• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      應(yīng)用于三軸光纖陀螺中的雙程后向ASE光源

      2016-04-13 08:37:52李茂春趙晶睛張曉明
      關(guān)鍵詞:泵浦能級(jí)陀螺

      惠 菲,李茂春,馬 林,趙晶睛,張曉明,宋 洋

      (天津航海儀器研究所,天津 300131)

      Abstract: In order to improve the control performance and stability of photoelectric platforms, the fiber optic gyroscope sensor module in the feedback loop is investigated as a case study. The historical output of angular rate, current measurement and random drift of fiber optic gyroscope are fused and compensated. The autoregressive relationship between the FOG’s sequentially outputted autoregressive polynomial of and its random drift are determined with a double-autoregressive model. Then the current output of FOG is used as a measurement, while the historical output and the historical random drift of the FOG are integrated into the state equation of Kalman filter in order to estimate and compensate the FOG’s drift online. Experimental results show that the AR model of the FOG’s random drift can achieve 90% of fitting effect, the random drift can be reduced to 10% after the Kalman filter compensation. In addition, the proposed method can inhibit the FOG’s random drift on the three-axis stabilized platform, and the compensation rate reaches 80%~90%.

      Key words: photoelectric platform; random drift; fiber optic gyroscope; information fusion; Kalman filter

      應(yīng)用于三軸光纖陀螺中的雙程后向ASE光源

      惠 菲,李茂春,馬 林,趙晶睛,張曉明,宋 洋

      (天津航海儀器研究所,天津 300131)

      根據(jù)三軸光纖陀螺的高精度需求,采用大功率高穩(wěn)定性的高精度雙程后向方案摻鉺光纖光源。通過(guò)對(duì)ASE光源的理論分析建立數(shù)學(xué)模型,并根據(jù)所用摻鉺光纖及泵浦光源的參數(shù)對(duì)光源進(jìn)行譜型分析,確定光路方案。再以摻鉺光纖和泵浦激光器的溫度特性和補(bǔ)償為研究重點(diǎn),對(duì)摻鉺光纖的長(zhǎng)度和摻雜濃度以及泵浦功率和鉺纖的匹配性進(jìn)行試驗(yàn),最終采用鉺纖長(zhǎng)度19 m,泵浦波長(zhǎng)974.6 nm,泵浦功率140 mA,得到光源光功率為20 mW,平均波長(zhǎng)變化量小于0.5×10-6/℃,滿足光纖陀螺對(duì)ASE光源的要求。

      光纖陀螺;ASE光源;雙程后向;摻鉺光纖

      隨著光纖陀螺的快速發(fā)展,光源作為光纖陀螺光路的基礎(chǔ),是陀螺標(biāo)度因數(shù)[1]優(yōu)劣的重要因素之一,解決或降低光纖陀螺光路中的瑞利背向散射、偏振交叉耦合、克爾效應(yīng)以及光纖本身缺陷等問(wèn)題是提高陀螺性能的重要手段之一,因此光源的性能對(duì)光纖陀螺有著至關(guān)重要的作用[2]。

      隨著光纖陀螺的逐步發(fā)展,精度的不斷提高,對(duì)光源的性能要求也越加苛刻,故而如何得到高精度、高穩(wěn)定性的雙程后向放大自發(fā)輻射(ASE)光源是這里主要探討的。

      1 數(shù)學(xué)模型

      根據(jù)設(shè)定,建立理論模型。摻鉺光纖的三能級(jí)簡(jiǎn)圖如圖1所示。根據(jù)圖1所示結(jié)構(gòu)和三能級(jí)激光器速率方程理論[3],可以得到如下速率方程組:

      圖1 三能級(jí)示意圖Fig.1 Three energy level

      式中, Na為 Na能級(jí)鉺離子濃度, Wab為從 Na能級(jí)向Nb能級(jí)受激躍遷幾率,R為由基態(tài)向4I11/2抽運(yùn)高能級(jí)泵浦速率。

      當(dāng)激光工作于穩(wěn)態(tài)時(shí),工作物質(zhì)各能級(jí)上的鉺離子濃度隨時(shí)間的變化率為零,由此可得工作物質(zhì)各能級(jí)上的鉺離子濃度滿足方程組:

      由于非輻射躍遷遠(yuǎn)大于受激輻射和激發(fā)態(tài)吸收的速率,因此有:

      經(jīng)展開(kāi)整理,近似取值,可得:

      式中:ρ=N1+N2+N3+N4為光纖中鉺離子濃度和;τ=1A21,即鉺離子在激光上能級(jí)壽命;W21,νi=σe,νi,即單色νi光的受激躍遷幾率,σe,νi為超熒光發(fā)射截面;c為光速;ni為頻率為νi的模內(nèi)光子數(shù)密度。

      設(shè) Ii為光纖中頻率為νi的光功率密度,h表示普朗克常量,則有:

      泵浦速率可表示為:

      式中:σpα為泵浦吸收截面,Pp為泵浦功率,νp為泵浦光頻率,Ap為泵浦光的光模面積。

      經(jīng)過(guò)推導(dǎo)得出激光上能級(jí)的鉺離子濃度與超熒光功率及泵浦功率之間的關(guān)系:

      式中,τ為熒光壽命。由此可得上能級(jí)鉺離子濃度為

      雙程后向的邊界條件為:

      式中,RS為光纖端面反射鏡對(duì)信號(hào)光的反射率。

      經(jīng)由高級(jí)模型的分析,需要考慮泵浦態(tài)的激發(fā)態(tài)吸收、兩個(gè)空間徑向?qū)ΨQ的泵浦模的傳播、鉺離子的吸收以及后向損耗[4]。推導(dǎo)后得980 nm泵浦的上能及粒子數(shù)為:

      2 雙程后向摻鉺光纖光源仿真

      對(duì)1550 nm雙通后向超熒光摻鉺光纖光源(DPB SFS)的特性進(jìn)行了理論仿真。通過(guò)理論分析與試驗(yàn)我們知道,環(huán)境溫度變化是導(dǎo)致超熒光摻鉺光纖光源平均波長(zhǎng)漂移[4]的主要原因,可表示為:

      式中的第一項(xiàng)是由摻鉺光纖的固有溫度系數(shù)導(dǎo)致的固有的平均波長(zhǎng)λS的變化,第二項(xiàng)和第三項(xiàng)分別表示泵浦波長(zhǎng)和泵浦功率的變化對(duì)光源平均波長(zhǎng)的影響。

      因此基于我們現(xiàn)有的器件參數(shù)對(duì)這些因素進(jìn)行了仿真分析。通過(guò)對(duì)鉺纖長(zhǎng)度、泵浦波長(zhǎng)和泵浦功率的研究進(jìn)行匹配選取,在仿真過(guò)程中發(fā)現(xiàn),這些光源參數(shù)的溫度系數(shù)有正有負(fù),通過(guò)對(duì)超熒光摻鉺光纖光源的參數(shù)和工作條件進(jìn)行優(yōu)化設(shè)計(jì),這三項(xiàng)的貢獻(xiàn)可以部分或全部抵消,從而達(dá)到精密級(jí)和導(dǎo)航級(jí)光纖陀螺的要求,降低了工程應(yīng)用中的溫控精度。該研究結(jié)果對(duì)超熒光摻鉺光纖光源的器件選擇和優(yōu)化設(shè)計(jì)具有一定的指導(dǎo)意義[5]。

      如圖2所示:當(dāng)鉺纖長(zhǎng)度較短(12 m)時(shí),泵浦光得到充分利用,1530 nm的增益最大,呈現(xiàn)出以1530 nm為主的單峰結(jié)構(gòu),此時(shí)的光譜3 dB線寬較窄,約為7 nm;隨著鉺纖長(zhǎng)度的增加(20 m),1560 nm處增益逐漸加強(qiáng),雙峰高度相近,此時(shí)的光譜寬度最寬,適合寬譜需求的高精度陀螺[5]使用;隨著鉺纖長(zhǎng)度的增加,峰值逐步后移,表現(xiàn)為25 m的后峰單峰譜型結(jié)構(gòu)。由于我們此次需要寬譜光源,從圖2中可以看到鉺纖長(zhǎng)度為20 m左右時(shí)的圖譜較為理想。

      就公式(13)中所示的三個(gè)參數(shù),對(duì)鉺纖長(zhǎng)度[6]、泵浦功率和泵浦波長(zhǎng)的相互關(guān)系與變化趨勢(shì)進(jìn)行了一系列仿真研究,例舉如圖3~圖6。通過(guò)對(duì)三個(gè)參數(shù)相互作用關(guān)系的了解,為后續(xù)調(diào)試提供了方向。

      圖2 120 mW泵浦功率下,不同鉺纖長(zhǎng)度下的輸出光譜Fig.2 Spectra with 120 mW in different lengths of erbium-doped fiber

      圖3 輸出光功率與鉺纖長(zhǎng)度的關(guān)系仿真Fig.3 Output power versus length of erbium-doped fiber

      圖4 鉺纖長(zhǎng)度為20 m,不同泵浦功率條件下平均波長(zhǎng)與泵浦波長(zhǎng)的關(guān)系仿真Fig.4 Average wavelength versus pump wavelength with 20 m of erbium-doped fiber in different pump powers

      圖5 泵浦功率為120mW,不同鉺光纖長(zhǎng)度下平均波長(zhǎng)與泵浦波長(zhǎng)的關(guān)系仿真Fig.5 Average wavelength versus pump wavelength with 120mW in different lengths of erbium-doped fiber

      圖6 不同鉺纖長(zhǎng)度下平均波長(zhǎng)與泵浦功率的關(guān)系仿真Fig.6 Average wavelength variation versus pump power indifferent lengths of erbium-doped fiber

      根據(jù)上述分析,對(duì)光源的各影響因素所對(duì)應(yīng)的結(jié)果有所了解,為后期實(shí)際調(diào)試打好基礎(chǔ)。實(shí)際試驗(yàn)時(shí)可根據(jù)變化趨勢(shì)進(jìn)行相關(guān)調(diào)試。

      3 鉺纖長(zhǎng)度對(duì)摻鉺光纖光源性能影響的試驗(yàn)

      通過(guò)上述理論分析與仿真實(shí)驗(yàn),對(duì)于影響平均波長(zhǎng)變化量有所影響的主要因素進(jìn)行了實(shí)驗(yàn)。試驗(yàn)了鉺纖長(zhǎng)度的選擇對(duì)雙程后向 ASE光源的平均波長(zhǎng)以及帶寬的影響,特別是對(duì)平均波長(zhǎng)穩(wěn)定性的影響。圖 7所示為在定功率下的不同長(zhǎng)度鉺纖下的光譜,從譜型可以看出,在19 m時(shí)的譜型較為適宜。

      圖8所示為針對(duì)泵浦功率進(jìn)行的實(shí)驗(yàn)選取的典型功率值,實(shí)驗(yàn)結(jié)果表明,當(dāng)泵浦功率在60~120 mW范圍內(nèi)時(shí),平均波長(zhǎng)受泵浦功率的影響約為-6.5×10-6/mW,在這個(gè)泵浦功率范圍內(nèi),泵浦功率的大小對(duì)樣機(jī)平均波長(zhǎng)穩(wěn)定性的影響不大,所以我們可以根據(jù)光纖陀螺對(duì)輸出功率以及帶寬大小的要求在此范圍內(nèi)選擇合適泵浦功率。

      通過(guò)實(shí)驗(yàn)分析了-40℃~60℃之間光源固有平均波長(zhǎng)的變化,最終得到了固有熱系數(shù)隨鉺纖長(zhǎng)度變化的實(shí)驗(yàn)曲線,如圖9和圖10所示。實(shí)驗(yàn)發(fā)現(xiàn)我們所裝配的DPB ASE光源樣機(jī)的平均波長(zhǎng)穩(wěn)定性主要受到鉺纖長(zhǎng)度的影響,也就是說(shuō)平均波長(zhǎng)不穩(wěn)定性的貢獻(xiàn)主要來(lái)自于鉺纖的固有熱系數(shù)[8-10],這對(duì)超熒光摻鉺光纖光源的器件選擇和優(yōu)化設(shè)計(jì)具有重要參考價(jià)值。

      圖7 不同鉺纖長(zhǎng)度下的光譜(泵浦功率100mW)Fig.7 Spectra in different lengths of erbium-doped fiber

      圖8 不同泵浦功率下,平均波長(zhǎng)以及帶寬隨鉺纖長(zhǎng)度變化的實(shí)驗(yàn)曲線Fig.8 Average wavelength and bandwidth versus erbiumdoped fiber length in different pump power

      通過(guò)以上一系列實(shí)驗(yàn)發(fā)現(xiàn),鉺纖長(zhǎng)度在接近19 m時(shí)獲得了比較好的穩(wěn)定性,因此對(duì)該長(zhǎng)度左右進(jìn)行細(xì)節(jié)調(diào)試,取得較優(yōu)的結(jié)果。

      圖9 不同鉺纖長(zhǎng)度下,鉺纖的固有熱系數(shù)導(dǎo)致的平均波長(zhǎng)漂移曲線(泵浦功率100 mW)Fig.9 Intrinsic thermal coefficient versus temperature in different erbium-doped fiber lengths

      圖10 不同溫度條件下,固有熱系數(shù)隨鉺纖長(zhǎng)度變化的實(shí)驗(yàn)曲線Fig.10 Intrinsic thermal coefficient versus erbium-doped fiber length in different temperature

      4 結(jié)果與分析

      根據(jù)三軸光纖陀螺光源的實(shí)際使用需求,最后針對(duì)20 mW的ASE光源進(jìn)行了非常系統(tǒng)的調(diào)試實(shí)驗(yàn),并達(dá)到了預(yù)期的小于1×10-6/℃的平均波長(zhǎng)變化量的需求,試驗(yàn)較好的光源產(chǎn)品可達(dá)0.5×10-6/℃。

      同時(shí),為了驗(yàn)證光源的穩(wěn)定性,我們選取部分光源進(jìn)行了高低溫重復(fù)性試驗(yàn)。根據(jù)時(shí)間和設(shè)備的調(diào)度情況,對(duì)光源進(jìn)行了8個(gè)高低溫循環(huán)的測(cè)試。圖11所示為測(cè)試的平均波長(zhǎng)變化量曲線圖譜,不僅能看到平均波長(zhǎng)變化量的優(yōu)勢(shì),更能體現(xiàn)出光源的穩(wěn)定性。該ASE光源的光功率為22.4 mW,光譜寬度為36.4 nm, -40℃~60℃全溫平均波長(zhǎng)變化量為48.8×10-6,全溫功率變化為2.1%,定點(diǎn)溫度(25℃、-40℃、60℃)重復(fù)性小于5×10-6。

      圖11 雙程ASE光源平均波長(zhǎng)高低溫測(cè)試數(shù)據(jù)圖譜Fig.11 Average wavelength variation for double-pass backward ASE light source

      5 結(jié) 論

      ASE光源可以減少系統(tǒng)的相干噪聲和光纖瑞利散射引起的相位噪聲以及光學(xué)克爾效應(yīng)引起的漂移等,具有輸出譜穩(wěn)定,受環(huán)境影響小,易與單模光纖傳感系統(tǒng)耦合等優(yōu)點(diǎn),是慣性導(dǎo)航級(jí)光纖陀螺的首選光源[5]。雙程后向ASE光源精度高,有很高的作用效率,能夠制作出大功率光源,滿足高精度陀螺的各項(xiàng)需求。通過(guò)鉺纖和泵浦激光器的優(yōu)化,可以將其精度提高到0.5×10-6/℃以內(nèi),試驗(yàn)結(jié)果中最優(yōu)可達(dá) 0.3×10-6/℃。但是由于它對(duì)功率變化、熔接變化、器件變化十分敏感,仍然要進(jìn)行不斷的調(diào)試以求達(dá)到最佳值,制作周期長(zhǎng)和制作難度較大。如何能縮短調(diào)試周期,求得更優(yōu)的穩(wěn)定性和重復(fù)性是我們依然要努力的。

      (References):

      [1] Yin S, Ruffin P B, Yu F T S. Fiber optic sensors[M]. 2nd ed. Boca Raton: CRC Press, 2008, 32(2): 334-335.

      [2] Wang L A, Lee C T, You G W. Polarize erbium-doped super-fluorescent fiber source utilizing double-pass backward configuration[J]. Applied Optics, 2005, 44(1): 77-82.

      [3] 郝艷玲, 王瑞. 鉺離子濃度對(duì)摻鉺光纖光源性能影響研究[J]. 光電工程, 2010, 37(7): 81-85. Hao Yan-ling, Wang Rui. Influence of erbium concentration on erbium doped fiber sources[J]. Opto-Electronic Engineering, 2010, 37(7): 81-85.

      [4] Guo Wen-tao, Du Feng, Tan Man-qing. Theoretical study on erbium ytterbium co-doped super-fluorescent fiber source[J]. Journal of Semiconductors, 2016, 37(1): 1-5.

      [5] Johnson G, Waid J, Primm M, et al. Ship attitude accuracy trade study for aircraft approach and landing operations [C]//IEEE Position Location and Navigation Symposium. 2012: 783-790.

      [6] Li Yan, Sun Yan-feng, Wang Xu. Er-doped superfluorescent fiber source with enhanced mean wavelength stability incorporating a fiber filter[J]. Infrared and Laser Engineering, 2015, 44(1): 244-248.

      [7] Wang A. High stability Er-doped superfluorescent fiber source improved by incorporating bandpass filter[J]. IEEE Photonics Technology Letters, 2011, 23(4): 227-229.

      [8] Guan Chang-sheng, Yang Shan-pan. Numerical methods for temperature field about random heat source heat pump[J]. Nature, 2013, 1(2): 20-27.

      [9] 李瑞勤, 李棟, 呂春輝. 模塊化摻鉺光纖寬帶光源驅(qū)動(dòng)電路設(shè)計(jì)[J]. 大眾科技, 2014, 179(16): 22-24. Li Rui-qin, Li Dong, Lv Chun-hui. Drive circuit design for erbium-doped fiber broadband light source module[J]. Popular Science & Technology, 2014, 179(16): 22-24.

      [10] 張力, 劉承香, 阮雙琛, 等. 高功率高效率摻鉺光纖超熒光光源[J]. 激光與光電子學(xué)進(jìn)展, 2012, 49: 060604. Zhang Li, Liu Cheng-xiang, Ruan Shuang-chen, et al. High-power, high efficiency erbium-doped superfluorescent fiber source[J]. Laser & Optoelectronics Progress, 2012, 49: 060604.

      Double-pass backward ASE light source for three-axis FOG

      HUI Fei, LI Mao-chun, MA Lin, ZHAO Jing-jing, ZHANG Xiao-ming, SONG Yang
      (Tianjin Navigation Instrument Research Institute, Tianjin 300131, China)

      According to the high-precision requirements of three-axis fiber optic gyro, a double-pass backward ASE (amplified spontaneous emission) light source with high-power and high-accuracy was adopted. The ASE light source’s mathematical mode was established based on theoretical analysis, and the spectral shape was analyzed in experiments based on the parameters of erbium-doped fiber and pump laser to determine its optical path program. Then the erbium-doped fiber’s length and doping concentration as well as the match ability of pump power and erbium-doped fiber was tested based on the stuies on the temperature characteristics and compensation of erbium-doped fiber and pump laser, etc. Test results show that excellent performance of 20 mW light source power is obtained by using 140 mW pump power, 974.6 nm pump wavelength and 19 m erbium-doped fiber, and the average wavelength change is less than 0.5×10-6/℃, meeting the FOG’s requirements.

      FOG; amplified spontaneous emission light source; double-pass backward; erbium-doped fiber

      Data fusion method in random drift compensation of fiber optic gyroscope

      ZHANG Hua-qiang, LI Dong-xing, ZHANG Guo-qiang
      (School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China)

      Abstract: In order to improve the control performance and stability of photoelectric platforms, the fiber optic gyroscope sensor module in the feedback loop is investigated as a case study. The historical output of angular rate, current measurement and random drift of fiber optic gyroscope are fused and compensated. The autoregressive relationship between the FOG’s sequentially outputted autoregressive polynomial of and its random drift are determined with a double-autoregressive model. Then the current output of FOG is used as a measurement, while the historical output and the historical random drift of the FOG are integrated into the state equation of Kalman filter in order to estimate and compensate the FOG’s drift online. Experimental results show that the AR model of the FOG’s random drift can achieve 90% of fitting effect, the random drift can be reduced to 10% after the Kalman filter compensation. In addition, the proposed method can inhibit the FOG’s random drift on the three-axis stabilized platform, and the compensation rate reaches 80%~90%.

      Key words: photoelectric platform; random drift; fiber optic gyroscope; information fusion; Kalman filter

      TN253

      :A

      2016-04-19;

      :2016-05-10

      “十二五”船舶預(yù)研支撐技術(shù)項(xiàng)目(62101050801)

      惠菲(1985—),女,工程師,從事光纖陀螺研究。E-mail: hf58665895@163.com

      1005-6734(2016)03-0372-05

      10.13695/j.cnki.12-1222/o3.2016.03.017

      猜你喜歡
      泵浦能級(jí)陀螺
      “拼、搶、快、優(yōu)”,展現(xiàn)錢塘“高能級(jí)”擔(dān)當(dāng)
      杭州(2023年3期)2023-04-03 07:22:04
      提升醫(yī)學(xué)教育能級(jí) 培養(yǎng)拔尖創(chuàng)新人才
      糾纏Ξ-型三能級(jí)原子與糾纏腔場(chǎng)相互作用熵的糾纏演化
      做個(gè)紙陀螺
      玩陀螺
      陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
      軍事文摘(2018年24期)2018-12-26 00:58:18
      基于980nm泵浦激光器的恒溫驅(qū)動(dòng)設(shè)計(jì)
      電子制作(2018年9期)2018-08-04 03:30:54
      LD面陣側(cè)面泵浦Nd:YAG光場(chǎng)均勻性研究
      我最喜歡的陀螺
      N d:Y A G電光調(diào)Q泵浦固體激光器輸出特性研究
      湘潭县| 东海县| 通城县| 芦溪县| 汽车| 肃宁县| 拜城县| 青岛市| 教育| 屏山县| 崇明县| 阿拉尔市| 洪江市| 博乐市| 周口市| 巴里| 衡东县| 台南县| 苍山县| 瑞金市| 通化县| 东源县| 临沧市| 客服| 将乐县| 嘉义县| 扬中市| 白沙| 霸州市| 德阳市| 贵定县| 陕西省| 扎囊县| 通州区| 华安县| 墨脱县| 台中市| 阿合奇县| 红桥区| 托克逊县| 富阳市|