿爭(zhēng)議。一種觀點(diǎn)認(rèn)為肢體偏側(cè)性最先出現(xiàn),進(jìn)而引起了整個(gè)神經(jīng)系統(tǒng)的偏側(cè)性,最終導(dǎo)致感知偏側(cè)性(MacNeilage,2007);另一種觀點(diǎn)則認(rèn)為神經(jīng)系統(tǒng)先產(chǎn)生了偏側(cè)性,然后才引起了感知器官和肢體的偏側(cè)性(Rogers,2009)。在魚類中的研究?jī)A向于神經(jīng)系統(tǒng)偏側(cè)性優(yōu)先產(chǎn)生的觀點(diǎn):在迂回行為實(shí)驗(yàn)中,鐮形吉拉德食蚊魚Girardinusfalcatus會(huì)依據(jù)視野中是否出現(xiàn)具有生物學(xué)意義的刺激而表現(xiàn)或不表現(xiàn)出群體水平的方向偏側(cè),這表明其行為的偏側(cè)性更多是受到視覺感知的驅(qū)動(dòng)(Facchinetal.,1999)。這種神經(jīng)系統(tǒng)偏側(cè)性先出現(xiàn)的觀點(diǎn)為聽覺感知偏側(cè)性的形成提供了一種可能的解釋:由于具有偏側(cè)性的個(gè)體對(duì)其左側(cè)視野中的其他個(gè)體表現(xiàn)出更強(qiáng)的攻擊性,同時(shí)同種信號(hào)更多由右側(cè)器官感知(Rogers,2000),因此個(gè)體在非爭(zhēng)斗的情況下都會(huì)傾向于將其他個(gè)體置于自己的右側(cè)或者從右側(cè)接近其他個(gè)體,以降低不必要的爭(zhēng)斗并更好進(jìn)行同種信息的交流(Salvaetal.,2012);這種偏好鞏固了左半球在群體水平上對(duì)同種信號(hào)處理的主導(dǎo)地位,從而產(chǎn)生了群體水平上的偏側(cè)性。特定形式的偏側(cè)性一旦形成,便會(huì)作為高度保守的腦功能并在物種演化過程中得以保留(Rogers,2000),因此在聲音通訊物種中,左側(cè)的聽覺中樞繼承了這種對(duì)同種信號(hào)感知的主導(dǎo)地位,進(jìn)而產(chǎn)生了群體水平的聽覺偏側(cè)性。

      4 研究中存在的不足及展望

      朝向不對(duì)稱實(shí)驗(yàn)范式被廣泛運(yùn)用于動(dòng)物聽覺偏側(cè)性研究,然而隨著相關(guān)研究的開展,該范式存在的問題也逐漸浮現(xiàn)。聯(lián)合使用功能性磁共振成像(functional magnetic resonance imaging,fMRI)和朝向不對(duì)稱實(shí)驗(yàn)范式發(fā)現(xiàn),成年人聽到語音后左半球Broca區(qū)激活明顯,然而被試卻更多地向左轉(zhuǎn)頭,這被認(rèn)為是聽覺偏側(cè)性和頭部轉(zhuǎn)向行為并沒有直接關(guān)系的證據(jù)(Fischeretal.,2009)。由于聽覺偏側(cè)性在不同物種中具有多樣性和可塑性,Teufel等(2010)指出在使用朝向不對(duì)稱實(shí)驗(yàn)范式時(shí)可能存在未控制的變量,從而造成實(shí)驗(yàn)結(jié)果與預(yù)測(cè)不符甚至完全相反,因此在聽覺偏側(cè)性和頭部轉(zhuǎn)向行為的關(guān)系被完全闡明之前,選用這個(gè)實(shí)驗(yàn)范式的時(shí)候需要十分謹(jǐn)慎。除了開發(fā)新的實(shí)驗(yàn)范式外,由于聽覺偏側(cè)性是大腦功能偏側(cè)性的一種形式,大腦聽皮層的活動(dòng)不對(duì)等能夠直接反映出聽覺偏側(cè)性,因此選用朝向不對(duì)稱實(shí)驗(yàn)范式研究聽覺偏側(cè)性時(shí),與能夠直接反應(yīng)大腦活動(dòng)的研究方式相結(jié)合,例如fMRI、PET和腦電圖(electroencephalogram,EEG)相結(jié)合,從腦功能和行為兩個(gè)水平上同時(shí)進(jìn)行研究,就能取得更有效可靠的結(jié)果。Fang等(2014)、Xue等(2015)結(jié)合行為和EEG研究仙琴蛙的右耳優(yōu)勢(shì)及其形成機(jī)制就是有益的嘗試。

      聽覺偏側(cè)性是大腦功能偏側(cè)性的表現(xiàn)形式之一,是大腦執(zhí)行正常功能的途徑,但是聽覺偏側(cè)性與其他大腦功能的關(guān)系還不清楚,比如聽覺偏側(cè)性與其他感覺偏側(cè)性如何協(xié)同作用以實(shí)現(xiàn)對(duì)目標(biāo)的注意與識(shí)別。另外相關(guān)研究主要集中在人類、哺乳類、鳥類和兩棲類中,而爬行類至今尚無報(bào)道,這使得探究聽覺偏側(cè)性演化過程的數(shù)據(jù)出現(xiàn)了斷層。在更多的物種上對(duì)聽覺偏側(cè)性進(jìn)行研究勢(shì)在必行。此外在一些不以聲音為主要交流方式甚至完全不發(fā)聲的物種中,其聽覺感知是否存在偏側(cè)性,如果存在,其表現(xiàn)形式及形成原因如何,這些問題同樣值得深入研究。

      Alho K, Salonen J, Rinne T,etal. 2012. Attention-related modulation of auditory-cortex responses to speech sounds during dichotic listening[J]. Brain Research, 1442: 47-54.

      Basile M, Boivin S, Boutin A,etal. 2009. Socially dependent auditory laterality in domestic horses (Equuscaballus)[J]. Animal Cognition, 12(4): 611-619.

      Bauer RH. 1993. Lateralization of neural control for vocalization by the frog (Ranapipiens)[J]. Psychobiology, 21(3): 243-248.

      Berntson GG, Boysen ST, Torello MW. 1993. Vocal perception: brain event-related potentials in a chimpanzee[J]. Developmental Psychobiology, 26(6): 305-319.

      Bolhuis JJ, Okanoya K, Scharff C. 2010. Twitter evolution: converging mechanisms in birdsong and human speech[J]. Nature Reviews Neuroscience, 11(11): 747-759.

      Botero CA, Pen I, Komdeur J,etal. 2010. The evolution of individual variation in communication strategies[J]. Evolution, 64(11): 3123-3133.

      B?ye M, Güntürkün O, Vauclair J. 2005. Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophuscalifornianus): hemispheric specialization for communication?[J]. European Journal of Neuroscience, 21(6): 1727-1732.

      Brancucci A, Babiloni C, Babiloni F,etal. 2004. Inhibition of auditory cortical responses to ipsilateral stimuli during dichotic listening: evidence from magnetoencephalography[J]. European Journal of Neuroscience, 19(8): 2329-2336.

      Broca P. 1861. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech)[J]. Bulletin de la Société Anatomique, 6: 330-357.

      Butler AB, Hodos W. 2005. Comparative vertebrate neuroanatomy: evolution and adaptation[M]. Hoboken, New Jersey, US: John Wiley & Sons.

      Cantalupo C, Bisazza A, Vallortigara G. 1995. Lateralization of predator-evasion response in a teleost fish (Girardinusfalcatus)[J]. Neuropsychologia, 33(12): 1637-1646.

      Carpenter MB. 1976. Human neuroanatomy[M]. Baltimore: Williams & Wilkins.

      Corballis MC, Badzakova-Trajkov G, H?berling IS. 2012. Right hand, left brain: genetic and evolutionary bases of cerebral asymmetries for language and manual action[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1): 1-17.

      Deckel AW. 1995. Laterality of aggressive responses inAnolis[J]. Journal of Experimental Zoology, 272(3): 194-200.

      Ehret G. 1987. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls[J]. Nature, 325(6101): 249-251.

      Facchin L, Bisazza A, Vallortigara G. 1999. What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use[J]. Behavioural Brain Research, 103(2): 229-234.

      Fang G, Xue F, Yang P,etal. 2014. Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation[J]. Behavioural Brain Research, 266: 77-84.

      Fang G, Yang P, Cui J,etal. 2012. Mating signals indicating sexual receptiveness induce unique spatio-temporal EEG theta patterns in an anuran species[J]. PLoS ONE, 7(12): e52364.

      Fang G, Yang P, Xue F,etal. 2015. Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs[J]. Brain, Behavior and Evolution, 86(3-4): 232-245.

      Fischer J, Teufel C, Drolet M,etal. 2009. Orienting asymmetries and lateralized processing of sounds in humans[J]. BMC Neuroscience, 10(1): 14-23.

      Fitch RH, Brown CP, O’Connor K,etal. 1993. Functional lateralization for auditory temporal processing in male and female rats[J]. Behavioral Neuroscience, 107(5): 844-850.

      Foundas AL, Corey DM, Hurley MM,etal. 2006. Verbal dichotic listening in right and left-handed adults: laterality effects of directed attention[J]. Cortex, 42(1): 79-86.

      Frasnelli E, Vallortigara G, Rogers LJ. 2012. Left-right asymmetries of behaviour and nervous system in invertebrates[J]. Neuroscience & Biobehavioral Reviews, 36(4): 1273-1291.

      Ghirlanda S, Frasnelli E, Vallortigara G. 2009. Intraspecific competition and coordination in the evolution of lateralization[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1519): 861-866.

      Ghirlanda S, Vallortigara G. 2004. The evolution of brain lateralization: a game-theoretical analysis of population structure[J]. Proceedings of the Royal Society B: Biological Sciences, 271(1541): 853-858.

      Gil-da-Costa R, Hauser MD. 2006. Vervet monkeys and humans show brain asymmetries for processing conspecific vocalizations, but with opposite patterns of laterality[J]. Proceedings of the Royal Society B: Biological Sciences, 273(1599): 2313-2318.

      Hardyck C, Petrinovich LF. 1977. Left-handedness[J]. PsychologicalBulletin, 84(3): 385.

      Hauser MD, Agnetta B, Perez C. 1998. Orienting asymmetries in rhesus monkeys: the effect of time-domain changes on acoustic perception[J]. Animal Behaviour, 56(1): 41-47.

      Hauser MD, Andersson K. 1994. Left hemisphere dominance for processing vocalizations in adult, but not infant, rhesus monkeys: field experiments[J]. Proceedings of the National Academy of Sciences, 91(9): 3946-3948.

      Heffner HE, Heffner RS. 1995. Role of auditory cortex in the perception of vocalizations by Japanese macaques[M]. US: Springer: 207-219.

      Hiscock M, Kinsbourne M. 2011. Attention and the right-ear advantage: what is the connection?[J]. Brain and Cognition, 76(2): 263-275.

      Hopkins WD, Phillips KA, Bania A,etal. 2011. Hand preferences for coordinated bimanual actions in 777 great apes: implications for the evolution of handedness in hominins[J]. Journal of Human Evolution, 60(5): 605-611.

      Hutsler J, Galuske RA. 2003. Hemispheric asymmetries in cerebral cortical networks[J]. Trends in Neurosciences, 26(8): 429-435.

      Ivry R, Robertson L. 1997. The two sides of perception[M]. Cambridge: MIT Press.

      J?ncke L, Buchanan T, Lutz K,etal. 2001. Focused and nonfocused attention in verbal and emotional dichotic listening: an FMRI study[J]. Brain and Language, 78(3): 349-363.

      J?ncke L, Specht K, Shah JN,etal. 2003. Focused attention in a simple dichotic listening task: an fMRI experiment[J]. Cognitive Brain Research, 16(2): 257-266.

      Kanwal JS. 2012. Right-left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats[J]. European Journal of Neuroscience, 35(2): 257-270.

      Kimura D. 1961a. Cerebral dominance and the perception of verbal stimuli[J]. Canadian Journal of Psychology, 15(3): 166.

      Kimura D. 1961b. Some effects of temporal-lobe damage on auditory perception[J]. Canadian Journal of Psychology, 15(3): 156.

      Kimura D. 1973. The asymmetry of the human brain[J]. Scientific American, 228(3): 70-78.

      Kimura D. 2011. From ear to brain[J]. Brain and Cognition, 76(2): 214-217.

      Kinsbourne M. 1975. The mechanism of hemispheric control of the lateral gradient of attention[M].London: Academic Press.

      MacNeilage PF. 2007. Present status of the postural origins theory[M]//Hopkins WD. The evolution of hemispheric specialization in primates. Oxford, UK: Elsevier, 5: 58-91.

      Manley GA, Popper AN, Fay RR. 2004. Evolution of the vertebrate auditory system[M]. New York: Springer.

      McFadden D. 1993. A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions[J]. Hearing Research, 68(2): 143-151.

      McManus I, Davison A, Armour JA. 2013. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies[J]. Annals of the New York Academy of Sciences, 1288(1): 48-58.

      Moorman S, Gobes SM, Kuijpers M,etal. 2012. Human-like brain hemispheric dominance in birdsong learning[J]. Proceedings of the National Academy of Sciences, 109(31): 12782-12787.

      Nucifora PG, Verma R, Melhem ER,etal. 2005. Leftward asymmetry in relative fiber density of the arcuate fasciculus[J]. Neuroreport, 16(16): 791-794.

      Osnes B, Hugdahl K, Hjelmervik H,etal. 2012. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception[J]. Brain and Language, 121(1): 65-69.

      Palleroni A, Hauser M. 2003. Experience-dependent plasticity for auditory processing in a raptor[J]. Science, 299(5610): 1195.

      Paquette C, Bourassa M, Peretz I. 1996. Left ear advantage in pitch perception of complex tones without energy at the fundamental frequency[J]. Neuropsychologia, 34(2): 153-157.

      Perlaki G, Horvath R, Orsi G,etal. 2013. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis[J]. Brain and Cognition, 82(3): 319-328.

      Petersen MR, Beecher MD, Moody D,etal. 1978. Neural lateralization of species-specific vocalizations by Japanese macaques (Macacafuscata)[J]. Science, 202(4365): 324-327.

      Poeppel D. 2003. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘a(chǎn)symmetric sampling in time’[J]. Speech Communication, 41(1): 245-255.

      Reinholz-Trojan A, Wodarczyk E, Trojan M,etal. 2012. Hemispheric specialization in domestic dogs (Canisfamiliaris) for processing different types of acoustic stimuli[J]. Behavioural Processes, 91(2): 202-205.

      Rinne T, Kirjavainen S, Salonen O,etal. 2007. Distributed cortical networks for focused auditory attention and distraction[J]. Neuroscience Letters, 416(3): 247-251.

      Rogers LJ, Workman L. 1993. Footedness in birds[J]. Animal Behaviour, 45(2): 409-411.

      Rogers LJ, Zucca P, Vallortigara G. 2004. Advantages of having a lateralized brain[J]. Proceedings of the Royal Society B: Biological Sciences, 271(Suppl 6): S420-S422.

      Rogers LJ. 2000. Evolution of side biases: motor versus sensory lateralization[M]. Netherlands: Springer: 3-40.

      Rogers LJ. 2002. Advantages and disadvantages of lateralization[M]. Cambridge: Cambridge University Press: 126-153.

      Rogers LJ. 2009. Hand and paw preferences in relation to the lateralized brain[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1519): 943-954.

      Sakai K, Passingham RE. 2003. Prefrontal interactions reflect future task operations[J]. Nature Neuroscience, 6(1): 75-81.

      Salmi J, Rinne T, Koistinen S,etal. 2009. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention[J]. Brain Research, 1286: 155-164.

      Salva OR, Regolin L, Mascalzoni E,etal. 2012. Cerebral and behavioural asymmetries in animal social recognition[J]. Comparative Cognition & Behavior Reviews, 7(10): 110-138.

      Shinn-Cunningham BG. 2008. Object-based auditory and visual attention[J]. Trends in Cognitive Sciences, 12(5): 182-186.

      Siniscalchi M, Quaranta A, Rogers LJ. 2008. Hemispheric specialization in dogs for processing different acoustic stimuli[J]. PLoS ONE, 3(10): e3349.

      Sperry R. 1974. Lateral specialization in the surgically separated hemispheres[M]. Cambridge: MIT Press.

      Taglialatela JP, Russell JL, Schaeffer JA,etal. 2009. Visualizing vocal perception in the chimpanzee brain[J]. Cerebral Cortex, 19(5): 1151-1157.

      Teufel C, Ghazanfar AA, Fischer J. 2010. On the relationship between lateralized brain function and orienting asymmetries[J]. Behavioral Neuroscience, 124(4): 437-445.

      Thomsen T, Rimol LM, Ersland L,etal. 2004. Dichotic listening reveals functional specificity in prefrontal cortex: an fMRI study[J]. Neuroimage, 21(1): 211-218.

      Vallortigara G, Chiandetti C, Sovrano VA. 2011. Brain asymmetry (animal)[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2): 146-157.

      Vallortigara G, Rogers L, Bisazza A. 1999. Possible evolutionary origins of cognitive brain lateralization[J]. Brain Research Reviews, 30(2): 164-175.

      Vallortigara G, Rogers LJ, Bisazza A,etal. 1998. Complementary right and left hemifield use for predatory and agonistic behaviour in toads[J]. Neuroreport, 9: 3341-3344.

      Vallortigara G, Rogers LJ. 2005. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization[J]. Behavioral and Brain Sciences, 28(4): 575-588.

      Vallortigara G. 2006. The evolutionary psychology of left and right: costs and benefits of lateralization[J]. Developmental Psychobiology, 48(6): 418-427.

      Ward JP, Hopkins WD. 1993. Primate laterality: current behavioral evidence of primate asymmetries[M].New York: Springer.

      Westerhausen R, Moosmann M, Alho K,etal. 2010. Identification of attention and cognitive control networks in a parametric auditory fMRI study[J]. Neuropsychologia, 48(7): 2075-2081.

      Xue F, Fang G, Yang P,etal. 2015. The biological significance of acoustic stimuli determines ear preference in the music frog[J]. Journal of Experimental Biology, 218(5): 740-747.

      Zaidel E. 1989. Hemispheric independence and interaction in word recognition[M]. Hampshire: McMillan: 77-97.

      Characteristic and Evolution of Brain Auditory Lateralization

      XUE Fei, FANG Guangzhan*, TANG Yezhong

      (Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences,Chengdu 610041, China)

      Lateralization is a common characteristic among the vertebrates including humans and is proposed to improve animals’ fitness through processing environmental information efficiently and responding to events more rapidly. As one of the major perceptual functions, asymmetric auditory perception has been found in various species with similar tendency: the right-ear/left-hemisphere dominates conspecific sound perception while the left-ear/right-hemisphere preferentially processes interspecific and novel sounds. Previous studies concerning auditory lateralization in different animal species were reviewed and the similarity and specificity across species were compared. The possible mechanisms underlying auditory lateralization in individual level and the possible cause of auditory lateralization in population level were summarized. Finally, some protocols for studies on lateralization and the possible prospects in the future were proposed.

      auditory lateralization; asymmetry of brain function; population lateralization; fitness; mechanism

      2016-01-08 接受日期:2016-04-24 基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(No.31372217)

      薛飛, 男, 博士, 研究方向:動(dòng)物聲音通訊及其神經(jīng)機(jī)理, E-mail:xf19880825@gmail.com

      *通信作者Corresponding author, E-mail:fanggz@cib.ac.cn

      10.11984/j.issn.1000-7083.20160010

      Q955

      A

      1000-7083(2016)04-0626-06

      猜你喜歡
      左半球右半球右耳
      左“阜”右“邑”
      書法教育(2022年6期)2022-04-29 00:44:03
      用右耳聽 記得更牢
      用右耳聽記得更牢
      試論在我國普通高校中音樂雙語教學(xué)的實(shí)踐意義及其推廣價(jià)值
      探究腦血管意外后抑郁癥量表得分與CT表現(xiàn)
      讓他對(duì)你感情用事
      對(duì)著右耳說請(qǐng)求,管用
      感悟(2009年12期)2009-12-29 04:41:24
      隱喻加工的大腦兩半球優(yōu)勢(shì)之爭(zhēng)
      商情(2009年30期)2009-01-14 09:12:18
      大腦的分工
      沁源县| 临漳县| 蓬莱市| 鄂托克前旗| 绩溪县| 梧州市| 安庆市| 左云县| 吉木萨尔县| 鹿邑县| 东光县| 吴川市| 崇礼县| 平阳县| 华阴市| 扶风县| 黔西县| 铜陵市| 遂溪县| 巴林右旗| 中宁县| 中卫市| 宝丰县| 孟连| 永登县| 青冈县| 屏东县| 汶上县| 滦南县| 项城市| 邯郸县| 饶阳县| 大兴区| 宿州市| 横山县| 句容市| 舞钢市| 阿拉善左旗| 濉溪县| 博乐市| 大名县|