肖大武,邱志聰,巫祥超,何立峰
(中國(guó)工程物理研究院材料研究所,四川 江油 621908)
金屬鈹?shù)膲嚎s變形行為*
肖大武,邱志聰,巫祥超,何立峰
(中國(guó)工程物理研究院材料研究所,四川 江油 621908)
利用材料試驗(yàn)機(jī)及Hopkinson桿裝置系統(tǒng)開展熱等靜壓金屬鈹在不同溫度下的靜動(dòng)態(tài)壓縮力學(xué)行為研究,獲得了溫度、應(yīng)變率對(duì)金屬鈹屈服強(qiáng)度和加工硬化行為的影響規(guī)律。結(jié)果表明:金屬鈹在壓縮應(yīng)力狀態(tài)下呈現(xiàn)出良好的塑性,同時(shí)其力學(xué)性能具有顯著的應(yīng)變率敏感性與熱軟化效應(yīng),屈服強(qiáng)度和流動(dòng)應(yīng)力隨應(yīng)變率提高呈明顯增大趨勢(shì),隨著溫度升高逐漸降低。同時(shí),室溫下其加工硬化行為隨著應(yīng)變?cè)龃蟊憩F(xiàn)為分段硬化特征,隨溫度升高則趨于理想塑性。最后,采用修正的Johnson-Cook本構(gòu)模型對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了擬合,模型計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果吻合較好。
固體力學(xué);修正Johnson-Cook本構(gòu)模型;材料試驗(yàn)機(jī);SHPB;鈹
金屬鈹具有中子散射截面大、吸收截面小、硬度高、模量高、比強(qiáng)高、熱學(xué)性能良好等特性,因此被廣泛應(yīng)用于航空航天、軍事工業(yè)、醫(yī)療設(shè)備、焊接技術(shù)等多個(gè)技術(shù)領(lǐng)域,如中子反射層,反應(yīng)堆第一壁材料、中子慢化劑,航空航天結(jié)構(gòu)部件、精密儀表、光學(xué)器件及X射線管窗口等。國(guó)外已開展大量金屬鈹?shù)淖冃涡袨檠芯?,而?guó)內(nèi)開展的相關(guān)研究較少,且主要集中在常溫靜態(tài)拉伸性能方面,對(duì)其壓縮力學(xué)行為尤其是動(dòng)態(tài)壓縮特性方面報(bào)道較少[1-9]。王零森等[1]研究了晶粒尺寸對(duì)鈹靜態(tài)拉伸力學(xué)性能的影響,發(fā)現(xiàn)隨著晶粒度逐漸細(xì)化,鈹材料的強(qiáng)度顯著提高,而晶粒過粗或過細(xì),延伸率均下降。許德美等[2-3]研究了組織缺陷對(duì)金屬鈹室溫拉伸斷裂行為的影響,其分析結(jié)果表明鈹?shù)摹按嘈浴碧卣髦饕獊碓从陔s質(zhì)、片狀晶體疏松和孔洞等初始缺陷,最關(guān)鍵因素是雜質(zhì)的尺寸、間距和其在材料內(nèi)部的分布形態(tài)。W.R.Blumenthal等[4-5]對(duì)不同制備工藝下的鈹進(jìn)行了較為系統(tǒng)的研究。實(shí)驗(yàn)結(jié)果表明,鈹?shù)膲嚎s應(yīng)力應(yīng)變響應(yīng)具有較強(qiáng)的應(yīng)變率敏感性和一定的熱軟化效應(yīng),并指出孿生是高應(yīng)變率下鈹變形的主要機(jī)制。D.W.Brown等[6-8]系統(tǒng)開展了應(yīng)變率對(duì)熱壓和軋制鈹?shù)牧W(xué)性能和變形機(jī)理的研究工作,分析結(jié)果表明屈服強(qiáng)度對(duì)應(yīng)變率不敏感,而加工硬化則受織構(gòu)的影響具有較強(qiáng)的率相關(guān)性。T.Nicholas[9]和D.Breithaupt[10]研究了鈹在常溫102~103s-1應(yīng)變率下的動(dòng)態(tài)壓縮性能,結(jié)果表明鈹具有良好的塑性,應(yīng)變?cè)龃笾?.25時(shí)樣品才發(fā)生斷裂。由此可見,國(guó)外開展的相關(guān)研究工作重點(diǎn)關(guān)注制備工藝、溫度、應(yīng)變率等條件對(duì)金屬鈹滑移及孿晶變形機(jī)制的影響研究,獲得描述金屬鈹變形織構(gòu)行為的本構(gòu)模型參數(shù)。國(guó)內(nèi)開展的研究則主要圍繞金屬鈹靜態(tài)拉伸應(yīng)力狀態(tài)下的“脆性”行為的微觀變形機(jī)制,對(duì)其壓縮行為研究工作較少,尤其是動(dòng)態(tài)加載下溫度、應(yīng)變速率對(duì)其變形行為的影響未見相關(guān)研究報(bào)道。
本文中利用材料實(shí)驗(yàn)機(jī)及Hopkinson桿裝置系統(tǒng)開展了熱等靜壓金屬鈹在不同溫度、應(yīng)變率下的壓縮力學(xué)行為研究,獲得金屬鈹壓縮載荷下強(qiáng)度、塑性與實(shí)驗(yàn)溫度、應(yīng)變率之間的對(duì)應(yīng)關(guān)系。并采用Johnson-Cook本構(gòu)模型對(duì)獲得的應(yīng)力應(yīng)變曲線進(jìn)行擬合,模型計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果吻合較好。
鈹在機(jī)加后表面會(huì)有較大的殘余應(yīng)力,為了消除殘余應(yīng)力對(duì)測(cè)量結(jié)果的影響[11],室溫力學(xué)實(shí)驗(yàn)前對(duì)樣品進(jìn)行了蝕刻處理,蝕刻劑配方為:H3PO4,750 mL;H2SO4,30 mL;Cr2O3,71 mg;H2O,200 mL。蝕刻方法為將鈹試樣放入酸洗液約50 s取出,用蒸餾水等清洗干凈。
靜態(tài)力學(xué)實(shí)驗(yàn)在CMT5105型材料試驗(yàn)機(jī)及其配置的高溫真空爐中進(jìn)行,高溫爐溫度控制精度為±3 ℃,真空度優(yōu)于1×10-2Pa,試樣在1 h內(nèi)加熱到規(guī)定溫度,保溫15 min后開始實(shí)驗(yàn),應(yīng)變率為1.0×10-3s-1,測(cè)試溫度范圍為室溫至800 ℃。動(dòng)態(tài)壓縮實(shí)驗(yàn)采用?10 mm的Hopkinson桿裝置。試樣為?5 mm×5 mm的圓柱體,應(yīng)變率范圍為0.5×103~2.5×103s-1,在常溫下進(jìn)行。
圖1所示為鈹在不同溫度下的準(zhǔn)靜態(tài)壓縮實(shí)驗(yàn)結(jié)果。由圖1應(yīng)力應(yīng)變曲線可以看出,金屬鈹在室溫至800 ℃的溫度范圍內(nèi)壓縮變形具有良好的塑性。屈服強(qiáng)度和流動(dòng)應(yīng)力隨實(shí)驗(yàn)溫度升高而降低,加工硬化行為也隨之降低。圖2所示為不同固定應(yīng)變下的流動(dòng)應(yīng)力隨實(shí)驗(yàn)溫度的變化。由圖中可以看到,在室溫至200 ℃時(shí),不同固定應(yīng)變下流動(dòng)應(yīng)力均下降較快,高于200 ℃時(shí)流動(dòng)應(yīng)力下降趨勢(shì)變緩,呈線性下降特征。當(dāng)實(shí)驗(yàn)溫度高于400 ℃時(shí),不同應(yīng)變下的流動(dòng)應(yīng)力值基本一致,這表明此時(shí)材料的塑性變形行為趨于理性塑性流動(dòng)。
圖1 金屬鈹在準(zhǔn)靜態(tài)條件下應(yīng)力應(yīng)變關(guān)系Fig.1 Relation between stress and strain under quasi-static condition
圖2 金屬鈹在準(zhǔn)靜態(tài)條件下流動(dòng)應(yīng)力隨溫度變化曲線 Fig.2 Relation between flow stress and temprature under quasi-static condition
圖3 金屬鈹?shù)膭?dòng)態(tài)壓縮力學(xué)行為Fig.3 The dynamic compressive behavior of beryllium
圖3所示為鈹?shù)膭?dòng)態(tài)壓縮實(shí)驗(yàn)結(jié)果??梢钥闯?,鈹?shù)那?qiáng)度和加工硬化行為隨應(yīng)變率增大而顯著增大,在初始變形階段,加工硬化行為呈現(xiàn)非線性特征,隨變形量增大,轉(zhuǎn)變?yōu)榫€性硬化。由文獻(xiàn)[4]可知,準(zhǔn)靜態(tài)和動(dòng)態(tài)加載下,金屬鈹?shù)乃苄宰冃慰刂茩C(jī)制有顯著區(qū)別。與大多數(shù)對(duì)稱性低、滑移系統(tǒng)少的密排六方晶系金屬一樣,由于晶體的取向不利于發(fā)生滑移,孿生成為鈹塑性變形的重要方式。在初始變形階段,變形機(jī)制由位錯(cuò)滑移控制,隨著變形增大,位錯(cuò)滑移困難,通過孿生協(xié)調(diào)變形,尤其在動(dòng)態(tài)加載過程中,晶粒內(nèi)部將產(chǎn)生大量的孿晶,由于滑移與孿生機(jī)制的競(jìng)爭(zhēng)導(dǎo)致了不同應(yīng)變率、不同應(yīng)變下金屬鈹屈服強(qiáng)度和加工硬化行為的顯著區(qū)別。
Johnson-Cook模型是目前應(yīng)用最廣泛的本構(gòu)模型之一,模型中將流動(dòng)應(yīng)力表述為應(yīng)變硬化效應(yīng)、應(yīng)變率效應(yīng)和溫度軟化效應(yīng)的乘積,方程的基本形式如下:
(1)
而由圖1~3中的應(yīng)力應(yīng)變曲線可以看到,不同溫度或應(yīng)變率下鈹?shù)膽?yīng)力應(yīng)變曲線呈發(fā)散趨勢(shì),傳統(tǒng)的Johnson-Cook本構(gòu)模型已不適用。因此,本文中采用一個(gè)修正的Johnson-Cook本構(gòu)模型對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,在應(yīng)變硬化項(xiàng)中增加屈服強(qiáng)度溫度相關(guān)線性函數(shù),同時(shí)參考Zerrilli-Armstrong本構(gòu)模型中描述hcp晶體結(jié)構(gòu)材料變形硬化的函數(shù)關(guān)系式,在冪指數(shù)應(yīng)變硬化項(xiàng)中添加應(yīng)變率指數(shù)硬化項(xiàng)和溫度指數(shù)軟化項(xiàng),分別描述溫度、變形歷史對(duì)材料屈服強(qiáng)度和流動(dòng)應(yīng)力的影響,以及流動(dòng)應(yīng)力隨應(yīng)變率明顯的增加趨勢(shì),其表達(dá)式為:
(2)
和傳統(tǒng)Johnson-Cook模型相比,修正模型中增加了4個(gè)參數(shù)。取準(zhǔn)靜態(tài)應(yīng)變率10-3s-1為參考應(yīng)變率,Tm=1 557 K。本構(gòu)擬合參數(shù)為:A=424 MPa,B=1 010 MPa,A1=1.487,B1=0.107 3,B2=0.885 4,n=0.485,α=0.000 39,β=-13.83,C=0.015。
采用修正模型計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果對(duì)比如圖4所示,實(shí)線為采用修正Johnson-Cook本構(gòu)模型的計(jì)算結(jié)果。可以看到,模型的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果符合較好,修正后的Johnson-Cook本構(gòu)模型能夠較好地描述金屬鈹在不同溫度、應(yīng)變和應(yīng)變率下的壓縮變形行為。
圖4 修正Johnson-Cook模型計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果對(duì)比Fig.4 Comparison of experimental results with calculated results by modified Johnson-Cook model
本文中研究了較寬溫度范圍和應(yīng)變率下熱等靜壓金屬鈹?shù)膲嚎s力學(xué)行為。結(jié)果表明鈹?shù)那?qiáng)度和加工硬化行為隨應(yīng)變率的提高而顯著增大,隨溫度的升高而降低。常溫下其加工硬化行為在初始變形階段呈現(xiàn)非線性特征,隨變形增大轉(zhuǎn)變?yōu)榫€性硬化。溫度高于400 ℃時(shí),其變形行為趨于理性塑性流動(dòng)。考慮溫度、變形歷史對(duì)材料屈服強(qiáng)度和加工硬化的影響,對(duì)Johnson-Cook模型進(jìn)行了修正,修正后的本構(gòu)模型預(yù)測(cè)結(jié)果和實(shí)驗(yàn)結(jié)果吻合較好。
[1] 王零森,鐘景明,付曉旭,等.晶粒尺寸對(duì)等靜壓鈹材力學(xué)性能的影響[J].中南大學(xué)學(xué)報(bào),1999,30(4):395-397. Wang Lingsen, Zhong Jingming, Fu Xiaoxu, et al. The influence of grain size on mechanical properties of isostatically pressed beryllium materials[J]. Journal of Central South University: Science and Technology,1999,30(4):395-397.
[2] 許德美,李峰,王東新,等.組織缺陷對(duì)金屬鈹室溫?cái)嗔研袨榈挠绊懸?guī)律研究[J].稀有金屬,2010,34(6):844-849. Xu Demei, Li Feng, Wang Dongxin, et al. Effects of microstructure defects on fracture behavior of beryllium metal at room temperature[J]. Chinese Journal of Rare Metals, 2010,34(6):844-849.
[3] 許德美,秦高梧,李峰,等.BeO雜質(zhì)形態(tài)與分布對(duì)金屬鈹力學(xué)性能的影響[J].中國(guó)有色金屬學(xué)報(bào),2011,21(4):769-776. Xu Demei, Qin Gaowu, Li Feng, et al. Effects of morphology and distribution of BeO impurity on mechanical properties of metal beryllium[J]. The Chinese Journal of Nonferrous Metals, 2011,21(4):769-776.
[4] Blumenthal W R, Abeln S P, Cannon D D, et al. Influence of strain rate and temperature on the mechanical behavior of beryllium[C]∥The Tenth American Physical Society Topical Conference on Shock Compression of Condensed Matter. 1998.
[5] Blumenthal W R, Abeln S P, Mataya M C, et al. Dynamic behavior of beryllium as a function of texture[R]. Los Alamos National Laboratory, 1999.
[6] Brown D W, Beyerlein I J, Sisneros TA, et al. Role of twinning and slip during compressive deformation of beryllium as a function of strain rate[J]. International Journal of Plasticity, 2012,29(2):120-135.
[7] Brown D W, Almer J D, Clausen B, et al. Twinning and de-twinning in beryllium during strain path changes[J]. Materials Science and Engineering: A, 2013,559(1):29-39.
[8] Sisneros T A, Brown D W, Clausen B, et al. Influence of strain rate on mechanical properties and deformation texture of hot-pressed and rolled beryllium[J]. Materials Science and Engineering: A, 2010,527(20):5181-5188.
[9] Nicholas T. Mechanical properties of structural grades of beryllium at high strain rates[R]. Air Force Materials Laboratory, Wright-Patterson Air Force Base, 1975.
[10] Breithaupt D. Dynamic compressive strain rate tests on two types of beryllium[R]. Lawrence Livermore National Laboratory, 1983.
[11] 張鵬程,田黎明.車削加工對(duì)鈹組織與性能的損傷[J].稀有金屬,2001,25(2):90-93. Zhang Pengcheng, Tian Liming. Effects of lathe on microstructure and mechanical properties of beryllium[J]. Chinese Journal of Rare Metals, 2001,25(2):90-93.
(責(zé)任編輯 王易難)
Compressive deformation behaviors of beryllium
Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng
(InstituteofMaterials,ChinaAcademyofEngineeringPhysics,Jiangyou621908,Sichuan,China)
The quasi-static and dynamic compression behavior of beryllium was investigated by using MTS and SHPB at different temperatures. Investigated results show that beryllium exhibits excellent plasticity under compression. Sensitive to the changes in temperature and strain rate, the yield point and flow stress of beryllium have an marked tendency to increase with the increase of the strain rate, and to decrease gradually with the rise of temperatures. At the same time, the work hardening behavior of beryllium exhibits a piecewise hardening feature as the strain increases at room temperature, and tends to become smooth as the temperature rises. Finally, a modified Johnson-Cook constitutive model was developed to predict the deformation behavior of beryllium over a wide range of temperatures and strain rates. The calculation results of the model are in good agreement with those achieved from the experiment.
solid mechanics; modified Johnson-Cook constitutive model; material testing machine; SHPB; beryllium
10.11883/1001-1455(2016)02-0285-04
2014-12-03;
中國(guó)工程物理研究院科學(xué)技術(shù)發(fā)展基金項(xiàng)目(2013B0301048)
肖大武(1983— ),男,博士,副研究員,hopkinson@163.com。
O347 國(guó)標(biāo)學(xué)科代碼: 1301575
A
修回日期: 2015-06-09