張 磊, 劉如玲, 張曉玲, 劉 哲, 佘宗蓮*
(1.中國(guó)海洋大學(xué) 海洋環(huán)境與生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,環(huán)境科學(xué)與工程學(xué)院,山東 青島 266100;2.青島市團(tuán)島污水處理廠(chǎng),山東 青島 266002)
?
SBBR處理低鹽污水同步硝化反硝化性能研究*
張磊1, 劉如玲2, 張曉玲1, 劉哲1, 佘宗蓮1*
(1.中國(guó)海洋大學(xué) 海洋環(huán)境與生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,環(huán)境科學(xué)與工程學(xué)院,山東 青島 266100;2.青島市團(tuán)島污水處理廠(chǎng),山東 青島 266002)
摘要:采用流化床填料序批式生物膜反應(yīng)器(SBBR),考察了低鹽度對(duì)同步硝化反硝化脫氮性能的影響。結(jié)果表明,在試驗(yàn)鹽度范圍內(nèi)(0.15~1.00),提高鹽度對(duì)COD(Cr)的降解影響很小,去除率都接近90%;氨氮去除率在0.45鹽度時(shí)達(dá)到最大,為90.1%,當(dāng)鹽度提高到0.60和1.00時(shí),氨氮去除率分別下降到88.4%和-N濃度明顯上升,亞硝酸鹽積累率由不足10%分別提高到14%和35%;在每個(gè)鹽度下TN去除率都在70.0%以上,發(fā)生了同步硝化反硝化現(xiàn)象,并且在0.15~0.45的鹽度范圍內(nèi),同步硝化反硝化率(E(SND))與鹽度呈正相關(guān)。當(dāng)鹽度>0.45時(shí),E(SND)開(kāi)始下降,SBBR的同步硝化反硝化過(guò)程受到抑制。
關(guān)鍵詞:鹽度; SBBR; 同步硝化反硝化; 生物脫氮
引用格式:張磊, 劉如玲, 張曉玲, 等. SBBR處理低鹽污水同步硝化反硝化性能研究[J]. 中國(guó)海洋大學(xué)(自然科學(xué)版), 2016, 46(4): 103-108.
ZHANG Lei, LIU Ru-Ling, ZHANG Xiao-Ling, et al. Study on performance of simultaneous nitrification and denitrification in a SBBR reactor treating low-salinity wastewater[J]. Periodical of Ocean University of China, 2016, 46(4): 103-108.
污水生物脫氮由硝化和反硝化兩個(gè)過(guò)程完成,由于發(fā)生硝化和反硝化的細(xì)菌不同,而且所需的環(huán)境條件差異較大,所以傳統(tǒng)工藝的生物脫氮過(guò)程一般是在兩個(gè)反應(yīng)器或者一個(gè)反應(yīng)器的兩個(gè)時(shí)段內(nèi)分別完成。近幾年的一些研究表明,反硝化可在有氧條件下發(fā)生,使得硝化和反硝化兩個(gè)過(guò)程可以同時(shí)在同一個(gè)反應(yīng)器內(nèi)完成,即同步硝化反硝化(SND)[1-2]。與傳統(tǒng)的生物脫氮相比,同步硝化反硝化具有節(jié)省碳源、對(duì)氧的消耗量低、流程簡(jiǎn)單、脫氮效率高等優(yōu)點(diǎn)。而序批式生物膜反應(yīng)器(SBBR) 是一種將生物膜與活性污泥法進(jìn)行有機(jī)結(jié)合的新型復(fù)合式生物膜反應(yīng)器,它兼具SBR和生物膜法的特點(diǎn),具有生物量高、微生物食物鏈長(zhǎng)、易于硝化菌生長(zhǎng)等優(yōu)勢(shì),為同步硝化反硝化提供了有利條件[3-6]。
1材料和方法
1.1 試驗(yàn)裝置及運(yùn)行方法
試驗(yàn)裝置為有機(jī)玻璃制成的SBBR反應(yīng)器,內(nèi)徑19 cm,高60 cm,有效容積14 L,如圖1所示。反應(yīng)器底部放置曝氣砂頭,通過(guò)充氧泵供氧,用轉(zhuǎn)子流量計(jì)調(diào)節(jié)供氣量使曝氣結(jié)束時(shí)溶解氧濃度在4.5 mg/L左右,反應(yīng)器內(nèi)液體溫度控制在25~30℃。填料采用中空?qǐng)A柱形塑料,直徑2.5 cm,高1.0 cm,填料填充比約為30%,反應(yīng)器內(nèi)懸浮污泥濃度(MLSS)控制在3500 mg/L左右,曝氣階段開(kāi)啟內(nèi)循環(huán)泵使填料和污泥處于懸浮狀態(tài)。反應(yīng)器運(yùn)行方式為:進(jìn)水30 min—曝氣390 min—沉淀40 min—排水20 min,每個(gè)周期運(yùn)行8 h,每天運(yùn)行3個(gè)周期,每個(gè)周期結(jié)束時(shí)換水4.5 L,換容比約為32%。
(1-充氧泵; 2-轉(zhuǎn)子流量計(jì); 3-自動(dòng)控制系統(tǒng); 4-加熱器; 5-填料; 6-內(nèi)循環(huán)泵; 7-曝氣砂頭; 8-進(jìn)水泵; 9-進(jìn)水箱; 10-出水閥; 11-出水箱。1-Aeration pump; 2-Rotor flow meter; 3-Automatic control; 4-Heating rod; 5-Filler; 6-Internal circulation pump; 7-Acration sand head; 8-Intake pump; 9-Inlet water tank; 10-Water outlet valve; 11-Outlet water tank.)
圖1SBBR試驗(yàn)裝置示意圖
Fig.1Sketch of experimental system for SBBR
1.2 試驗(yàn)用水
1.3 測(cè)定方法[12]
COD:重鉻酸鉀法;氨氮:納氏試劑分光光度法;亞硝酸氮:N-(1-萘基)-已二胺分光光度法;硝氮:紫外分光光度法;DO:德國(guó)產(chǎn)Oxi330i型便攜式溶氧測(cè)定儀;pH值:雷磁PHB-4型便攜式pH計(jì);MLSS:為混合液懸浮污泥濃度,采用濾紙重量法測(cè)定。
表1 微量元素母液配方
1.4 污泥培養(yǎng)和掛膜
接種污泥取自青島市李村河污水處理廠(chǎng)的二沉池,經(jīng)淘洗后加入SBBR 反應(yīng)器,通入不含鹽的模擬生活污水進(jìn)行培養(yǎng)和掛膜,MLSS維持在3500mg/L左右。掛膜期間一個(gè)周期內(nèi)的運(yùn)行方式為:進(jìn)水30min,厭氧攪拌60min,曝氣240min,缺氧攪拌90min,沉降40min,出水20min,每天運(yùn)行3個(gè)周期。運(yùn)行3d后,活性污泥顏色由開(kāi)始的深褐色逐漸變?yōu)闇\褐色,出水CODCr濃度低于40mg/L,去除率達(dá)到90%以上;運(yùn)行35d后,氨氮去除率穩(wěn)定在80%左右,填料表面形成厚約2mm的淺褐色生物膜,污泥培養(yǎng)和掛膜完成。
2結(jié)果與分析
2.1 鹽度對(duì)CODCr去除效果的影響
反應(yīng)器進(jìn)水CODCr濃度在450 mg/L左右,各鹽度下出水CODCr濃度均低于50 mg/L,CODCr的平均去除率在90%左右,表明在試驗(yàn)鹽度下SBBR對(duì)CODCr有高效穩(wěn)定的去除效果,鹽度提高對(duì)有機(jī)物的降解幾乎沒(méi)有影響。圖3為各鹽度條件下去除效果達(dá)到穩(wěn)定時(shí)一個(gè)曝氣階段內(nèi)CODCr濃度隨反應(yīng)時(shí)間的變化,曝氣初始CODCr濃度約200 mg/L,在所有鹽度條件下,曝氣階段的前20 min由于反應(yīng)器內(nèi)微生物吸附和降解的共同作用,CODCr濃度出現(xiàn)快速下降的現(xiàn)象,之后下降速度明顯降低,曝氣90 min后反應(yīng)器內(nèi)CODCr濃度已接近出水濃度,表明CODCr降解基本完成。
圖2 鹽度變化對(duì)SBBR性能的影響
圖3 不同鹽度下曝氣階段CODCr濃度變化
2.2 鹽度對(duì)SBBR同步硝化反硝化脫氮性能的影響
表2 不同鹽度下氮的去除效果(平均值)
Note:①I(mǎi)nfluent nitrogen concentration; ②Effluent nitrogen concentration; ③TN removal
圖4 不同鹽度下曝氣階段氨氮濃度變化
由圖4可知,曝氣階段初始氨氮濃度在16~17 mg/L之間。不同鹽度條件下,氨氮的降解規(guī)律基本相同,大體可分為3個(gè)時(shí)期:初期的慢速降解,有機(jī)物大量存在導(dǎo)致氨氮降解緩慢;中期的快速降解,大部分有機(jī)物在初期已被降解,微生物開(kāi)始快速降解氨氮;后期的慢速降解,氨氮的降解速度隨著其濃度的降低而變慢。對(duì)比圖3可知,氨氮的降解規(guī)律與CODCr降解速率由快變慢的轉(zhuǎn)折點(diǎn)相對(duì)應(yīng)。這表明SBBR對(duì)CODCr和氨氮的降解具有時(shí)序性,即反應(yīng)器內(nèi)首先主要是CODCr的降解,待CODCr降解基本完成后,氨氮的降解速率才明顯提高。
在0.15~0.45的鹽度范圍內(nèi),曝氣結(jié)束時(shí)反應(yīng)器內(nèi)氨氮的去除率都接近90.0,并且提高鹽度對(duì)氨氮降解有一定的促進(jìn)作用[13]。鹽度提高到0.60和1.00時(shí),氨氮的去除率分別下降至88.4%和87.3%,表明AOB的活性受到了抑制,但并不是很顯著,可能是因?yàn)樵谠囼?yàn)的鹽度范圍內(nèi),AOB尚可通過(guò)自身的滲透壓調(diào)節(jié)系統(tǒng),平衡外界滲透壓的變化,從一定程度上緩沖鹽度的抑制作用。
圖5 不同鹽度下曝氣階段-N 和-N 的濃度變化
2.2.2 不同鹽度下SBBR同步硝化反硝化性能分析每個(gè)鹽度條件下,待SBBR運(yùn)行穩(wěn)定后選取3個(gè)試驗(yàn)周期,測(cè)定曝氣開(kāi)始和結(jié)束時(shí)反應(yīng)器內(nèi)各種氮的濃度,計(jì)算曝氣階段TN去除率和ESND,取3次試驗(yàn)的平均值進(jìn)行分析,結(jié)果如表3所示。
表3 不同鹽度下曝氣階段TN變化和ESND(平均值)
Note:①Salinity; ②TN concentration at the beginning of aeration; ③TN concentration at the end of aeration; ④TN removal.
TN去除率=(1-TN曝氣結(jié)束/TN曝氣開(kāi)始)×100%,
由表3可知,曝氣階段SBBR內(nèi)發(fā)生了TN減少的現(xiàn)象。隨著鹽度的提高,曝氣階段TN去除率和ESND呈現(xiàn)相同的變化趨勢(shì)。在0.45鹽度時(shí)TN去除率和ESND都達(dá)到最大值,說(shuō)明當(dāng)鹽度低于0.45時(shí)提高鹽度對(duì)同步硝化反硝化過(guò)程有利。而當(dāng)鹽度大于0.45后,TN去除率和ESND隨著鹽度的提高而下降,表明系統(tǒng)的同步硝化反硝化過(guò)程受到了抑制。
在鹽度不高于1.00的低鹽度范圍內(nèi),SBBR系統(tǒng)的TN去除率、ESND和氨氮去除率隨鹽度的升高變化情況基本一致,三者都是在0.45鹽度下達(dá)到最大。繼續(xù)提高鹽度系統(tǒng)的同步硝化反硝化性能受到影響,分析其原因是:在0.60和1.00鹽度下,一方面反應(yīng)器內(nèi)AOB和NOB活性開(kāi)始受到抑制;另一方面,鹽度升高使污泥絮體變小變密實(shí)[8],絮體內(nèi)缺氧微環(huán)境的比例減少,而且傳質(zhì)阻力變大,導(dǎo)致絮體內(nèi)部微生物難以獲得充足的碳源,從而影響反硝化反應(yīng)的進(jìn)行。因此,0.45鹽度可作為SBBR系統(tǒng)實(shí)現(xiàn)同步硝化反硝化的理想鹽度。
3結(jié)論
(1)在試驗(yàn)鹽度范圍內(nèi),提高鹽度對(duì)CODCr的降解影響很小,去除率都在90%左右。SBBR系統(tǒng)氨氮去除率在0.45鹽度下達(dá)到最大值90.1%,當(dāng)鹽度繼續(xù)提高到0.60和1.00時(shí),反應(yīng)器內(nèi)AOB活性受到一定抑制,氨氮去除率分別下降到88.4%和87.3%。
(3)在各鹽度條件下SBBR的TN去除率都在70.0%以上,發(fā)生了同步硝化反硝化現(xiàn)象,并且在0.15~0.45的鹽度范圍內(nèi),ESND與鹽度呈正相關(guān)。當(dāng)鹽度>0.45時(shí),ESND開(kāi)始下降,SBBR的同步硝化反硝化性能受到影響。
參考文獻(xiàn):
[1]Münch E V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors [J]. Water Research, 1996, 30(2): 277-284.
[2]Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND) [J]. Water Science and Technology, 1999, 39(6): 61-68.
[3]李軍, 彭永臻, 楊秀山, 等. 序批式生物膜法反硝化除磷特性及其機(jī)理 [J]. 中國(guó)環(huán)境科學(xué), 2004, 24(2): 219-223.
Li J, Peng Y Z, Yang X S, et al. Characteristics and mechanism of the phosphorus removal by denitrification with sequencing batch biofilm technique [J]. China Environmental Science, 2004, 24(2): 219-223.
[4]彭永臻, 劉瑩, 王淑瑩, 等. 序批式生物膜反應(yīng)器不同填料掛膜及短程硝化特性研究 [J]. 環(huán)境污染與防治, 2009, 31(12): 22-26.
Peng Y Z, Liu Y, Wang S Y, et al. Startup and partial nitrification characteristics in sequencing batch biofilm reactor (SBBR) with two kinds of media [J]. Environmental Pollution & Control, 2009, 31(12): 22-26.
[5]張立秋, 韋朝海, 張可方, 等. 常溫下 SBBR 反應(yīng)器中亞硝酸型同步硝化反硝化的實(shí)現(xiàn) [J]. 環(huán)境工程, 2009(1): 40-43.
Zhang L Q, Wei C H, Zhang K F, et al. Realization for simultaneous nitrification denitrification via nitrite in sequencing biofilm batch reactor at normal temperature [J]. Environmental Engineering, 2009(1): 40-43.
[6]許朕, 楊朝暉, 曾光明, 等. 供氧充足環(huán)境下 SBBR 實(shí)現(xiàn)短程硝化的控制研究 [J]. 環(huán)境科學(xué), 2008, 29(7): 1860-1866.
Xu Z, Yang Z H, Zeng G M, et al. Control of shortcut nitrification in SBBR with adequate oxygen supply [J]. Environmental Science, 2008, 29(7): 1860-1866.
[7]王淑瑩, 唐冰, 葉柳, 等. NaCl 鹽度對(duì)活性污泥系統(tǒng)脫氮性能的影響 [J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2008, 34(6): 631-635.
Wang S Y, Tang B, Ye L, et al. Influence of NaCI salinity on nitrogen removal of activated sludge system [J]. Journal of Beijing University of Technology, 2008, 34(6): 631-635.
[8]趙凱峰, 王淑瑩, 葉柳, 等. NaCl 鹽度對(duì)耐鹽活性污泥沉降性能及脫氮的影響 [J]. 環(huán)境工程學(xué)報(bào), 2010(3): 570-574.
Zhao K F, Wang S Y, Ye L, et al. Effects of salinity on salt-tolerant activated sludge settling performance and nitrogen removal [J]. Chinese Journal of Environmental Engineering, 2010(3): 570-574.
[9]Campos J L, Mosquera-Corral A, Sanchez M, et al. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit [J]. Water Research, 2002, 36(10): 2555-2560.
[10]Moussa M S, Sumanasekera D U, Ibrahim S H, et al. Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers [J]. Water Research, 2006, 40(7): 1377-1388.
[11]鄒高龍, 李小明, 李啟武, 等. 鹽度變化對(duì) SBBR 和 SBR 中含氨氮廢水的處理影響 [J]. 環(huán)境科學(xué), 2009, 30(9): 2603-2608.
Zou G L, Li X M, Li Q W, et al. Effects of salinity variation on the treatment wastewater containing ammonia in the SBBR and SBR [J]. Environmental Science, 2009, 30(9): 2603-2608.
[12]國(guó)家環(huán)境保護(hù)總局. 水和廢水監(jiān)測(cè)分析方法(第4版) [M]. 北京: 中國(guó)環(huán)境科學(xué)出版社, 2002.
Chinese NEPA, Water and Wastewater Monitoring Methods [M]. 4th ed. Beijing: Chinese Environmental Science Publishing House, 2002.
[13]支霞輝, 丁峰, 彭永臻, 等. 常溫條件下短程硝化反硝化生物脫氮影響因素的研究 [J]. 環(huán)境污染與防治, 2006, 28(4): 254-256.
Zhi X H, Ding F, Peng Y Z, et al. The study of shortcut nitrification-denitrification at normal temperature [J]. Environmental Pollution & Control, 2006, 28(4): 254-256.
[14]Dincer A R, Kargi F. Salt inhibition of nitrification and denitrification in saline wastewater [J]. Environmental Technology, 1999, 20(11): 1147-1153.
[15]Third K A, Burnett N, Cord-Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR [J]. Biotechnology and Bioengineering, 2003, 83(6): 706-720.
責(zé)任編輯徐環(huán)
Study on Performance of Simultaneous Nitrification and Denitrification in a SBBR Reactor Treating Low-Salinity Wastewater
ZHANG Lei1, LIU Ru-Ling2, ZHANG Xiao-Ling1, LIU Zhe1, SHE Zong-Lian1
(1.The Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; 2.Qingdao Tuandao Sewage Treatment Plant, Qingdao 266002, China)
Abstract:The performance of nitrogen removal via simultaneous nitrification and denitrification was investigated at low salinity in a sequencing batch biofilm reactor(SBBR)packed with suspended carriers. The results showed that improving salinity had little effect on the degradation of COD(Cr) in the salinity range from 0.15 to 1.00, and the COD(Cr) removal efficiency was about 90%. The removal efficiency of ammonia nitrogen achieved the highest of 90.1 at 0.45 salinity. When salinity increased to 0.60 and 1.00, the removal efficiency of ammonia nitrogen were decreased to 88.4% and 87.3% respectively, due to the slight inhibition of ammonia oxidizing bacteria. The concentration of -N increased significantly with the increase of salinity from 0.45 to 0.60 and 1.00, and nitrite accumulation rate were increased to 14% and 35% from less than 10%. This result showed that the nitrite oxidizing bacteria were suppressed obviously at the salinity of 1.00, compared with that at the salinity of 0.45. TN removal efficiency was above 70% at all salinity tested in this study, indicating high efficiency of nitrogen removal through simultaneous nitrification and denitrification. When influent salinity was within the range of 0.15~0.45, the SND efficiency increased with the increase of the salinity. When salinity was higher than 0.45, the SND efficiency declined with the raise of salinity, indicating the inhibition of SND.
Key words:salinity;SBBR;SND;biological nitrogen removal
DOI:10.16441/j.cnki.hdxb.20140433
中圖法分類(lèi)號(hào):X131.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-5176(2016)04-103-06
作者簡(jiǎn)介:張磊(1988-),男,碩士生,研究方向?yàn)樗廴究刂?。E-mail:13791948297@163.com**通訊作者:E-mail:szlszl@ouc.edu.cn
收稿日期:2014-12-30;
修訂日期:2015-02-26
*基金項(xiàng)目:國(guó)家水體污染控制與治理科技重大專(zhuān)項(xiàng)項(xiàng)目(2014ZX07203-008)資助
Supported by the Special Grand National Science & Technology Project of China for Water Pollution Control and Treatment(2014ZX07203-008)