董曉媛,馬登舉
(1.南通師范高等??茖W(xué)校數(shù)理系,江蘇 南通 226000;
2.南通大學(xué)理學(xué)院,江蘇 南通 226007)
?
Fullerene圖的L(p,q)-標(biāo)號問題
董曉媛1,馬登舉2
(1.南通師范高等??茖W(xué)校數(shù)理系,江蘇 南通 226000;
2.南通大學(xué)理學(xué)院,江蘇 南通 226007)
[摘要]主要研究了一類Fullerene圖Fspan的L(2,1)-標(biāo)號問題及L(1,1)-標(biāo)號問題,給出了Fspan的L(2,1)-標(biāo)號數(shù)和L(1,1)-標(biāo)號數(shù)的上界分別為7和6.該結(jié)果驗證了Georges和Mauro猜想與Wegner猜想對于Fullerene圖Fspan均成立.
[關(guān)鍵詞]L(p,q)-標(biāo)號,F(xiàn)ullerene圖
1預(yù)備知識
Fullerene圖是一類3-正則3-連通的平面圖,且其在平面上的一個嵌入中每個面的邊界是5-圈或6-圈.[1-4]
定義圖Fm如下:它的頂點集為
邊集為
由Fm的定義知,F(xiàn)m是一類3-正則圖,且有m+2個圈,分別為:
(1) 當(dāng)i=0時,有一個含5個頂點的圈:
C0=u0,1u0,2u0,3u0,4u0,5;
(2) 當(dāng)i=1,2,…,m時,有一個含10個頂點的圈:
Ci=ui,1ui,2…ui,10ui,1;
(3) 當(dāng)i=m+1時,有一個含5個頂點的圈:
Cm+1=um+1,1um+1,2um+1,3um+1,4um+1,5.
按照m的奇偶性,F(xiàn)m的一個平面嵌入如圖1與圖2所示.易見:Fm是一個3-連通的圖,且每個圈的邊界是5-圈或6-圈.因此Fm是一類Fullerene圖.
圖1 當(dāng)m為奇數(shù)時,F(xiàn)ullerene圖Fm在平面上的一種嵌入
圖2 當(dāng)m為偶數(shù)時,F(xiàn)ullerene圖Fm在平面上的一種嵌入
一個圖G的L(p,q)-標(biāo)號,是一個從G的頂點集V(G)到一個非負(fù)整數(shù)集的一個映射f,使得對G中的任意兩個頂點u,v,當(dāng)d(u,v)=1時,|f(u)-f(v)|≥p;當(dāng)d(u,v)=2時,|f(u)-f(v)|≥q.這里d(u,v)表示u,v的距離.
一個圖G的平方圖G2是這樣一個圖,它的頂點集與G的頂點集相同,兩個頂點相鄰,當(dāng)且僅當(dāng)這兩個頂點在G中的距離不大于2.
本文我們主要研究Fullerene圖Fm的L(2,1)-標(biāo)號問題與L(1,1)-標(biāo)號問題.
2Fullerene圖的L(2,1)-標(biāo)號
定理1圖Fm的L(2,1)-標(biāo)號數(shù)λ2,1(Fm)≤7.
證明當(dāng)m>10時,定義Fullerene圖Fm的一個標(biāo)號f如下:
f(u0,1)=7,f(u0,2)=1,f(u0,3)=6,f(u0,4)=3,f(u0,5)=0;
f(ui,1)=4,f(ui,2)=0,f(ui,3)=3,f(ui,4)=7,f(ui,5)=2,
f(ui,6)=5,f(ui,7)=7,f(ui,8)=4,f(ui,9)=6,f(ui,10)=1,i≡1(mod10);
f(ui,1)=4,f(ui,2)=6,f(ui,3)=1,f(ui,4)=4,f(ui,5)=0,
f(ui,6)=3,f(ui,7)=7,f(ui,8)=2,f(ui,9)=5,f(ui,10)=7,i≡2(mod10);
f(ui,1)=2,f(ui,2)=5,f(ui,3)=7,f(ui,4)=4,f(ui,5)=6,
f(ui,6)=1,f(ui,7)=4,f(ui,8)=0,f(ui,9)=3,f(ui,10)=7,i≡3(mod10);
f(ui,1)=0,f(ui,2)=3,f(ui,3)=7,f(ui,4)=2,f(ui,5)=5,
f(ui,6)=7,f(ui,7)=4,f(ui,8)=6,f(ui,9)=1,f(ui,10)=4,i≡4(mod10);
f(ui,1)=6,f(ui,2)=1,f(ui,3)=4,f(ui,4)=0,f(ui,5)=3,
f(ui,6)=7,f(ui,7)=2,f(ui,8)=5,f(ui,9)=7,f(ui,10)=4,i≡5(mod10);
f(ui,1)=5,f(ui,2)=7,f(ui,3)=4,f(ui,4)=6,f(ui,5)=1,
f(ui,6)=4,f(ui,7)=0,f(ui,8)=3,f(ui,9)=7,f(ui,10)=2,i≡6(mod10);
f(ui,1)=3,f(ui,2)=7,f(ui,3)=2,f(ui,4)=5,f(ui,5)=7,
f(ui,6)=4,f(ui,7)=6,f(ui,8)=1,f(ui,9)=4,f(ui,10)=0,i≡7(mod10);
f(ui,1)=1,f(ui,2)=4,f(ui,3)=0,f(ui,4)=3,f(ui,5)=7,
f(ui,6)=2,f(ui,7)=5,f(ui,8)=7,f(ui,9)=4,f(ui,10)=6,i≡8(mod10);
f(ui,1)=7,f(ui,2)=4,f(ui,3)=6,f(ui,4)=1,f(ui,5)=4,
f(ui,6)=0,f(ui,7)=3,f(ui,8)=7,f(ui,9)=2,f(ui,10)=5,i≡9(mod10);
f(ui,1)=7,f(ui,2)=2,f(ui,3)=5,f(ui,4)=7,f(ui,5)=4,
f(ui,6)=6,f(ui,7)=1,f(ui,8)=4,f(ui,9)=0,f(ui,10)=3,i≡0(mod10).
對于Fullerene圖Fm,當(dāng)m>10時,從F1到F10的L(2,1)-標(biāo)號以及定義可知:第0圈u0,1,u0,2,u1,3,…,u0,5總是依次標(biāo)為7,1,6,3,0;第1圈u1,1,u1,2,u1,3,…,u1,9,u1,10依次標(biāo)為4,0,3,7,2,5,7,4,6,1;第2圈u2,1,u2,2,u2,3,…,u2,9,u2,10依次標(biāo)為4,6,1,4,0,3,7,2,5,7;照此類推,到第11圈的時候開始與第1圈重復(fù)標(biāo)號,依次為4,0,3,7,2,5,7,4,6,1;第12圈與第2圈重復(fù)標(biāo)號,依次為4,6,1,4,0,3,7,2,5,7;….也就是說,對于Fm,當(dāng)m>10且m≡imod10,i=0,1,2,…,9時,F(xiàn)m的第0圈與Fi的第0圈各頂點標(biāo)號相同,F(xiàn)m的第m圈與Fi的第i圈各頂點標(biāo)號相同,F(xiàn)m的第m+1圈與Fi的第i+1圈各頂點標(biāo)號相同.而Fm的第1至m-1圈總是標(biāo)4,0,3,7,2,5,7,4,6,1這10個數(shù)(順序與F10相同).即Fm與Fi的L(2,1)-標(biāo)號數(shù)相同.
這樣,上面定義的Fullerene圖的標(biāo)號f是一個7-L(2,1)-標(biāo)號.因此,F(xiàn)ullerene圖的L(2,1)-標(biāo)號數(shù)λ2,1(Fm)≤7.定理證畢.
1992年,Griggs和Yeh得到最大度為Δ的圖G的L(2,1)-標(biāo)號數(shù)的下界:
引理1[5]圖G包含三個最大度Δ≥2的頂點,且其中一個頂點與另兩個頂點相鄰,則λ2,1(G)≥Δ+2.
由引理1可知λ2,1(Fm)≥5.
綜上,F(xiàn)m的L(2,1)-標(biāo)號數(shù)5≤λ2,1(Fm)≤7.
2002年,Georges和Mauro[6]提出一個猜想:Petersen圖是唯一一個L(2,1)-標(biāo)號數(shù)為9的3-正則圖,其他的3-正則圖的L(2,1)-標(biāo)號數(shù)總是至多為8.我們發(fā)現(xiàn),對Fullerene圖Fm這個猜想成立.
3Fullerene圖的L(1,1)-標(biāo)號
定理2Fm的L(1,1)-標(biāo)號數(shù)λ1,1(Fm)≤6.
證明當(dāng)m>10時,定義Fullerene圖Fm的一個標(biāo)號f如下:
f(u0,1)=1,f(u0,2)=0,f(u0,3)=3,f(u0,4)=2,f(u0,5)=5;
f(ui,1)=3,f(ui,2)=4,f(ui,3)=2,f(ui,4)=1,f(ui,5)=5,
f(ui,6)=0,f(ui,7)=4,f(ui,8)=3,f(ui,9)=0,f(ui,10)=6,i≡1(mod10);
f(ui,1)=3,f(ui,2)=0,f(ui,3)=6,f(ui,4)=3,f(ui,5)=4,
f(ui,6)=2,f(ui,7)=1,f(ui,8)=5,f(ui,9)=0,f(ui,10)=4,i≡2(mod10);
f(ui,1)=5,f(ui,2)=0,f(ui,3)=4,f(ui,4)=3,f(ui,5)=0,
f(ui,6)=6,f(ui,7)=3,f(ui,8)=4,f(ui,9)=2,f(ui,10)=1,i≡3(mod10);
f(ui,1)=4,f(ui,2)=2,f(ui,3)=1,f(ui,4)=5,f(ui,5)=0,
f(ui,6)=4,f(ui,7)=3,f(ui,8)=0,f(ui,9)=6,f(ui,10)=3,i≡4(mod10);
f(ui,1)=0,f(ui,2)=6,f(ui,3)=3,f(ui,4)=4,f(ui,5)=2,
f(ui,6)=1,f(ui,7)=5,f(ui,8)=0,f(ui,9)=4,f(ui,10)=3,i≡5(mod10);
f(ui,1)=0,f(ui,2)=4,f(ui,3)=3,f(ui,4)=0,f(ui,5)=6,
f(ui,6)=3,f(ui,7)=4,f(ui,8)=2,f(ui,9)=1,f(ui,10)=5,i≡6(mod10);
f(ui,1)=2,f(ui,2)=1,f(ui,3)=5,f(ui,4)=0,f(ui,5)=4,
f(ui,6)=3,f(ui,7)=0,f(ui,8)=6,f(ui,9)=3,f(ui,10)=4,i≡7(mod10);
f(ui,1)=6,f(ui,2)=3,f(ui,3)=4,f(ui,4)=2,f(ui,5)=1,
f(ui,6)=5,f(ui,7)=0,f(ui,8)=4,f(ui,9)=3,f(ui,10)=0,i≡8(mod10);
f(ui,1)=4,f(ui,2)=3,f(ui,3)=0,f(ui,4)=6,f(ui,5)=3,
f(ui,6)=4,f(ui,7)=2,f(ui,8)=1,f(ui,9)=5,f(ui,10)=0,i≡9(mod10);
f(ui,1)=1,f(ui,2)=5,f(ui,3)=0,f(ui,4)=4,f(ui,5)=3,
f(ui,6)=0,f(ui,7)=6,f(ui,8)=3,f(ui,9)=4,f(ui,10)=2,i≡0(mod10).
對于Fullerene圖Fm,當(dāng)m>10時,從F1到F10的L(1,1)-標(biāo)號以及定義可知:第0圈u0,1,u0,2,u1,3,…,u0,5總是依次標(biāo)為1,0,3,2,5;第1圈u1,1,u1,2,u1,3,…,u1,9,u1,10依次標(biāo)為3,4,2,1,5,0,4,3,0,6;第2圈u2,1,u2,2,u2,3,…,u2,9,u2,10依次標(biāo)為3,0,6,3,4,2,1,5,0,4;依此類推,到第11圈的時候開始與第1圈重復(fù)標(biāo)號,依次為3,4,2,1,5,0,4,3,0,6;第12圈與第2圈重復(fù)標(biāo)號,依次為3,0,6,3,4,2,1,5,0,4;….也就是說,對于Fm,當(dāng)m>10且m≡i(mod10),i=0,1,2,…,9時,F(xiàn)m的第0圈與Fi的第0圈各頂點標(biāo)號相同,F(xiàn)m的第m圈與Fi的第i圈各頂點標(biāo)號相同,F(xiàn)m的第m+1圈與Fi的第i+1圈各頂點標(biāo)號相同.而Fm的第1至m-1圈總是標(biāo)3,4,2,1,5,0,4,3,0,6這10個數(shù)(順序與F10相同).即Fm與Fi的L(1,1)-標(biāo)號數(shù)相同.
這樣,上面定義的Fullerene圖Fm的標(biāo)號f是一個6-L(1,1)-標(biāo)號.從而λ1,1(Fm)≤6.定理證畢.
由圖的色數(shù)及圖的L(p,q)-標(biāo)號的定義,可知圖G的平方圖的色數(shù)χ(G2)與G的L(1,1)-標(biāo)號數(shù)有關(guān),從而我們得出如下結(jié)論:
推論1Fm的平方圖的色數(shù)χ(Fm2)=λ1,1(Fm)+1≤7.
在1977年,Wegner[7]曾猜想一個最大度為3的平面圖G的平方圖G2的色數(shù)χ(G2)≤7.我們的結(jié)果表明,對Fullerene圖Fm,該猜想成立.
[參考文獻(xiàn)]
[1]DOSLIC T. On lower bounds of number of perfect matchings in Fullerene graphs [J]. Mathematical Chemistry,1998,24:359-364.
[2]KARDOS F,KRAL D,MISKUF J. Fullerene graphs have exponentially many perfect matchings [J]. Mathematical Chemistry,2009,46:443-477.
[3]BUHL M,HIRSCH A. Spherical aromaticity of Fullerene [J]. Chem Rev,2001,101:1153-1183.
[4]馬海成,汪小玲. 點圈并圖的匹配等價圈數(shù)[J].東北師大學(xué)報(自然科學(xué)版),2006,38(4):36-40.
[5]GRIGGS J R,YEH R.K. Labeling graphs with a condition at distance two [J]. SIAM J Discrete Mathematics,1992(5):586-595.
[6]GEORGES J P,MAURO D W. On generalized Petersen graphs labeled with a condition at distance two[J]. SIAM J Discrete Mathematics,2002,259:311-318.
[7]WEGNER G. Graphs with given diameter and a coloring problem[R] Germany:University of Dortmund,1977.
(責(zé)任編輯:李亞軍)
L(p,q)-labeling of the Fullerene graphs
DONG Xiao-yuan1,MA Deng-ju2
(1.Department of Mathematics and Physics,Nantong Normal College,Nantong 226000,China;2.School of Science,Nantong University,Nantong 226007,China)
Abstract:The L(2,1)-labeling and L(1,1)-labeling of the Fullerene graph Fspanare studied. It is proved that the L(2,1)-labeling number and the L(1,1)-labeling number of Fspanare at most 7 and 6 respectively,which verify the correction of the guesses presented by Georges and Wegner respectively.
Keywords:L(p,q)-labeling;Fullerene graph
[中圖分類號]O 157.5[學(xué)科代碼]110·7470
[文獻(xiàn)標(biāo)志碼]A
[作者簡介]董曉媛(1984—),女,碩士,講師,主要從事圖的染色問題及其應(yīng)用研究;通訊作者:馬登舉(1968—),男,博士,副教授,主要從事圖的染色問題及其應(yīng)用研究.
[基金項目]國家自然科學(xué)基金資助項目(11171114).
[收稿日期]2014-06-12
[文章編號]1000-1832(2016)01-0014-04
[DOI]10.16163/j.cnki.22-1123/n.2016.01.004