馬振南,劉 源,唐世磊
1.中國醫(yī)科大學(xué)附屬盛京醫(yī)院普通外科,遼寧 沈陽 110022; 2.中國醫(yī)科大學(xué)附屬第四醫(yī)院結(jié)直腸、疝及腹壁外科
GLP-1對(duì)脂肪細(xì)胞及相關(guān)炎癥調(diào)控的研究進(jìn)展
馬振南1,劉 源1,唐世磊2
1.中國醫(yī)科大學(xué)附屬盛京醫(yī)院普通外科,遼寧 沈陽 110022; 2.中國醫(yī)科大學(xué)附屬第四醫(yī)院結(jié)直腸、疝及腹壁外科
通過總結(jié)近年來胰高血糖素樣肽1(Glucagon like peptide1,GLP-1)對(duì)脂肪細(xì)胞及相關(guān)慢性炎癥調(diào)控機(jī)理的最新研究進(jìn)展,進(jìn)一步闡明Roux-en-Y胃旁路手術(shù)治療2型糖尿病(type 2 diabetes mellitus,T2DM)的機(jī)制。GLP-1能調(diào)節(jié)脂肪細(xì)胞代謝紊亂及抑制以巨噬細(xì)胞為主的慢性炎癥的發(fā)展,RYGB術(shù)后GLP-1的升高,可明顯改善多種原因?qū)е碌囊葝u素抵抗,最終長期緩解T2DM患者的高血糖。RYGB術(shù)后GLP-1調(diào)節(jié)脂肪細(xì)胞及相關(guān)慢性炎癥的作用機(jī)理尚未完全清楚,進(jìn)一步認(rèn)識(shí)和研究GLP-1如何發(fā)揮生物學(xué)作用,將可能為開發(fā)用于治療糖尿病的新藥提供理論依據(jù)。
2型糖尿??;胃轉(zhuǎn)流;胰高血糖素樣肽1;脂肪細(xì)胞;炎癥
隨著社會(huì)發(fā)展、人們高能食物攝入及低體力活動(dòng)等生活方式的轉(zhuǎn)變,世界范圍內(nèi)肥胖癥人群的發(fā)病率呈逐年上升趨勢(shì),已嚴(yán)重威脅人們的身體健康[1-2]。大量臨床觀察和研究已證實(shí),如T2DM、三高癥、冠心病、阻塞性睡眠呼吸暫停綜合征等與肥胖癥密切相關(guān),尤其是T2DM人群約占90%以上[3],已成為威脅人類健康的一大疾病。目前T2DM常用治療手段不僅醫(yī)療費(fèi)用高昂,且長期療效不理想,最終引起一系列身體其他器官的嚴(yán)重并發(fā)癥,因此其治療備受關(guān)注。近年來,源于減肥手術(shù)的突破性進(jìn)展Roux-en-Y胃旁路(Roux-en-Y gastric bypass,RYGB)手術(shù)可迅速緩解糖尿病肥胖患者的高血糖并減輕體質(zhì)量,血糖降至正常的有效率達(dá)84%~98%,并可長期維持[4-6]。而其控制血糖的機(jī)制相對(duì)復(fù)雜,至今仍未完全明確,術(shù)后外周胰高血糖素樣肽1(glucagon like peptide 1,GLP-1)分泌增多對(duì)機(jī)體的作用被認(rèn)為是緩解T2DM的重要機(jī)制之一,現(xiàn)總結(jié)GLP-1水平的變化對(duì)脂肪因子及相關(guān)慢性炎癥調(diào)控方面的研究進(jìn)展,旨在更全面解釋RYGB術(shù)后治療肥胖糖尿病的分子機(jī)理。
肥胖癥表現(xiàn)為體內(nèi)脂肪組織過度堆積和(或)分布異常致體質(zhì)量異常增加的一種慢性代謝性疾病(診斷標(biāo)準(zhǔn)為 BMI>25 kg/m2)[7-9]。該人群機(jī)體代謝紊亂引起的胰島素抵抗(insulin resistance,IR)和(或)分泌缺陷在T2DM的進(jìn)程中起決定作用,IR即機(jī)體脂肪、肌肉和肝細(xì)胞對(duì)胰島素的敏感性降低。眾所周知,肥胖是T2DM最重要的危險(xiǎn)因子,90%以上T2DM患者都伴有肥胖或超重,而肥胖人群中脂肪細(xì)胞的功能紊亂和以巨噬細(xì)胞為主的相關(guān)慢性炎癥是造成T2DM的主要原因[10-11],且肥胖癥人群與許多疾病密切相關(guān)[9,12],如:T2DM、非酒精性脂肪肝、心血管疾病、退行性疾病及惡性腫瘤,而脂肪組織不再單是能量儲(chǔ)存器官,也是一種很重要的內(nèi)分泌器官,它分泌的多種脂肪因子參與神經(jīng)-內(nèi)分泌-免疫網(wǎng)絡(luò)的調(diào)節(jié)[13]。肥胖人群中脂肪細(xì)胞的功能紊亂導(dǎo)致脂肪因子和一些炎癥因子的分泌及功能異常,如腫瘤壞死因子α(tumor necrosisfactor-α,TNF-α)、IL-1α、白細(xì)胞介素6(interleukin-6,IL-6)、瘦素、脂聯(lián)素、抵抗素等,以及化學(xué)趨化因子,如單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、MCP-1α,以及產(chǎn)生過多的游離脂肪酸(free fatty acid,F(xiàn)FA)等[14]。如脂聯(lián)素是多肽類激素,通過作用腺苷酸活化蛋白激酶和過氧化物酶增殖物激活受體;瘦素是最早發(fā)現(xiàn)的脂肪因子,主要通過抑制食欲、增加能量消耗和抑制脂肪合成等3種調(diào)節(jié)方式,這些脂肪因子可協(xié)同調(diào)節(jié)葡萄糖、脂肪酸代謝及胰島素行為[15-16]。但在病態(tài)下,脂肪-胰島軸的反饋機(jī)制受損,使脂肪因子分泌紊亂、加速炎癥進(jìn)展等變化,引起胰島細(xì)胞去極化,出現(xiàn)IR、敏感性降低等一系列反應(yīng),最終發(fā)展成為T2DM。研究已證實(shí),持續(xù)的低度炎癥反應(yīng)也是肥胖、IR和T2DM一個(gè)共同的重要病理特點(diǎn)[17]。肥胖的IR患者炎性因子表達(dá)和(或)分泌增加,如TNF-α、IL-6、C-反應(yīng)蛋白(C-reactive protein,CRP)等,然而許多炎性因子相互作用也可直接導(dǎo)致脂代謝紊亂,如TNF-α和IL-6能促進(jìn)脂肪水解,釋放過多的FFA、聯(lián)素水平下降使脂肪氧化下降,最終導(dǎo)致肝臟和肌肉組織脂肪沉積和IR。胰島素的受體信號(hào)通路與炎性信號(hào)通路存在交叉,TNF-α可促進(jìn)胰島素受體底物(IRS和IRS2)的絲氨酸磷酸化,加重IR,同時(shí)多種細(xì)胞因子通過不同途徑直接或間接作用于胰腺組織,促進(jìn)T2DM的發(fā)生[18]。在肥胖癥發(fā)展過程中,脂肪組織中巨噬細(xì)胞的浸潤進(jìn)行性加重,而巨噬細(xì)胞是分泌炎性因子的主要細(xì)胞,且與IR呈正相關(guān),在IR的進(jìn)展中,脂肪細(xì)胞和巨噬細(xì)胞的交互作用起著非常重要的作用[19]。此外,如趨化因子MCP-1和MCP-1α也可吸引巨噬細(xì)胞浸潤到脂肪細(xì)胞中,在脂肪、肝和肌肉細(xì)胞中通過活化JNK和NF-κB通路及長期暴露于高FFA環(huán)境下可通過TLR4/TLR2和NF-κB通路活化巨噬細(xì)胞,促進(jìn)炎癥的發(fā)展[20],使胰島β細(xì)胞下調(diào)及凋亡增加,最終導(dǎo)致T2DM。因此,改善肥胖人群中脂肪因子分泌異常、抑制炎癥因子的生成是改善IR及提高胰島素的敏感性、控制高血糖及肥胖相關(guān)的代謝性紊亂疾病的關(guān)鍵之一,也是目前研究治療T2DM和肥胖癥的新趨勢(shì)。
近年來,隨著臨床上減重代謝外科中心的成立,已證明肥胖合并T2DM的患者RYGB術(shù)后體質(zhì)量明顯下降及糖脂代謝明顯改善,使血糖恢復(fù)至正常并可長期維持且有效率達(dá)84%~98%[5,21]。然而迄今RYGB手術(shù)治療肥胖糖尿病的機(jī)制尚未完全清楚,值得關(guān)注的是,到目前為止大量基礎(chǔ)和臨床實(shí)踐表明,糖脂代謝的改善與RYGB術(shù)后調(diào)節(jié)腸道激素的分泌密切相關(guān),如GLP-1、Ghrelin、PYY(peptide YY)、抑胃肽(glucose-dependent insulinotropic polypeptide,GIP)等,目前研究表明主要是GLP-1的作用效果,可調(diào)節(jié)脂肪細(xì)胞功能紊亂和相關(guān)慢性炎癥所致的IR,從而直接或間接調(diào)節(jié)機(jī)體的血糖水平至正常范圍。GLP-1是一個(gè)由29~30個(gè)氨基酸構(gòu)成的肽類激素,由胰高血糖素原(preproglucogan)基因編碼,在特定的細(xì)胞中轉(zhuǎn)錄后加工而成。GLP-1由位于回腸末端和結(jié)腸的L細(xì)胞受營養(yǎng)物質(zhì)直接刺激而分泌,生理情況下,餐后機(jī)體產(chǎn)生的GLP-1很快釋放入血參與血糖調(diào)節(jié),呈現(xiàn)早期(10~15 min)和延遲(30~60 min)兩個(gè)分泌相,不幸的是GLP-1在體內(nèi)常迅速地被二肽基肽酶4(dipeptydil-peptidase-4,DPP-4)降解失活[22]。GLP-1通過與GLP-1R結(jié)合發(fā)揮生物學(xué)作用,而GLP-1R在人體的許多組織中表達(dá),包括胰島的α、β、δ細(xì)胞,肺,心臟,腎臟,胃腸道及中樞神經(jīng)系統(tǒng)的下丘腦和腦干區(qū)域等。因此,GLP-1的作用很廣泛,可以促進(jìn)糖原合成、脂肪分解,抑制肝糖原的輸出和胰高血糖素分泌,組織對(duì)葡萄糖的利用率增加,提高機(jī)體對(duì)胰島素的敏感性。臨床已證明Ex-4是GLP-1的長效類似物,不易被DPP-4降解,與GLP-1R結(jié)合后在改善糖代謝中起重要作用。RYGB術(shù)后GLP-1分泌增高的機(jī)制中以“后腸學(xué)說”最受關(guān)注且已被證實(shí),認(rèn)為RYGB術(shù)后消化道重組, 未消化或部分消化的食物早期進(jìn)入后腸(末段回腸及結(jié)腸),刺激腸 L細(xì)胞后主要影響GLP-1分泌,而空腹時(shí)GLP-1與術(shù)前相比基本一致,但在餐后GLP-1分泌會(huì)急劇增加,有研究表明RYGB術(shù)后2年,甚至更久GLP-1分泌增加持續(xù)存在,且與體質(zhì)量變化無相關(guān)性[23],其更遠(yuǎn)期效果還有待隨訪研究。此外,末段回腸分泌的其他因子的提高也對(duì)糖代謝的改善有一定關(guān)系,如PYY等[24-26]。機(jī)體經(jīng)過GLP-1的生理作用后,促進(jìn)IR狀態(tài)脂肪細(xì)胞的葡萄糖攝取和脂肪分解增強(qiáng)其對(duì)胰島素的敏感性,增加胰島素mRNA的表達(dá)和胰島素前體合成,促進(jìn)胰島β細(xì)胞增生并抑制其凋亡[27],在以上“后腸學(xué)說”作用下使血糖恢復(fù)至正常,其已經(jīng)成為治療糖尿病的新方向。
GLP-1是由腸L細(xì)胞分泌的目前已知作用最強(qiáng)的腸促胰島素分泌肽。越來越多的研究[28-29]表明,引起糖、脂質(zhì)代謝紊亂及IR的T2DM的肥胖癥人群中,RYGB術(shù)后GLP-1分泌增多并作用其受體可發(fā)揮多種生物學(xué)功能,以明顯改善血糖為代表已應(yīng)用于臨床[30]。但目前對(duì)GLP-1通過調(diào)節(jié)脂肪因子的分泌來改善血糖的機(jī)制尚未完全清楚。通過RYGB術(shù)后GLP-1對(duì)脂肪細(xì)胞的基礎(chǔ)研究顯示,Gao等[31]認(rèn)為脂肪細(xì)胞作為胰島素主要作用的靶器官,GLP-1可促進(jìn)脂肪細(xì)胞的胰島素依賴性葡萄糖攝取,而僅有GLP-1時(shí)則無此效應(yīng),然而在發(fā)生IR時(shí),GLP-1還可促進(jìn)脂肪細(xì)胞的葡萄糖攝取,從而增強(qiáng)其對(duì)胰島素的敏感度,進(jìn)而達(dá)到緩解機(jī)體高血糖環(huán)境。在肥胖伴T2DM的人群中,RYGB術(shù)后可使血糖恢復(fù)至正常水平并持續(xù)維持,這與術(shù)后GLP-1升高調(diào)節(jié)脂肪因子表達(dá)的變化有關(guān),已有研究證實(shí),術(shù)后GLP-1的分泌增多,通過調(diào)控核因子κB(NF-κB)來調(diào)節(jié)脂肪組織中眾多糖脂代謝基因的表達(dá),使瘦素和FFA水平降低、保護(hù)性因子脂聯(lián)素的表達(dá)顯著增加,因多種脂肪因子的相互調(diào)節(jié)作用,可顯著改善糖脂代謝、緩解IR及增加外周器官胰島素的敏感性,故GLP-1提高可明顯緩解T2DM及肥胖相關(guān)的代謝障礙性疾病,且到目前為止是現(xiàn)代治愈T2DM被廣泛認(rèn)可的方案。其次,RYGB術(shù)后GLP-1分泌增多可以影響前脂肪細(xì)胞的增殖、分化[32],其機(jī)制與激活ERK、PKC和Akt信號(hào)通路(regulation of adipocyte formation by GLP-1/GLP-1R signaling)有關(guān),可使小體積脂肪細(xì)胞的數(shù)量增加,而總體脂質(zhì)沒有顯著變化,GLP-1R與PPARr表達(dá)密切相關(guān),是脂肪細(xì)胞分化的后期階段的標(biāo)志,提示GLP-1R可能與PPARr靶基因直接作用,可調(diào)節(jié)成熟脂肪細(xì)胞的效應(yīng),Kang等[33-34]研究發(fā)現(xiàn),小體積脂肪細(xì)胞也有助于改善IR和糖脂代謝紊亂,使葡萄糖轉(zhuǎn)運(yùn)子4(GLIJT-4)表達(dá)增加。且術(shù)后GLP-1水平的升高可作用于NF-κB來調(diào)節(jié)脂肪因子的表達(dá)和分泌,NF-κB的激活可引起包括IL-6、C/EBPs、TNF-α、IL-6、CRP等在內(nèi)的多種因子的表達(dá)改變,能抑制脂肪組織中巨噬細(xì)胞浸潤,共同改善肥胖患者脂肪細(xì)胞的調(diào)節(jié)作用。因此,RYGB術(shù)后明顯改善脂肪細(xì)胞的功能紊亂,并有效調(diào)節(jié)脂肪因子發(fā)揮其應(yīng)有的效應(yīng)[35],其與術(shù)后GLP-1的分泌增加后作用于脂肪細(xì)胞息息相關(guān),而其作用機(jī)制仍需進(jìn)一步研究。
目前研究表明,炎癥反應(yīng)與IR、肥胖癥和T2DM密切相關(guān),且慢性炎癥是肥胖、T2DM的主要特征之一[36]。而這種慢性低度炎癥狀態(tài)主要起源于脂肪組織,脂肪組織不僅是一個(gè)儲(chǔ)存脂質(zhì)的器官,還是一個(gè)內(nèi)分泌器官,可以分泌多種胃腸激素及細(xì)胞因子等,在調(diào)節(jié)糖脂代謝、饑餓及飽腹感等信號(hào)通路中起至關(guān)重要的作用。脂肪組織分泌的細(xì)胞因子及趨化因子,統(tǒng)稱為脂肪因子(adipokines),如瘦素、脂聯(lián)素、TNF-α、IL-6、CRP及MCP-1等[37-38]。在肥胖癥的IR患者中,其脂肪細(xì)胞中炎性因子的表達(dá)和(或)分泌增加,反之炎性因子也可直接導(dǎo)致脂肪細(xì)胞代謝紊亂,進(jìn)而對(duì)局部及全身產(chǎn)生異常生理效應(yīng)[39]。肥胖癥進(jìn)展過程中,脂肪組織中以巨噬細(xì)胞為主的炎癥細(xì)胞浸潤進(jìn)行性加重,并在其他異常細(xì)胞因子的協(xié)同下,加速β細(xì)胞的功能損傷和破壞,促進(jìn)IR的發(fā)生、發(fā)展,最終導(dǎo)致T2DM[40-41]。有研究[42-47]報(bào)道,RYGB術(shù)后血循環(huán)中促炎性脂肪因子水平明顯降低;而抗炎性脂肪因子水平明顯升高;脂肪組織巨噬細(xì)胞浸潤減少;脂肪組織及肝臟組織中炎性因子mRNA表達(dá)水平下降等,這些變化與體質(zhì)量減輕無明顯相關(guān)性,而受術(shù)后胃腸激素變化的影響,其主要是GLP-1的水平升高。事實(shí)上,越來越多的研究表明GLP-1能抑制炎癥性疾病的發(fā)展。Daousi等[48]研究顯示T2DM患者靜脈注射GLP-1或服用GLP-1類似物后,循環(huán)中炎性細(xì)胞因子如TNF-α、IL-6及IL-1p水平降低,抗炎性脂肪因子脂聯(lián)素水平升高,且其抗炎作用與體質(zhì)量、血糖的變化無關(guān)。Lee等[49]通過給ob/ob小鼠注射產(chǎn)生GLP-1的重組腺病毒(recombinant adenovirus producing GLP-1,rAd-GLP-1)使其GLP-1水平升高,可使ob/ob小鼠脂肪細(xì)胞中炎癥減輕及脂肪組織中浸潤的巨噬細(xì)胞,有直接抑制炎癥信號(hào)通路的作用[50]。如NF-κB的活化和JNK信號(hào)轉(zhuǎn)導(dǎo)通誘導(dǎo)炎性細(xì)胞因子和趨化因子基因的表達(dá),因此產(chǎn)生的IL-6、TNF-α、MCP-1減少,進(jìn)而改善IR。另外,Terasaki等[51]報(bào)道在自發(fā)性動(dòng)脈粥樣硬化小鼠體內(nèi)持續(xù)注射低劑量GLP-1,可顯著抑制巨噬細(xì)胞的浸潤和降低動(dòng)脈粥樣硬化病變,其作用與GLP-1在巨噬細(xì)胞中介導(dǎo)cAMP活化有關(guān)。同樣,GLP-1還可在培養(yǎng)的人胰島中抑制IFN γ誘導(dǎo)趨化因子和炎癥因子的表達(dá),應(yīng)用Ex-4治療糖尿病大鼠能明顯抑制黏附分子1(ICAM-1)的表達(dá)和NF-κB的活化,明顯改善糖尿病相關(guān)的腎臟炎癥。然而近期的研究還表明免疫細(xì)胞、T細(xì)胞和巨噬細(xì)胞也可表達(dá)GLP-1R。RYGB術(shù)后機(jī)體炎癥的改善狀態(tài)與胰島素敏感性呈正相關(guān),使T2DM得到治愈,這些減重術(shù)后變化的效果在已發(fā)表文獻(xiàn)中均有闡述,但其作用機(jī)理仍需深入研究。
綜上所述,鑒于RYGB術(shù)后GL-1釋放明顯增加、減重效果確切及在治愈T2DM方面具有顯著效果,并且GLP-1及其類似物是目前治療T2DM和肥胖癥的藥物治療最有前途的選擇。但是,GLP-1對(duì)身體組織器官的生理學(xué)作用,仍有許多功能機(jī)制尚未完全清楚,仍需深入研究RYGB術(shù)后GLP-1增加是如何改善脂肪細(xì)胞功能紊亂和慢性炎癥的作用機(jī)制,將為開發(fā)治療糖尿病方面的新藥提供理論依據(jù)。因此,對(duì)GLP-1及其類似物藥物的臨床應(yīng)用有效性也需要持續(xù)深入的研究。
[1]Yang SH, Dou KF, Song WJ. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(25): 2425-2426.
[2]Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment [J]. Obes Rev, 2011, 12(9): 740-755.
[3]The Chinese Medical Doctor Association Surgeon Surgeons Committee Branch of Obesity and Diabetes. Guidelines for the surgical treatment of obesity and type 2 diabetes in China (2014) [J]. Chinese Journal of Practical Surgery, 2014, 34(11): 1005-1010. 中國醫(yī)師協(xié)會(huì)外科醫(yī)師分會(huì)肥胖和糖尿病外科醫(yī)師委員會(huì). 中國肥胖和2型糖尿病外科治療指南 (2014) [J]. 中國實(shí)用外科雜志, 2014, 34(11): 1005-1010.
[4]Zhong K. Effect of Roux-en-Y gastric bypass surgery on the non-obese patients with type 2 diabetes glucose and lipid metabolism [J]. Modern Medicine Journal of China, 2012, 14(6): 47-49. 鐘凱. Roux-en-Y胃旁路術(shù)對(duì)非肥胖性2型糖尿病患者糖脂代謝的影響[J]. 中國現(xiàn)代醫(yī)藥雜志, 2012, 14(6): 47-49.
[5]Ahn SM, Pomp A, Rubino F. Metabolic surgery for type 2 diabetes [J]. Ann N Y Acad Sci, 2011, 1212: E37-E45.
[6]Kohli R, Stefater MA, Inge TH. Molecular insights from bariatric surgery [J]. Rev Endocr Metab Disord, 2011, 12(3): 211-217.
[7]Sharma NK, Langberg KA, Mondal AK, et al. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms [J]. PLoS One, 2013, 8(5): e65303.
[8]Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity [J]. J Clin Invest, 2011, 121(6): 2094-2101.
[9]Khan IM, Perrard XY, Brunner G, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance [J]. Int J Obes (Lond), 2015, 39(11): 1607-1618.
[10]Maessen DE, Brouwers O, Gaens KH, et al. Delayed intervention with pyridoxamine improves metabolic function and prevents adipose tissue inflammation and insulin resistance in high-fat diet-induced obese mice [J]. Diabetes, 2015, [Epub ahead of print].
[11]Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease [J]. Nat Rev Immunol, 2011, 11(11): 738-749.
[12]Lee MS, Kim IH, Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2) C(12) muscle cells [J]. Nutrients, 2013, 5(5): 1660-1671.
[14]McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation [J]. Clin Sci (Lond), 2015, 129(12): 1083-1096.
[15]Wang J, Song GY. Adiponectin and type 2 diabetes mellitus as well as its complications [J]. Medical Recapitulate, 2008, 14(7): 1079-1081. 王敬, 宋光耀. 脂聯(lián)素與2型糖尿病及其并發(fā)癥[J]. 醫(yī)學(xué)綜述, 2008, 14(7): 1079-1081.
[16]Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function [J]. J Clin Invest, 2012, 122(12): 4667-4674.
[17]Kang SC, Kim BR, Lee SY, et al. Sphingolipid metabolism and obesity-induced inflammation [J]. Front Endocrinol (Lausanne), 2013, 4: 67.
[18]Yadav A, Kataria MA, Saini V, et al. Role of leptin and adiponectin in insulin resistance [J]. Clin Chim Acta, 2013, 18(417): 80-84.
[19]Eljaafari A, Robert M, Chehimi M, et al. Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation [J]. Diabetes, 2015, 64(7): 2477-2488.
[20]Bao S, Cao Y, Zhou H, et al. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced Toll-like receptor 4 (TLR4) activity via 67 kDa laminin receptor (67LR) in 3T3-L1 adipocytes [J]. J Agric Food Chem, 2015, 63(10): 2811-2819.
[21]Mas-Lorenzo A, Benaiges D, Flores-Le-Roux JA, et al. Impact of different criteria on type 2 diabetes remission rate after bariatric surgery [J]. Obes Surg, 2014, 24(11): 1881-1887.
[22]Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1 [J]. Vascul Pharmacol, 2011, 55 (1-3): 10-16.
[23]Omran J, Firwana B, Koerber S, et al. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis [J]. Obes Rev, 2016, 17(6): 520-530.
[24]Elahi D, Galiatsatos P, Rabiee A, et al. Mechanisms of type 2 diabetes resolution after Roux-en-Y gastric bypass [J]. Surg Obes Relat Dis, 2014, 10(6): 1028-1039.
[25]Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgeryvsconventional medical therapy: a systematic review and meta-analysis [J]. Obes Surg, 2014, 24(3): 437-455.
[26]Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition [J]. J Surg Res, 2012, 178(1): 33-39.
[27]Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus [J]. Nat Rev Endocrinol, 2009, 5(5): 262-269.
[28]Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity [J]. J Clin Invest, 2011, 121(6): 2094-2101.
[29]Li HX, Xiao L, Wang C, et al. Review: Epigenetic regulation of adipocyte differentiation and adipogenesis [J]. J Zhejiang Univ Sci B, 2010, 11(10): 784-791.
[30]Burmeister MA, Ferre T, Ayala JE, et al. Acute activation of central GLP-1 receptors enhances hepatic insulin action and insulin secretion in high-fat-fed, insulin resistant mice [J]. Am J Physiol Endocrinol Metab, 2012, 302(3): E334-E343.
[31]Gao H, Wang X, Zhang Z, et al. GLP-1 amplifies insulin signaling by up-regulation of IRbeta, IRS-1 and Glut4 in 3T3-L1 adipocytes [J]. Endocrine, 2007, 32(1): 90-95.
[32]Challa TD, Beaton N, Arnold M, et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling [J]. J Biol Chem, 2012, 287(9): 6421-6430.
[33]Kang JQ, Park CY, Ihm SH, et al. Mechanisms of adipose tissue redistribution with rosiglitazone treatment in various adipose depots [J]. Metabolism, 2010, 59(1): 46-53.
[34]Chang YC, Cho HJ. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line [J]. Biochemical Biophysical Res Communications, 2012, 422(3): 423-428.
[35]Hausman GJ, Barb CR, Dean RG. Gene expression profiling in developing pig adipose tissue: non-secreted regulatory proteins [J]. Animal, 2011, 5(7): 1071-1081.
[36]Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus [J]. Diabetologia, 2014, 57(4): 781-784.
[37]Kitade H, Sawamoto K, Nagashimada M, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2status [J]. Diabetes, 2012, 61(7): 1680-1690.
[38]Keuper M, Blüher M, Sch?n MR, et al. An inflammatory micro-environment promotes human adipocyte apoptosis [J]. Mol Cell Endocrinol, 2011, 339(1-2): 105-113.
[39]Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liverdisease [J]. Int J Mol Sci, 2014, 15(4): 6184-6123.
[40]Zhong D, Qin ZS, Yu ZQ. Research progress of gastric bypass in the treatment of type 2 diabetes mellitus [J]. Journal of Military Surgeon in Southwest China, 2012, 14(3): 511-513. 鐘玳, 覃宗升, 于志清. 胃旁路術(shù)治療2型糖尿病的研究進(jìn)展[J]. 西南軍醫(yī), 2012, 14(3): 511-513.
[41]Kuehl MN, Rodriguez H, Burkhardt BR, et al. Tumor necrosis factor-α, matrix-metalloproteinases 8 and 9 levels in the saliva are associated with increased hemoglobin A1c in type 1 diabetes subjects [J]. PLoS One, 2015, 10(4): e0125320.
[42]Dalmas E, Rouault C, Abdennour M, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction [J]. Am J Clin Nutr, 2011, 94(2): 450-458.
[43]Aron-Wisnewsky J, Tordjman J, Poitou C, et al. Human adipose tissue macrophages: m1 and m2cell surface markers in subcutaneous and omental depots and after weight loss [J]. J Clin Endocrinol Metab, 2009, 94(11): 4619-4623 .
[44]Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery [J]. Surg Obes Relat Dis, 2011, 7(5): 618-624.
[45]Reed MA, Pories WJ, Chapman W, et al. Roux-en-Y gastric bypass corrects hyperinsulinemia implications for the remission of type 2 diabetes [J]. J Clin Endocrinol Metab, 2011, 96(8): 2525-2531.
[46]Peterli R, Steinert RE, Woelnerhanssen B, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial [J]. Obes Surg, 2012, 22(5): 740-748.
[47]Basso N, Capoccia D, Rizzello M, et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis [J]. Surg Endosc, 2011, 25(11): 3540-3550.
[48]Daousi C, Pinkney JH, Cleator J, et al. Acute peripheral administration of synthetic human GLP-1 (7-36 amide) decreases circulating IL-6 in obese patients with type 2 diabetes mellitus: a potential role for GLP-1 in modulation of the diabetic pro-inflammatory state? [J]. Regul Pept, 2013, 183: 54-61.
[49]Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes [J]. Diabetologia, 2012, 55(9): 2456-2468.
[50]Aghamohammadzadeh R, Greenstein AS, Yadav R, et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity [J]. J Am Coll Cardiol, 2013, 62(2): 128-135.
[51]Terasaki M, Nagashima M, Nohtomi K, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin's actions in nondiabetic and diabetic apolipoprotein E-null mice [J]. PLoS One, 2013, 8(8): e70933.
(責(zé)任編輯:李 健)
Research progress of GLP-1 on the regulation of fat cells and related inflammation
MA Zhennan1, LIU Yuan1, TANG Shilei2
1.Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110022; 2.Department of Colorectal, Hernia and Abdominal Surgery, the Fourth Affiliated Hospital of China Medical University, China
To further clarify the mechanism of Roux-en-Y gastni bypass(RYGB) in treating type 2 diabetes by summarizing recent research progress of GLP-1 on the regulation of fat cells and related chronic inflammation. GLP-1 can regulate the metabolism disorder of fat cells and inhibit the development of chronic inflammation in macrophages. The improvement of GLP-1 after RYGB operation can significantly improve the insulin resistance (IR) for variety of reasons, and finally help T2DM patients to chronically relieve symptoms caused by hyperglycemia. The mechanism of GLP-1 regulation of fat cells and related chronic inflammation after RYGB operation is not yet fully understood, and further understanding and studying on the biological function of GLP-1 will provide a theoretical basis for the development of new drugs for treating diabetes.
Type 2 diabetes; Gastric bypass; Glucagon like peptide 1; Fat cells; Inflammation
10.3969/j.issn.1006-5709.2016.06.031
遼寧省科學(xué)技術(shù)基金項(xiàng)目(C916)
馬振南,在讀碩士研究生,研究方向:肝膽、胃腸微創(chuàng)外科。E-mail:mazhennan8888@163.com
劉源,副教授、副主任,研究方向:肝膽、胃腸微創(chuàng)外科。E-mail:liuy12@sj-hospital.org
R57
A
1006-5709(2016)06-0711-05
2015-09-22