徐乾坤 任德勇 李自壯 曾大力 郭龍彪 錢前
(中國水稻研究所水稻 生物學國家重點實驗室,杭州 310006; #共同第一作者;*通訊聯(lián)系人, E-mail: qianqian188@hotmail.com)
?
水稻小穗穎殼發(fā)育的研究進展
徐乾坤#任德勇#李自壯 曾大力 郭龍彪 錢前*
(中國水稻研究所水稻 生物學國家重點實驗室,杭州 310006;#共同第一作者;*通訊聯(lián)系人, E-mail: qianqian188@hotmail.com)
徐乾坤, 任德勇, 李自壯, 等. 水稻小穗穎殼發(fā)育的研究進展. 中國水稻科學, 2016, 30(1): 99-105.
摘要:水稻(Oryza sativa L.)是世界上重要的糧食作物,也是單子葉植物的模式植物。開花時間、花序和花器官的形態(tài)結(jié)構(gòu)對其產(chǎn)量和品質(zhì)均有重要影響。對花器官形態(tài)結(jié)構(gòu)及發(fā)育機理的研究有助于提高水稻產(chǎn)量并改良其品質(zhì)?;ㄆ鞴俚男纬珊桶l(fā)育是水稻從營養(yǎng)生長轉(zhuǎn)向生殖生長的重要過程,其發(fā)育模式和分子機理,一直是生物學研究的熱點和焦點。水稻小穗的穎殼是禾本科特有的器官,主要包括內(nèi)外稃、護穎和副護穎,關(guān)于其起源和形成的分子機制還知之甚少。近些年對穎殼的研究不斷深入,不僅有助于深入認識水稻小穗或花器官的發(fā)育,而且能系統(tǒng)地了解水稻小穗或花器官發(fā)育的整個調(diào)控網(wǎng)絡(luò)。本文主要介紹了水稻小穗穎殼發(fā)育的相關(guān)進展及植物花器官發(fā)育的ABCDE模型。
關(guān)鍵詞:水稻; 內(nèi)外稃; 護穎; 副護穎; ABCDE模型
水稻是單子葉的模式植物,具有與雙子葉植物不同的花序結(jié)構(gòu),其小穗是花序的結(jié)構(gòu)單元。一個典型的水稻小穗由一對副護穎、一對護穎、一個外稃、一個內(nèi)稃、兩個漿片、六個雄蕊和一個雌蕊構(gòu)成[1-2]。與雙子葉植物擬南芥相比,水稻小穗或小花在器官的輪次和形態(tài)結(jié)構(gòu)上具有相似的雄蕊和雌蕊等生殖器官,但是不具有明顯的花萼和花瓣結(jié)構(gòu),相反在對應(yīng)的花器官輪次上形成了形態(tài)結(jié)構(gòu)上存在較大差異的內(nèi)外稃和漿片[3]。盡管有人推測水稻內(nèi)外稃與雙子葉植物花萼同源,但它們是否為同源器官且水稻內(nèi)外稃是否同輪次器官或同一器官仍存在較大爭議。另外,水稻的小穗還具有兩對特有的穎殼:一對護穎和一對副護穎。關(guān)于護穎的特征與起源一直備受爭議,其副護穎的特征與分子調(diào)控機制鮮有報道,通常被認為是極度退化的苞片[3-6]。為了深入了解水稻乃至禾本科小穗或小花中這些特有器官的特征、起源及分子遺傳機制,需要發(fā)掘更多相關(guān)突變體并對其基因的功能進行研究。
1ABCDE模型
雙子葉植物的小花通常由四輪花器官組成,由外到內(nèi)依次是花萼、花瓣、雄蕊、雌蕊。在過去的二十多年里,大量的遺傳和分子生物學的研究已經(jīng)建立了經(jīng)典的“ABCDE”模型,用于解釋一些雙子葉植物花發(fā)育的分子機制[7-11]。在擬南芥中,A、B、C、D和E五類基因通過獨立或協(xié)同作用來調(diào)控雙子葉植物花器官的形成和發(fā)育。目前,水稻中越來越多的花同源異型基因被克隆,基因功能研究表明該模型也部分適用于水稻[6,12]。在水稻的“ABCDE”模型中,B功能基因OsMADS2和OsMADS4與擬南芥的PI基因同源,OsMADS16/SUPERWOMEN1與擬南芥的AP3基因同源,主要決定漿片和雄蕊的特征[13-15]。C功能基因OsMADS3和OsMADS58與擬南芥的AG基因同源,主要決定雄蕊的特征和心皮的形態(tài)建成[16]。OsMADS13屬于D功能基因,與矮牽牛的FBP7/FBP11及玉米的ZMM1/ZAG2同源,主要參與胚珠的形成[17]。E功能基因包括OsMADS1、OsMADS5、OsMADS7、OsMADS8和OsMADS34。其中,對OsMADS1和OsMADS34有較深入的研究,其有特化四輪花器官的特征和決定小穗分生組織的確定性[18-19]。
2水稻內(nèi)外稃的發(fā)育
內(nèi)稃和外稃是禾本科植物特有的外輪花器官且有著不同的特征和起源。通常認為內(nèi)稃是小花軸上形成的先出葉(葉腋分生組織上形成的第一片葉),而外稃是小穗軸上形成的苞葉[20-22]。形態(tài)結(jié)構(gòu)分析表明,內(nèi)稃和外稃具有相同的細胞層數(shù)和外表皮細胞:如突起和毛狀體結(jié)構(gòu);但是兩者之間也存在較大的差異。與外稃的5條維管束相比,內(nèi)稃僅僅3條維管束,同時內(nèi)稃具有獨特的膜狀邊緣結(jié)構(gòu)且表面光滑[22]。AGAMOUS-LIKE6(AGL6)亞家族MADS-box基因MOSAICFLORALORGANS1(MFO1/OsMADS6)在內(nèi)稃邊緣組織中特異表達,決定內(nèi)稃特征。mfo1突變體具有內(nèi)稃內(nèi)卷,維管束增多,邊緣組織缺失,主體結(jié)構(gòu)過度生長,內(nèi)稃獲得部分外稃的特征。同時,外稃特異表達的DROOPINGLEAF(DL)基因在mfo1突變體的內(nèi)稃中異位表達[21]。在玉米中,與水稻MFO1基因同源的bearded-ear(bde)基因,同樣只在內(nèi)稃中表達,不在外稃中表達,表明AGL6亞家族基因在禾本科內(nèi)稃中的表達較為保守[23]。水稻chimericfloralorgans1(cfo1/osmads32)突變體也表現(xiàn)出與mfo1突變體相似的內(nèi)稃缺陷。在cfo1突變體中,內(nèi)稃邊緣區(qū)域擴大且外表面硅化,DL基因在內(nèi)稃中異位表達。不同的是,cfo1突變體的內(nèi)稃沒有外稃狀內(nèi)卷且維管束數(shù)目不變。系統(tǒng)進化和測序結(jié)果表明MFO1基因和CFO1基因參與了禾本科小穗乃至禾本科內(nèi)稃的調(diào)控和起源,但兩者的功能出現(xiàn)了分化[24]。DEPRESSEDPALEA1/PALEALESS1(DP1/PAL1)編碼一個AT-hook DNA結(jié)合蛋白,在內(nèi)稃原基中強烈表達,影響內(nèi)稃形成和花器官數(shù)量。DP1基因突變導致內(nèi)稃主體結(jié)構(gòu)完全丟失,僅保留了兩個膜狀器官[25]。DP1基因與玉米STALKFASTIGIATE1(BAF1)基因同源且功能保守[26]。RETARDEDPALEA1(REP1)位于DP1基因的下游,編碼TCP結(jié)構(gòu)域轉(zhuǎn)錄調(diào)節(jié)因子,與擬南芥CYCLOIDEA(CYC)基因同源,主要在內(nèi)稃原基中表達,參與內(nèi)稃特征和發(fā)育調(diào)控。在rep1突變體中,內(nèi)稃主體部分顯著退化,內(nèi)稃變小,而內(nèi)稃邊緣區(qū)域則變寬。超表達REP1基因?qū)е聝?nèi)稃主體部分變寬,邊緣區(qū)域變窄[27]。MULTI-FLORETSPIKELET1(MFS1)基因編碼ERF結(jié)構(gòu)域轉(zhuǎn)錄因子,屬于AP2/ERF結(jié)構(gòu)域基因家族,主要參與內(nèi)稃和護穎的特征調(diào)控。MFS1功能缺失導致內(nèi)稃的主體部分退化,嚴重的僅剩下內(nèi)稃的邊緣部分,功能上部分類似于DP1基因[22,28]。CURVEDCHIMERICPALEA1/DEFORMEDFLORALORGAN1(CCP1/DFO1)基因與擬南芥EMBRYONICFLOWER1(EMF1)同源,主要調(diào)控花器官的特征,抑制了基因OsMADS58在內(nèi)稃中異位表達[29]。ccp1/dfo1突變體內(nèi)稃卷曲皺縮,內(nèi)稃雌蕊化,外稃特征未發(fā)生任何改變。這些證據(jù)都支持了內(nèi)稃可能是由內(nèi)稃的主體部分和內(nèi)稃的邊緣部融合而成的假說[21-22](表1)。
盡管如此,也報道了很多同時控制水稻內(nèi)外稃形成和發(fā)育的基因,如LEAFYHULLSTERILE1/OsMADS1(LHS1/OsMADS1),DEGENERATIVEPALEA/OsMADS15(DEP/OsMAD-S15),STAMENLESS1(SL1),OPENBEAK(OPB),DEGENERATEDHULL1(DH1)和TRIANGULARHULL1(TH1)/ABNORMALFLOWERANDDWARF1(AFD1),不僅參與內(nèi)稃特征決定和發(fā)育過程的調(diào)控,也參與了外稃特征決表1內(nèi)外稃發(fā)育相關(guān)基因定和發(fā)育過程的調(diào)控。LHS1/OsMADS1和DEP/OsMADS15主要通過控制內(nèi)外稃特定細胞的分化來調(diào)控內(nèi)外稃的發(fā)育和形成。LHS1突變后, 內(nèi)外稃和漿片都伸長,同時向葉狀器官轉(zhuǎn)化, 內(nèi)稃的維管束增多,類似于外稃[30]。DEP突變導致內(nèi)外稃都伸長,但內(nèi)部花器官未被影響[31]。SL1和OPB都編碼C2H2鋅指結(jié)構(gòu)域轉(zhuǎn)錄因子。當這兩個基因突變后,內(nèi)外稃橫向生長都受到抑制,變小且開裂不能閉合,外稃向內(nèi)彎曲,雄蕊向雌蕊轉(zhuǎn)變,暗示了SL1和OPB這兩個基因在調(diào)控花器官特征和發(fā)育上功能部分相似[32-33]。DH1編碼了一個LOB結(jié)構(gòu)域的蛋白。在dh1突變體中,內(nèi)外稃嚴重退化,僅剩下透明的膜狀結(jié)構(gòu),有些甚至變成絲狀器官[34]。有研究表明,H3K9DEMETHYLASE(JMJ706)的H3K9去甲基化是DH1基因正常表達所必需的,JMJ706 基因突變導致了內(nèi)外稃數(shù)目的改變[35]。TH1/AFD1基因編碼一個DUF640結(jié)構(gòu)域轉(zhuǎn)錄因子,突變后內(nèi)外稃橫向和縱向生長均被影響,內(nèi)外稃變小、增厚[36-37]。
Table 1. Relative genes of lemma and palea.
基因名稱Genename染色體Chromosome突變表型PhenotypeofmutantMOSAICFLORALORGANS1(MFO1)2內(nèi)稃內(nèi)卷,維管束增多,邊緣組織缺失,主體結(jié)構(gòu)過度生長,內(nèi)稃獲得部分外稃的特征CHIMERICFLORALORGANS1(CFO1)1內(nèi)稃邊緣區(qū)域擴大且外表面硅化DEPRESSEDPALEA1(DP1)6突變導致內(nèi)稃主體結(jié)構(gòu)完全丟失RETARDEDPALEA1(REP1)9內(nèi)稃主體部分顯著退化,內(nèi)稃變小,而內(nèi)稃邊緣區(qū)域則變寬MULTI-FLORETSPIKELET1(MFS1)5內(nèi)稃的主體部分退化,嚴重的僅剩下內(nèi)稃的邊緣部分CURVEDCHIMERICPALEA1/DEFORMEDFLORALORGAN1(CCP1/DFO1)1內(nèi)稃卷曲皺縮,內(nèi)稃雌蕊化,外稃特征未發(fā)生任何改變LEAFYHULLSTERILE1(LHS1)3內(nèi)外稃和漿片都伸長,同時向葉狀器官轉(zhuǎn)化,內(nèi)稃的維管束增多,類似于外稃DEGENERATIVEPALEA(DEP)7內(nèi)外稃都伸長,但內(nèi)部花器官未受影響STAMENLESS1(SL1)1內(nèi)外稃橫向生長都受到抑制,變小且開裂不能閉合,外稃向內(nèi)彎曲,雄蕊向雌蕊轉(zhuǎn)變OPENBEAK(OPB)8內(nèi)外稃橫向生長都受到抑制,變小且開裂不能閉合,外稃向內(nèi)彎曲,雄蕊向雌蕊轉(zhuǎn)變DEGENERATEDHULL1(DH1)2內(nèi)外稃嚴重退化,僅剩下透明的膜狀結(jié)構(gòu),有些甚至變成絲狀器官TRIANGULARHULL1(TH1)/ABNORMALFLOWERANDDWARF1(AFD1)2內(nèi)外稃橫向和縱向生長均被影響,內(nèi)外稃變小、增厚DROOPINGLEAF(DL)3葉片披垂,且內(nèi)稃伸長
目前,很少發(fā)現(xiàn)只影響水稻外稃發(fā)育的基因,但DL基因比較特別。DL基因?qū)儆赮ABBY家族,在外稃中脈中特異表達而在內(nèi)稃中不表達,當DL基因失活后,外稃的形態(tài)和特征似乎未發(fā)生任何改變。同時,DL基因也在芒中強烈表達,暗示了DL基因可能參與了芒的形成且芒可能屬于水稻外稃的一部分[38-39]。盡管如此,DL基因如何調(diào)控外稃的發(fā)育還有待進一步的研究。
3水稻護穎的發(fā)育
目前,關(guān)于護穎的起源存在兩種觀點。一種觀點認為水稻祖先小穗包含一個頂生小花和兩個側(cè)生小花,在進化過程中側(cè)生小花退化,只剩下外稃,最終退化成護穎[4,40-42]。另一種觀點則認為,水稻小穗只有一朵小花,護穎是嚴重退化了的苞片狀器官[5,6,40,43]。護穎是禾本科小穗特有的器官結(jié)構(gòu),其本質(zhì)一直以來都是大家關(guān)注的焦點。在現(xiàn)存的稻族物種中,護穎的形態(tài)(尤其是大小)變化很大,比如野生稻(Oryzagrandiglumis)具有長而大的外稃狀護穎[19,44];水稻的護穎比外稃小很多,可能是由外稃退化而來;然而在李氏禾(LeersiahexandraSwartz)中,護穎則完全退化[4,22]。LONGSTERILELEMMA/ELONGATEDEMPTYGLUME1(G1/ELE)編碼DUF640結(jié)構(gòu)域蛋白,屬于植物特異的基因家族,該基因特異在護穎中強烈表達。在g1/ele1突變體中,護穎伸長,形態(tài)和結(jié)構(gòu)上與外稃相似,包含四種細胞層和4~5條維管束[5,41]。
表2護穎發(fā)育相關(guān)基因
Table 2. Relative genes of sterile lemma.
基因名稱Genename染色體Chromosome突變表型PhenotypeofmutantLONGSTERILELEMMA/ELONGATEDEMPTYGLUME1(G1/ELE)7護穎伸長,形態(tài)和結(jié)構(gòu)上與外稃相似,包含四種細胞層和4~5條維管束OsMADS343護穎伸長,細胞層次和外表面結(jié)構(gòu)都與外稃類似,具有5條維管束SUPERAPICALDORMANT(SAD1)8護穎不同程度伸長,其外表面具有毛狀體和突起,形態(tài)結(jié)構(gòu)上與外稃部分類似ABERRANTSPIKELETANDPANICLE1(ASP1)8護穎不同程度伸長,其外表面具有毛狀體和突起,形態(tài)結(jié)構(gòu)上與外稃部分類似
表3副護穎發(fā)育相關(guān)基因
Table 3. Relative genes of rudimentary glume.
基因名稱Genename染色體Chromosome突變表型PhenotypeofmutantFRIZZYPANICLE(FZP)7沒有正常的護穎,在對應(yīng)的位置出現(xiàn)數(shù)目不確定的副護穎SUPERNUMERARYBRACT(SNB)7沒有正常的護穎,在對應(yīng)的位置出現(xiàn)數(shù)目不確定的副護穎MFS15護穎退化,形態(tài)結(jié)構(gòu)類似副護穎OsINDETERMINATESPIKELET1(OsIDS1)3護穎退化,形態(tài)結(jié)構(gòu)類似副護穎OsMADS343副護穎不同程度伸長,外表面結(jié)構(gòu)在一定程度上具有護穎和外稃的特征ASP18副護穎不同程度伸長,外表面結(jié)構(gòu)在一定程度上具有護穎和外稃的特征
OsMADS34基因編碼MADS-box結(jié)構(gòu)域轉(zhuǎn)錄因子,屬于E功能基因,其突變后護穎伸長,細胞層次和外表面結(jié)構(gòu)都與外稃類似,具有5條維管束[19,45-46]。另外,外稃特征基因DL也在osmads34突變體的護穎中被檢測到,暗示了其護穎向外稃轉(zhuǎn)變且獲得了外稃的特征[45]。SUPERAPICALDORMANT(SAD1)和ABERRANTSPIKELETANDPANICLE1(ASP1)基因分別編碼一個RNA聚合酶亞基和TOPLESS轉(zhuǎn)錄抑制因子。在sad1和asp1突變體中,護穎不同程度伸長,其外表面具有毛狀體和突起,形態(tài)結(jié)構(gòu)上與外稃部分類似[47-48]。以上研究表明G1/ELE、OsMADS34、SAD1和ASP1基因抑制護穎向外稃轉(zhuǎn)化,暗示了護穎和外稃可能是同源器官,支持了護穎可能是退化的外稃,甚至是退化的側(cè)生小花(表2)。
4水稻副護穎的發(fā)育
迄今為止,關(guān)于副護穎相關(guān)研究很少報道。通常情況下,副護穎被認為是嚴重退化的苞片[5-6,43]。FRIZZYPANICLE(FZP)和SUPERNUMERARYBRACT(SNB)都編碼AP2/ERF結(jié)構(gòu)域蛋白,均在副護穎中強烈表達。在fzp和snb突變體中,沒有發(fā)現(xiàn)正常的護穎,在對應(yīng)的位置出現(xiàn)數(shù)目不確定的副護穎[49-53]。MFS1和OsINDETERMINATESPIKELET1(OsIDS1)也編碼AP2/ERF結(jié)構(gòu)域轉(zhuǎn)錄因子,其突變后護穎退化,形態(tài)結(jié)構(gòu)類似副護穎,暗示了護穎可能會同源異型轉(zhuǎn)變成副護穎[22,49]。這些結(jié)果表明了該AP2/ERF基因家族可能在一定程度上承擔著抑制護穎向副護穎轉(zhuǎn)變的功能,并支持護穎和副護穎同是苞片結(jié)構(gòu)的假說。值得一提的是,當OsMADS34和ASP1功能缺失后,副護穎不同程度伸長,外表面結(jié)構(gòu)在一定程度上具有護穎和外稃的特征[46],暗示了OsMADS34和ASP1抑制了副護穎向護穎或者外稃轉(zhuǎn)變。實際上,在大多數(shù)禾本科物種中,小穗由苞片狀穎殼(副護穎的對應(yīng)器官)和小花組成,缺乏護穎的對應(yīng)器官,而苞片狀穎殼并不像水稻副護穎一樣嚴重退化,在形態(tài)結(jié)構(gòu)上與其外稃相似,比如玉米和小麥等[1,5,20,22,40-41,54]。以上這些研究結(jié)果一起暗示了水稻副護穎、護穎和外稃可能是同源器官(表3)。
5問題及展望
水稻屬于單子葉植物,與擬南芥等雙子葉植物相比,水稻穎花發(fā)育的相關(guān)研究還相對滯后。這與單子葉植物花器官結(jié)構(gòu)相對復(fù)雜、形態(tài)多變、缺乏相關(guān)突變體有關(guān)。雖然目前已經(jīng)分離了一些與內(nèi)外稃發(fā)育相關(guān)的基因,然而關(guān)于內(nèi)外稃是否是花萼的同源物,是否是同一種器官的不同部分,或就是同一種器官,尚無定論。目前與護穎及副護穎發(fā)育相關(guān)的基因分離相對較少,還無法定論護穎及副護穎的起源及其進化,副護穎、護穎和外稃是否是同源器官還有待進一步考證。相信隨著更多內(nèi)外稃、護穎及副護穎相關(guān)突變體的分離與鑒定,基因的功能和基因之間互作研究的深入, 能更加深入地了解單子葉模式植物水稻與雙子葉植物的花器官及水稻小穗本身器官間的同源關(guān)系,并更加清楚地認識水稻穎殼的發(fā)育機制,也必將推動水稻等禾本科植物小穗或者花發(fā)育研究的飛速發(fā)展,同時,整個遺傳調(diào)控網(wǎng)絡(luò)必將更清楚地呈現(xiàn)在人們的面前。另外,對水稻小穗或小花突變體進一步的深入研究,對改良稻米產(chǎn)量和品質(zhì)性狀具有重要意義。GS5和GW8主要通過影響穎殼橫向細胞數(shù)目的數(shù)量來控制粒寬[55-57];PGL1和SRS5主要通過影響穎殼細胞的長度來控制谷粒的大小[58-59];SRS3和GL7同時控制穎殼細胞的大小和數(shù)目,從而影響產(chǎn)量[60-61]。實際生產(chǎn)中,水稻種子的穎殼也經(jīng)常開裂和畸變,影響種子的產(chǎn)量和質(zhì)量,也影響其發(fā)芽。同時在貯藏過程中,裂穎或畸變的種子易染菌、霉變,影響種子的生活力及發(fā)芽率,進而增加貯藏成本[62-63]。因此,利用已克隆的穎殼發(fā)育相關(guān)基因,通過分子標記輔助選擇或轉(zhuǎn)基因手段,可實現(xiàn)稻米產(chǎn)量和相關(guān)品質(zhì)的遺傳改良。
參考文獻:
[1]Bommert P, Satoh-Nagasawa N, Jackson D, et al. Genetics and evolution of inflorescence and flower development in grasses.PlantCellPhysiol, 2005, 46: 69-78.
[2]Itoh J, Nonomura K, Ikeda K, et al. Rice plant development: From zygote to spikelet.PlantCellPhysiol, 2005, 46: 23-47.
[3]Ambrose B A, Lerner D R, Ciceri P, et al. Molecular and genetic analyses of thesilky1 gene reveal conservation in floral organ specification between eudicots and monocots.MolCell, 2000, 5: 569-597.
[4]Kellogg E A. The evolutionary history ofEhrhartoideae,Oryzeae, andOryza.Rice, 2009, 2: 1-14.
[5]Hong L, Qian Q, Zhu K, et al. ELE restrains empty glumes from developing into lemmas.JGenetGenom,2010, 37: 101-105.
[6]Schmidt R J, Ambrose B A. The blooming of grass flower development.CurrOpinPlantBiol, 1998, 1: 60-67.
[7]Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development.Nature,1991,53: 31-37.
[8]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes.Cell,1994,78: 203-209.
[9]Theissen G, Saedler H. Plant biology. Floral quartets.Nature, 2001, 409: 469-471.
[10]Soltis D E, Chanderbali A S, Kim S, et al. The ABC model and its applicability to basal angiosperms.AnnBot, 2007,100: 155-163.
[11]Litt A, Kramer E M. The ABC model and the diversification of floral organ identity.SeminCellDevBiol, 2010,21: 129-137.
[12]Kyozuka J, Kobayashi T, Morita M, et al. Spatially andtemporally regulated expression of rice MADS box genes with similarity toArabidopsisclass A, B and C genes.PlantCellPhysiol, 2004,1: 710-718.
[13] Shri R Y, Kalika P, Usha V. Divergent regulatoryOsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.Genetics, 2007, 176: 283-294.
[14]Rita A, Pinky A, Swatismita R, et al. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress.BMCGenom, 2007, 8: 242.
[15]Xiao H, Wang Y, Liu D F, et al. Functional analysis of the rice AP3 homologueOsMADS16 by RNA interference.PlantMolBiol, 2003, 52: 957-966.
[16]Yun D P, Liang W Q, Dreni L, et al. OsMADS16 genetically Interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice.MolPlant, 2013, 6: 743-756.
[17]Li H F, Liang W P, Yin C S, et al. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.PlantPhysiol,2011, 156: 263-274.
[18]Hu Y, Liang W P, Yin C S, et al. Interactions of OsMADS1 with floral homeotic genes in rice flower development.MolPlant, 2015, 8:1366-1384.
[19]Lin X L, Wu F, Du X Q, et al. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryzasativa) spikelets are in fact rudimentary lemmas.NewPhytiol, 2013, 202: 689-702.
[20]Kellogg E A. Evolutionary history of the grasses.PlantPhysiol, 2001, 125: 1198-1205.
[21]Ohmori S, Kimizu M, Sugita M, et al. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice.PlantCell, 2009, 21: 3008-3025.
[22]Ren D Y, Li Y F, Zhao F M, et al. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice.PlantPhysiol, 2013, 162: 872-884.
[23]Thompson B E, Bartling L, Whipple C, et al. Bearded-ear encodes a MADS box transcription factor critical for maize floral development.PlantCell, 2009, 21:2578-2590.
[24]Sang X, Li Y, Luo Z, et al. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice.PlantPhysiol, 2012, 160: 788-807.
[25]Jin Y, Luo Q, Tong H, et al. An AT-hook gene is required for palea formation and floral organ number control in rice.DevBiol, 2011, 359: 277-288.
[26]Gallavotti A, Malcomber S, Gaines C, et al. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears.PlantCell, 2011, 23: 1756-1771.
[27]Yuan Z, Gao S, Xue D W, et al. RETARDED PALEA1 controls palea development and floral zygomorphy in rice.PlantPhysiol, 2009, 149: 253-244.
[28]Ren D Y, Li Y F, Wang Z, et al. Identification and gene mapping of a multi-floret spikelet 1 (mfs1) mutant associated with spikelet development in rice.JIntegerAgr, 2012, 11: 1574-1579.
[29]Yan D W, Zhang X M, Zhang L, et al. CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development.PlantJ, 2015, 82: 12-24.
[30]Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.PlantJ, 2005, 43: 915-928.
[31]Wang K, Tang D, Hong L, et al. DEP and AFO regulate reproductive habit in rice.PLoSGenet, 2010, 1: 1-9.
[32]Duan Y L, Diao Z J, Liu H Q, et al. Molecular cloning and functional characterization ofOsJAGgene based on a complete-deletion mutant in rice (Oryza sativa L.).PlantMolBiol, 2010, 74:605-615.
[33]Xiao H, Tang J F, Li Y F, et al. STAMENLESS 1, encoding a single C2H2zinc finger protein, regulates floral organ identity in rice.PlantJ, 2009, 59:789-801.
[34]Li A, Zhang Y, Wu X, et al. A LOB domain-like protein required for glume formation in rice.PlantMolBiol, 2008, 66:491-502.
[35]Sun Q W, Zhou D X. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development.ProcNatlAcadSciUSA, 2008, 105:13679-13684.
[36]Li X J, Sun L J, Tan L B, et al.TH1, a DUF640 domain-like gene controls lemma and palea development in rice.PlantMolBiol, 2012, 78: 351-359.
[37]Ren D, Rao Y, Wu L, et al. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.JIntegrPlantBiol, 2015, doi: 10.1111/jipb.12441.
[38]Toriba T, Hirano H Y. The DROOPING LEAF and OsETTIN2 genes promote awn development in rice.PlantJ, 2014, 77: 616-626.
[39]Li H, Liang W, Hu Y, et al. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.PlantCell, 2011,23: 2536-2552.
[40]Takeoka Y, Shimizu M, Wada T, et al. Science of the Rice Plant. Vol I.Nobunkyo,Tokyo, 1993, 295-326.
[41]Yoshida A, Suzaki T, Tanaka W, et al. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet.ProcNatlAcadSciUSA, 2009, 106:20103-20108.
[42]Kobayashi K, Maekawa M, Miyao A, et al. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.PlantCellPhysiol, 2010, 51: 47-57.
[43]Terrell E E, Peterson P M, Wergin W P. Epidermal features and spikelet micromorphology inOryzaand related genera (Poaceae:Oryzeae).SmithsonianContrBot, 2001, 91:1-50.
[44]Zamora A, Barboza C, Lobo J, et al. Diversity of native rice (Oryzapoaceae) species of Costa Rica.GenetResCropEvol, 2003, 50: 855-870.
[45]Gao X C, Liang W Q, Yin C S, et al. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development.PlantPhysiol, 2010, 153:728-740.
[46]Kaoru K, Masahiko M, Akio M, et al.PANICLEPHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.PlantCellPhysiol, 2010, 51: 47-57.
[47]Li W Q, Akiko Y, Megumu T, et al. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development.PlantJ, 2015, 81: 282-291.
[48]Akiko Y, Yoshihiro O, Hidemi K, et al. ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.PlantJ, 2012, 70: 327-339.
[49]Lee D Y, An G. Two AP2 family genes, Supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice.PlantJ, 2012, 69: 445-461.
[50]Lee D Y, Lee J, Moon S, et al. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.PlantJ, 2007, 49: 64-78.
[51]Tsuneo K, Akira H. A novel frameshift mutant allele,fzp-10, affecting the panicle architecture of rice.Euphytica, 2012, 184: 65-72.
[52]Yi G, Choi J H, Jeong E G, et al. Morphological and molecular characterization of a new frizzy panicle mutant, "fzp-9(t)", in rice (OryzasativaL.).Hereditas, 2005, 142: 92-97.
[53]Mai K, Atsushi C, Yasuo N, et al. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development, 2003, 130: 3841-3850.
[54]Li M, Xiong G, Li R, et al. Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth.PlantJ, 2009, 60: 1055-1069.
[55]Li Y B, Fan C C, Xing Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice.NatGenet, 2011, 12: 1266-1269.
[56]Xu C J, Liu Y, Li Y B, et al. Differential expression of GS5 regulates grain size in rice.JExpBot, 2015, 9: 2611-2623.
[57]Wang S K, Wu K, Yuan Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice.NatGenet, 2012, 8: 950-954.
[58]Heang D, Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice.PLoSOne, 2012, 2: e31325.
[59]Shuhei S, Izumi K, Tsuyu A, et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice.Rice, 2012, 5: 4.
[60]Kanako K, Shigeru K, Katsuyuki O, et al. A novel kinesin 13 protein regulating rice seed length.PlantCellPhysiol, 2010, 8: 1315-1329.
[61]Wang Y X, Xiong G S, Hu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice.NatGenet, 2015, 8: 944-948.
[62]Zhu W, Tong J P, Wu Y J. Preliminary study and selection of rice germplasm with glume gaping resistance.JPlantGenetResour, 2004, 5: 52-55.
[63]Wei X G, Zhang X W, Shao G N, et al. Fine mapping of BH1, a gene controlling lemma and palea development in rice.PlantCellRep, 2013, 9: 1455-1463.
Research Progresses in Rice Spikelet Glume Development
XUQian-kun#, REN De-yong#, LI Zi-zhuang, ZENG Da-li, GUO Long-biao, QIAN Qian*
(StateKeyLaboratoryofRiceBiology,ChinaNationalRiceResearchInstitute,Hangzhou310006,China;#These authors contributed equally to this work; *Corresponding author, E-mail: qianqian188@hotmail.com)
XU Qiankun, REN Deyong, LI Zizhuang, et al. Research progresses in rice spikelet glume development. Chin J Rice Sci, 2016, 30(1): 99-105.
Abstract:Rice (Oryza sativa L.), a monocot model plant, is an important cereal crop in the world. The flowering time, inflorescence and floral organ morphological structure have significant influence on rice yield and quality. The research on the structure and development of floral organs is helpful to improve the grain yield and rice quality. The development and morphogenesis of floral organ is a vital process from vegetative growth to reproductive growth in rice. More and more biological researches focus on its developmental pattern and molecular mechanism. The glumes of rice spikelets are unique organs and consisted of lemmas, paleae, sterile lemmas and rudimentary glumes. The molecular mechanisms of the formation and origin of glumes keep poor understanding. Recently, further study of the glumes help to not only understand the rice spikelet and floral organ development, but also facilitate understanding of the regulatory network involved in rice spikelet and floral organ development. In this paper, we focus on the rice glume development and review the ABCDE model of floral organ specialization.
Key words:rice (Oryza sativa L.); palea and lemma; sterile lemma; rudimentary glume; ABCDE model
文章編號:1001-7216(2016)01-0099-06
中圖分類號:Q944.46; S511.01
文獻標識碼:A
基金項目:國家自然科學基金資助項目(31401464);浙江省“重中之重”學科“生物學”開放基金資助項目(KFJJ2014006)。
收稿日期:2015-10-19; 修改稿收到日期: 2015-10-30。