李 梅,謝 沖, 2,管陽(yáng)太
1. 第二軍醫(yī)大學(xué)附屬長(zhǎng)海醫(yī)院神經(jīng)內(nèi)科,上海 200433;2. 上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院神經(jīng)內(nèi)科,上海 200127
?
綜述Review
誘導(dǎo)性多能干細(xì)胞及體細(xì)胞轉(zhuǎn)分化技術(shù)治療多發(fā)性硬化的研究進(jìn)展
李 梅1,謝 沖11, 2,管陽(yáng)太
1. 第二軍醫(yī)大學(xué)附屬長(zhǎng)海醫(yī)院神經(jīng)內(nèi)科,上海 200433;
2. 上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院神經(jīng)內(nèi)科,上海 200127
摘要
關(guān)鍵詞:多發(fā)性硬化;誘導(dǎo)性多能干細(xì)胞;轉(zhuǎn)分化
李 梅,謝 沖,管陽(yáng)太. 誘導(dǎo)性多能干細(xì)胞及體細(xì)胞轉(zhuǎn)分化技術(shù)治療多發(fā)性硬化的研究進(jìn)展[J]. 神經(jīng)病學(xué)與神經(jīng)康復(fù)學(xué)雜志,2016, 12(1):24–28.
FUNDlNG/SUPPORT: Key Project of National Natural Science Foundation of China (No. 81230027); General Project of National Natural Science Foundation of China (No. 81471219); Outstanding Academic Leaders Planning of Shanghai Municipality (No. 14XD1403400)
CONFLlCT OF lNTEREST: The authors have indicated they have no conflicts of interest to disclose.
Received Feb. 22, 2016; accepted for publication Mar. 1, 2016
Copyright ? 2016 by Journal of Neurology and Neurorehabilitation
GUAN Yangtai
E-MAIL ADDRESS
yangtaiguan@sina.com
ABSTRACT
Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of central nervous system and remains one of the major causes of disability in young adults. Conventional therapeutics can only prolong the remission duration, but do not cure it. Induced pluripotent stem cells (iPSCs) with the same totipotent differentiation as the stem cells have a broad prospect for application of cell replacement therapy in MS. Somatic cell reprogramming and transdifferentiating can shorten the time for generating oligodendrocyte cell lineage, as compared with the traditional method with iPSCs, which provides a new idea for the treatment of MS. With the improved efficiency and quality in obtaining neural stem cells and oligodendrocytes, it is possible to have a big achievement in cell therapy for MS.
To cite: Ll M, XlE C, GUAN Y T. Advances in treatment with induced pluripotent stem cells and somatic cell transdifferentiation for multiple sclerosis. J Neurol and Neurorehabil, 2016, 12(1):24–28.
多發(fā)性硬化(multiple sclerosis,MS)是一種中樞神經(jīng)系統(tǒng)炎性脫髓鞘疾病,病變累及中樞神經(jīng)系統(tǒng)白質(zhì),成為青壯年致殘的主要原因。目前MS的治療方法主要包括復(fù)發(fā)治療、疾病修飾治療和對(duì)癥治療[1-3]。大量證據(jù)顯示,MS患者致殘的主要原因是永久性髓鞘脫失和大量軸突損傷,因此MS的理想治療應(yīng)包括免疫調(diào)節(jié)和神經(jīng)保護(hù)。干擾素β、芬戈莫德和那他珠單抗等藥物可減慢疾病進(jìn)程以及降低復(fù)發(fā)危險(xiǎn),但不能修復(fù)髓鞘以及神經(jīng)元細(xì)胞[4-10]。由此可見(jiàn),基于目前的治療方法并不能完全治愈MS,因此探尋新的治療手段顯得尤為必要。本文綜述了誘導(dǎo)性多能干細(xì)胞(induced pluripotent stem cells,iPSCs)與轉(zhuǎn)分化技術(shù)在MS治療中的研究現(xiàn)狀及其臨床應(yīng)用前景。
2006年,TAKAHASHI等[11]利用病毒載體將轉(zhuǎn)錄因子(Oct4、Sox2、Klf4和c-Myc)組合轉(zhuǎn)入小鼠皮膚成纖維細(xì)胞中,通過(guò)重編程得到類(lèi)似于干細(xì)胞的多能干細(xì)胞,即iPSCs。這種重編程細(xì)胞與胚胎干細(xì)胞相似,可分化為3個(gè)胚層細(xì)胞的所有細(xì)胞類(lèi)型。將iPSC來(lái)源的神經(jīng)干細(xì)胞和少突膠質(zhì)前體細(xì)胞(oligodendrocyte precursor cells,OPCs)移植入實(shí)驗(yàn)性變態(tài)反應(yīng)性腦脊髓炎(experimentally allergic encephalomyelitis,EAE)老鼠模型以及其他脫髓鞘動(dòng)物模型時(shí),可以觀(guān)察到殘疾狀態(tài)的改善以及髓鞘的再生[12-13]。AASEN等[14]發(fā)現(xiàn),可以從健康者及患者身上建立人類(lèi)來(lái)源的iPSCs;這一技術(shù)的出現(xiàn),拉近了干細(xì)胞與臨床疾病治療的距離[14-16]。iPSCs研究成功解決了長(zhǎng)期困擾胚胎干細(xì)胞研究的倫理學(xué)及免疫排斥問(wèn)題,具有廣泛的臨床應(yīng)用價(jià)值,成為近年來(lái)干細(xì)胞研究領(lǐng)域最令人矚目的一項(xiàng)新興干細(xì)胞制造技術(shù)。下文即探討iPSCs通過(guò)分化成少突膠質(zhì)細(xì)胞,對(duì)EAE及其他脫髓鞘模型的治療作用。
1.1iPSCs體外分化成少突膠質(zhì)細(xì)胞譜系
iPSCs可最終分化成少突膠質(zhì)細(xì)胞,進(jìn)行髓鞘形成和修復(fù),這是MS治療的基礎(chǔ)。2010年,TOKUMOTO等[17]對(duì)iPSCs和胚胎干細(xì)胞的分化能力進(jìn)行了比較,其最終分化的細(xì)胞譜系群內(nèi)均有A2B5標(biāo)記的OPCs以及特異性標(biāo)志物O4陽(yáng)性的少突膠質(zhì)細(xì)胞,表明IPSCs和胚胎干細(xì)胞相似,均有分化成少突膠質(zhì)細(xì)胞的潛能。2011年,OGAWA等[18]利用表皮生長(zhǎng)因子的協(xié)同作用,首次將健康人iPSCs分化為O4陽(yáng)性的少突膠質(zhì)細(xì)胞。SONG等[19]證實(shí),來(lái)自復(fù)發(fā)緩解型和進(jìn)展型MS患者的纖維細(xì)胞亦可經(jīng)重編程獲得iPSCs,最終分化成具有正常核型的神經(jīng)元細(xì)胞、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞,且此種由iPSCs分化而來(lái)的神經(jīng)細(xì)胞具有正常的神經(jīng)電生理功能。這一研究結(jié)果表明,MS來(lái)源的iPSCs最終亦可分化成功能神經(jīng)細(xì)胞,為實(shí)現(xiàn)MS的個(gè)體化治療提供了更多可能[19]。
1.2iPSCs來(lái)源的神經(jīng)干細(xì)胞對(duì)EAE的療效
鑒于已明確室管膜下區(qū)和骨髓來(lái)源的神經(jīng)干細(xì)胞的療效[20-21],因此對(duì)iPSCs來(lái)源的神經(jīng)干細(xì)胞是否具有相似的療效進(jìn)行了系列研究。LATERZA等[12]給予髓鞘少突膠質(zhì)細(xì)胞糖蛋白(myelin oligodendrocyte glycoprotein,MOG)誘導(dǎo)的EAE小鼠鞘內(nèi)注射iPSC來(lái)源的神經(jīng)干細(xì)胞后,小鼠臨床殘疾評(píng)分較對(duì)照組明顯下降,退化性病變及脊髓軸突損害程度明顯減輕。然而,此研究也發(fā)現(xiàn),在體外培養(yǎng)時(shí),大部分iPSCs來(lái)源的神經(jīng)干細(xì)胞并不能分化成少突膠質(zhì)細(xì)胞,表明其并不直接參與髓鞘再生[12]。進(jìn)一步的研究證實(shí),iPSCs來(lái)源的神經(jīng)干細(xì)胞可以通過(guò)分泌神經(jīng)營(yíng)養(yǎng)因子,如白血病抑制因子等,促進(jìn)內(nèi)源性髓鞘細(xì)胞分化。此外,神經(jīng)干細(xì)胞調(diào)控的營(yíng)養(yǎng)作用可維護(hù)血腦屏障的完整性,使炎性反應(yīng)局限于中樞神經(jīng)系統(tǒng)。中樞神經(jīng)系統(tǒng)的炎性反應(yīng)可導(dǎo)致髓鞘受損,而iPSCs在炎性環(huán)境中仍可發(fā)揮神經(jīng)保護(hù)及營(yíng)養(yǎng)作用,因而iPSCs在MS的治療領(lǐng)域中具有廣闊的應(yīng)用前景[18]。
1.3iPSCs來(lái)源的OPCs對(duì)其他脫髓鞘模型的療效
對(duì)脫髓鞘模型進(jìn)行干細(xì)胞移植治療時(shí),常見(jiàn)的可供移植的細(xì)胞除iPSCs來(lái)源的神經(jīng)干細(xì)胞以外,另一種就是iPSCs來(lái)源的OPCs。在cuprizone誘導(dǎo)的脫髓鞘小鼠模型的胼胝體部位注射iPSCs來(lái)源的OPCs,后者可分化成髓鞘堿性蛋白(myelin basic protein,MBP)陽(yáng)性少突膠質(zhì)細(xì)胞,進(jìn)而促進(jìn)胼胝體軸突的髓鞘再生[22]。POUYA等[23]證實(shí),給予卵磷脂誘導(dǎo)的小鼠視交叉脫髓鞘模型注射人類(lèi)來(lái)源的iPSCs-OPCs后,luxol fast blue染色顯示髓鞘再生,視覺(jué)誘發(fā)電位檢查也顯示視力改善。由此表明,移植的iPSCs-OPCs可以分化成少突膠質(zhì)細(xì)胞,并在視交叉處聚集,繼而促進(jìn)髓鞘再生以及功能的恢復(fù)[23]。
給予震顫性小鼠(一種先天性髓鞘發(fā)育不良的遺傳模型)注射iPSCs來(lái)源的OPCs 9個(gè)月后,發(fā)現(xiàn)小鼠的生存狀態(tài)得到明顯改善,且死亡率有所降低[12]。DOUVARAS等[24]將MS患者來(lái)源的iPSCs分化而來(lái)的OPCs注射入震顫性小鼠體內(nèi)16周后,觀(guān)察到人MBP陽(yáng)性少突膠質(zhì)細(xì)胞廣泛分布于胼胝體,約30%的小鼠出現(xiàn)髓鞘形成。這些結(jié)果表明,iPSCs來(lái)源的OPCs在活體內(nèi)亦有髓鞘再生的能力[24]。有研究發(fā)現(xiàn),p27過(guò)表達(dá)可提高iPSCs來(lái)源的OPCs最終分化成O4陽(yáng)性少突膠質(zhì)細(xì)胞的分化率[25]。上述研究均證實(shí),iPSCs來(lái)源的OPCs可形成和修復(fù)髓鞘,卻不能沿著軸索進(jìn)行遷移[22]。CZEPIEL等[26]利用慢病毒轉(zhuǎn)導(dǎo)方式過(guò)表達(dá)突觸融合蛋白(syntaxin,STX),然后將STX轉(zhuǎn)染的OPCs移植入cuprizone誘導(dǎo)的脫髓鞘小鼠模型3周后,發(fā)現(xiàn)OPCs分布于胼胝體中,其遷移能力較對(duì)照組顯著增強(qiáng)。iPSCs的出現(xiàn)是新型再生醫(yī)學(xué)開(kāi)創(chuàng)性的發(fā)現(xiàn),但從體細(xì)胞至最終的少突膠質(zhì)細(xì)胞,須經(jīng)重編程以及后續(xù)再分化等階段。因此,有必要探尋是否可將體細(xì)胞直接轉(zhuǎn)分化成特定的少突膠質(zhì)細(xì)胞譜系。
轉(zhuǎn)分化是指一種類(lèi)型的細(xì)胞或組織在某些理化因素作用下轉(zhuǎn)變?yōu)榱硪环N正常細(xì)胞或組織的現(xiàn)象。目前的研究主要集中于體細(xì)胞在某些因子作用下轉(zhuǎn)分化為誘導(dǎo)性神經(jīng)干細(xì)胞(induced neural stem cells,iNSCs)和誘導(dǎo)性少突膠質(zhì)前體細(xì)胞(induced oligodendrocyte progenitor cells,iOPCs)。
2.1iNSCs
2011年,KIM等[27]首次證實(shí),在正常神經(jīng)干細(xì)胞培養(yǎng)條件的基礎(chǔ)上加入重編程因子(Oct4、Sox2、Klf4和c-Myc)可使小鼠成纖維細(xì)胞轉(zhuǎn)化為iNSCs,而iNSCs最終可特異性分化成神經(jīng)元細(xì)胞和星形膠質(zhì)細(xì)胞,但此種分化而來(lái)的細(xì)胞只可更新3~5代。隨后,THIER等[28]證實(shí)在小鼠成纖維細(xì)胞重編程的初始階段抑制OT4的活性,并導(dǎo)入Sox2、Klf4和c-Myc等轉(zhuǎn)錄因子,可使轉(zhuǎn)分化的iNSCs自我更新超過(guò)50代。此外,RING等[29]發(fā)現(xiàn),通過(guò)轉(zhuǎn)錄因子Sox2,可使成纖維細(xì)胞直接重編程為iNSCs,并最終分化成成熟的星型膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞,且無(wú)成瘤性,故相較于iPSCs分化而來(lái)的神經(jīng)干細(xì)胞,其安全性更高。有研究在新生震顫性小鼠的腦組織中注射入增強(qiáng)綠色熒光蛋白(enhanced green fluorescent protein,eGFP)陽(yáng)性標(biāo)記的iNSCs;10周后,可在小腦白質(zhì)纖維束部位觀(guān)察到eGFP陽(yáng)性和MBP陽(yáng)性的髓鞘組織[30]。該研究結(jié)果表明,iNSCs可分化成少突膠質(zhì)細(xì)胞參與髓鞘再生[30]。2015年,HAN等[31]首次證實(shí)可以直接通過(guò)聯(lián)合使用丙戊酸、RG108、PD0325901、CHIR9901和維生素C等小分子物質(zhì),使小鼠成纖維細(xì)胞轉(zhuǎn)分化為iNSCs;與以往的研究相比,由于無(wú)需外源性轉(zhuǎn)錄因子和病毒載體,其安全性更高,從而為臨床上MS的個(gè)體化治療提供了更多的可能[31]。
2.2iOPCs的研究進(jìn)展
NAJM等[32]發(fā)現(xiàn),過(guò)表達(dá)8種或3種轉(zhuǎn)錄因子可使小鼠成纖維細(xì)胞重編程為iOPCs,從而避免使用iPSCs技術(shù)。該機(jī)制表明,這8種(Olig1、Olig2、Nkx2.2、Nkx6.2、Sox10、ST18、Gm98 和Myt1)或3種(Nkx6.2、Sox10和Olig2)轉(zhuǎn)錄因子可誘導(dǎo)成纖維細(xì)胞表達(dá)OPCs的基因,進(jìn)而分化成典型的少突膠質(zhì)細(xì)胞[32]。YANG等[33]的研究也表明,可通過(guò)3種轉(zhuǎn)錄因子(Sox10、Olig2和Zfp536)誘導(dǎo)鼠纖維細(xì)胞轉(zhuǎn)化為iOPCs;在其注射部位可發(fā)現(xiàn)MBP陽(yáng)性細(xì)胞形成的管狀結(jié)構(gòu)包裹在軸索周?chē)?;超微結(jié)構(gòu)分析可觀(guān)察到髓鞘形成。最近,有研究證實(shí)可以通過(guò)單個(gè)轉(zhuǎn)錄因子(Oct4)使脊髓受損小鼠模型的成纖維細(xì)胞重編程轉(zhuǎn)化成iOPCs,而Oct4-iOPCs具有雙能性,經(jīng)體內(nèi)外培養(yǎng)可最終分化為星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞,其與野生型OPCs的基因表達(dá)譜相似,且無(wú)致瘤性。這些研究結(jié)果表明,經(jīng)體細(xì)胞直接轉(zhuǎn)分化而來(lái)的iOPCs最終均可分化成少突膠質(zhì)細(xì)胞,參與髓鞘形成及神經(jīng)細(xì)胞再生[34]。
目前的研究尚未涉及iNSCs和iOPCs對(duì)EAE模型的療效,但仍有理由相信相較于其他干細(xì)胞療法,轉(zhuǎn)分化而來(lái)的細(xì)胞療法有其獨(dú)特的優(yōu)勢(shì)。之所以如此認(rèn)為,是因?yàn)槎囗?xiàng)研究已證實(shí)iOPCs 和iNSCs在體內(nèi)外均具有髓鞘修復(fù)能力;其次,此種轉(zhuǎn)化方式簡(jiǎn)單,人力和物力的耗費(fèi)也更少;最后,其他干細(xì)胞的來(lái)源大多是胚胎干細(xì)胞及臍帶血干細(xì)胞,而iOPCs和iNSCs是由體細(xì)胞轉(zhuǎn)化而來(lái)的,在MS的個(gè)體化治療方面,是最合適的選擇。關(guān)于iOPCs和iNSCs應(yīng)用于EAE甚至MS臨床治療的療效,仍有待進(jìn)一步研究。
鑒于iPSCs獲得方法簡(jiǎn)單、穩(wěn)定,無(wú)需使用卵細(xì)胞或胚胎,因此在技術(shù)和倫理學(xué)層面更具優(yōu)勢(shì);但iPSCs的產(chǎn)生效率低、實(shí)驗(yàn)耗時(shí)長(zhǎng)、移植存活率也較低,且如何避免iPSCs的致瘤性等仍是MS治療所面臨的最大難點(diǎn)。通過(guò)轉(zhuǎn)分化技術(shù)另辟蹊徑,在簡(jiǎn)化繁瑣實(shí)驗(yàn)過(guò)程的同時(shí),可以避免細(xì)胞治療中的脫靶效應(yīng)。然而,相關(guān)技術(shù)的研究還很有限,仍存在較多的問(wèn)題,如病毒載體可能引發(fā)的安全問(wèn)題、處理的時(shí)機(jī)和時(shí)序以及量效關(guān)系等,都有待通過(guò)探求新的、不借助病毒對(duì)細(xì)胞進(jìn)行重編程的媒介予以解決。上述研究目前多局限于動(dòng)物模型階段,還未正式應(yīng)用于MS的臨床治療。相信隨著研究的不斷深入,對(duì)iPSCs及體細(xì)胞轉(zhuǎn)分化技術(shù)利弊的認(rèn)識(shí)也會(huì)日益清晰,這些均為細(xì)胞治療應(yīng)用于MS的治療提供了有利的條件。
參考文獻(xiàn)
[1] POLMAN C H, RElNGOLD S C, BANWELL B,et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria[J]. Ann Neurol, 2011, 69(2): 292–302.
[2] POSER C M, BRlNAR V V. Diagnostic criteria for multiple sclerosis[J]. Clin Neurol Neurosurg, 2001, 103(1):1–11.
[3] POLMAN C H, RElNGOLD S C, EDAN G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the“ McDonald Criteria”[J]. Ann Neurol, 2005, 58(6):840–846.
[4] KHAN O A, TSELlS A C, KAMHOLZ J A, et al. A prospective, open–label treatment trial to compare the effect of lFN beta–1a (Avonex),lFNbeta–1b (Betaseron), and glatiramer acetate (Copaxone) on the relapse rate in relapsing–remitting multiple sclerosis[J]. Eur J Neurol, 2001, 8(2):141–148.
[5] SANDBERG–WOLLHElM M, BEVER C, CARTER J, et al. Comparative tolerance of lFN beta–1α regimens in patients with relapsing multiple sclerosis. The EVlDENCE study[J]. J Neurol, 2005, 252(1):8–13.
[6] KAPPOS L, RADUE E W, O’CONNOR P, et al. A placebo–controlled trial of oral fingolimod in relapsing multiple sclerosis[J]. N Engl J Med, 2010, 362(5):387–401.
[7] CALABRESl P A, RADUE E W, GOODlN D,et al. Safety and efficacy of fingolimod inpatients with relapsing–remitting multiple sclerosis (FREEDOMS ll): a double–blind,randomised, placebo–controlled, phase 3 trial[J]. Lancet Neurol, 2014, 13(6):545–556.
[8] MlLLER D H, KHAN O A, SHEREMATA W A,et al. A controlled trial of natalizumab for relapsing multiple sclerosis[J]. N Engl J Med,2003, 348(1):15–23.
[9] POLMAN C H, O’CONNOR P W, HAVRDOVA E, et al. A randomized, placebo–controlled trial of natalizumab for relapsing multiple sclerosis[J]. N Engl J Med, 2006,354(9):899–910.
[10] CHAHlN S, BALCER L J, MlLLER D M, et al. Vision in a phase 3 trial of natalizumab for multiple sclerosis: relation to disability and quality of life[J]. J Neuroophthalmol, 2015,35(1):6–11.
[11] TAKAHASHl K, YAMANAKA S. lnduction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663–676.
[12] LATERZA C, MERLlNl A, DE FEO D, et al. iPSC–derived neural precursors exert a neuroprotective role in immune–mediated demyelination via the secretion of LlF[J]. Nat Commun, 2013(4):2597.
[13] WANG S, BATES J, Ll X, et al. Human iPSC–derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination[J]. Cell Stem Cell, 2013, 12(2):252–264.
[14] AASEN T, RAYA A, BARRERO M J, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J]. Nat Biotechnol, 2008,26(11):1276–1284.
[15] PARK l H, ZHAO R, WEST J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors[J]. Nature,2008, 451(7175):141–146.
[16] YU J, VODYANlK M A, SMUGA–OTTO K, et al. lnduced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007,318(5858):1917–1920.
[17] TOKUMOTO Y, OGAWA S, NAGAMUNE T,et al. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro[J]. J Biosci Bioeng, 2010, 109(6):622–628.
[18] OGAWA S, TOKUMOTO Y, MlYAKE J, et al. lnduction of oligodendrocyte differentiation from adult human fibroblast–derived induced pluripotent stem cells[J]. ln Vitro Cell Dev Biol Anim, 2011, 47(7):464–469.
[19] SONG B, SUN G, HERSZFELD D, et al. Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis[J]. Stem Cell Res, 2012, 8(2):259–273.
[20] PLUCHlNO S, QUATTRlNl A, BRAMBlLLA E, et al. lnjection of adult neurospheres induces recovery in a chronic model of multiple sclerosis[J]. Nature, 2003,422(6933):688–694.
[21] YANG J, YAN Y, ClRlC B, et al. Evaluation of bone marrow– and brain–derived neural stem cells in therapy of central nervous system autoimmunity[J]. Am J Pathol, 2010,177(4):1989–2001.
[22] CZEPlEL M, BALASUBRAMANlYAN V,SCHAAFSMA W, et al. Differentiation of induced pluripotent stem cells into functional oligodendrocytes[J]. Glia, 2011,59(6):882–892.
[23] POUYA A, SATARlAN L, KlANl S, et al. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination[J]. PLoS One, 2011,6(11):e27925.
[24] DOUVARAS P, WANG J, ZlMMER M, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells[J]. Stem Cell Reports,2014, 3(2):250–259.
[25] TAMAKl S, TOKUMOTO Y. Overexpression of cyclin dependent kinase inhibitor P27/Kip1 increases oligodendrocyte differentiation from induced pluripotent stem cells[J]. ln Vitro Cell Dev Biol Anim, 2014,50(8):778–785.
[26] CZEPlEL M, LElCHER L, BECKER K, et al. Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell–derived oligodendrocyte precursors[J]. Stem Cells Transl Med, 2014, 3(9):1100–1109.
[27] KlM J, EFE J A, ZHU S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors[J]. Proc Natl Acad Sci U S A,2011, 108(19):7838–7843.
[28] THlER M, WORSDORFER P, LAKES Y B, et al. Direct conversion of fibroblasts into stably expandable neural stem cells[J]. Cell Stem Cell, 2012, 10(4):473–479.
[29] RlNG K L, TONG L M, BALESTRA M E, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor[J]. Cell Stem Cell, 2012,11(1):100–109.
[30] LUJAN E, CHANDA S, AHLENlUS H, et al. Direct conversion of mouse fibroblasts to self–renewing, tripotent neural precursor cells[J]. Proc Natl Acad Sci U S A, 2012,109(7):2527–2532.
[31] HAN Y C, LlM Y, DUFFlELDL M D, et al. Direct reprogramming of mouse fibroblasts to neural stem cells by small molecules[J]. Stem Cells lnt, 2016:4304916.
[32] NAJM F J, LAGER A M, ZAREMBA A,et al. Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells[J]. Nat Biotechnol, 2013,31(5):426–433.
[33] YANG N, ZUCHERO J B, AHLENlUS H, et al. Generation of oligodendroglial cells by direct lineage conversion[J]. Nat Biotechnol, 2013,31(5):434–439.
[34] KlM J B, LEE H, ARAUZO–BRAVO M J, et al. Oct4–induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model[J]. EMBO J, 2015,34(23):2971–2983.
多發(fā)性硬化(multiple sclerosis,MS)是一種中樞神經(jīng)系統(tǒng)炎性脫髓鞘疾病,多發(fā)生于青壯年,是成人神經(jīng)性致殘的主要原因。傳統(tǒng)治療僅能延長(zhǎng)疾病的緩解期,并不能徹底治愈。誘導(dǎo)性多能干細(xì)胞(induced pluripotent stem cells,iPSCs)具有干細(xì)胞的分化全能性,在MS細(xì)胞替代療法中具有廣闊的應(yīng)用前景;而體細(xì)胞轉(zhuǎn)分化技術(shù)相較于傳統(tǒng)的iPSCs分化成少突膠質(zhì)細(xì)胞譜系,縮短了時(shí)間窗,為MS治療提供了一條新思路。隨著獲取神經(jīng)干細(xì)胞和少突膠質(zhì)細(xì)胞效率和質(zhì)量的提高,未來(lái)的MS細(xì)胞治療將有望取得重大的突破。
DOI:10.12022/jnnr.2016-0026
通信作者
管陽(yáng)太
yangtaiguan@sina.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(編號(hào):81230027);國(guó)家自然科學(xué)基金面上項(xiàng)目(編號(hào):81471219);上海市優(yōu)秀學(xué)術(shù)帶頭人計(jì)劃(編號(hào):14XD1403400)
CORRESPONDING AUTHOR
Advances in treatment with induced pluripotent stem cells and somatic cell transdifferentiation for multiple sclerosis
LI Mei1, XIE Chong1, GUAN yangtai1, 2
1. Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China;
2. Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
KEy WORDS:Multiple sclerosis; Induced pluripotent stem cells; Transdifferentiation