• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      干秸稈、鮮豆稈混合厭氧發(fā)酵條件優(yōu)化設(shè)計(jì)

      2016-06-12 06:48:19鄧媛方許家興劉曉燕戴本林徐繼明
      關(guān)鍵詞:厭氧發(fā)酵沼氣秸稈

      鄧媛方,許家興,劉曉燕,戴本林,徐繼明

      (1.淮陰師范學(xué)院 江蘇省生物質(zhì)能與酶技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇淮安 223300;2.淮陰師范學(xué)院 江蘇省區(qū)域現(xiàn)代農(nóng)業(yè)與環(huán)境保護(hù)協(xié)同創(chuàng)新中心,江蘇淮安 223300)

      ?

      干秸稈、鮮豆稈混合厭氧發(fā)酵條件優(yōu)化設(shè)計(jì)

      鄧媛方1,2,許家興1,2,劉曉燕1,2,戴本林1,2,徐繼明1,2

      (1.淮陰師范學(xué)院 江蘇省生物質(zhì)能與酶技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇淮安223300;2.淮陰師范學(xué)院 江蘇省區(qū)域現(xiàn)代農(nóng)業(yè)與環(huán)境保護(hù)協(xié)同創(chuàng)新中心,江蘇淮安223300)

      摘要:以鮮豆稈和風(fēng)干稻秸作為發(fā)酵原料,在前期單因素實(shí)驗(yàn)基礎(chǔ)上,采用3因素5水平二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì),以累計(jì)沼氣產(chǎn)量作為響應(yīng)值,探討溫度、干鮮比(鮮豆稈與風(fēng)干稻秸干物質(zhì)的質(zhì)量比)、接種物質(zhì)量分?jǐn)?shù)3因素對(duì)沼氣產(chǎn)量的影響,并建立數(shù)學(xué)模型,進(jìn)行模型擬合,確定最佳條件.結(jié)果表明:二次項(xiàng)模型擬合效果最佳,3因素對(duì)干鮮秸稈混合厭氧發(fā)酵產(chǎn)氣量影響的大小依次為接種物質(zhì)量分?jǐn)?shù)、溫度、干鮮比.最佳工藝條件為溫度28.97 ℃,干鮮比2.23∶1,接種物質(zhì)量分?jǐn)?shù)30.11%,預(yù)測(cè)TS產(chǎn)氣率279.789 L/kg.模型預(yù)測(cè)值與驗(yàn)證實(shí)驗(yàn)值之間相對(duì)偏差為0.23%(F<0.01),差異不顯著,該多元回歸模型擬合較好,為提高干鮮秸稈混合厭氧發(fā)酵產(chǎn)氣效率提供理論參考.

      關(guān)鍵詞:沼氣;秸稈;厭氧發(fā)酵;模型優(yōu)化

      隨著農(nóng)村分散養(yǎng)殖日益減少,及規(guī)?;B(yǎng)殖的快速推進(jìn),戶用沼氣面臨原料供給不足的困境.中國(guó)作為一個(gè)農(nóng)業(yè)大國(guó),生物資源豐富,其中半數(shù)以上為農(nóng)作物秸稈,其年產(chǎn)量超過(guò)7.5×108t[1],解決對(duì)農(nóng)作物秸桿的利用轉(zhuǎn)換意義重大.中國(guó)秸稈資源中水稻、小麥、玉米秸稈主要以風(fēng)干狀態(tài)存在,水分含量低,纖維素含量高,作為沼氣發(fā)酵原料具有碳氮比高、原料不易降解、發(fā)酵周期長(zhǎng)等特點(diǎn)[2],而豆稈、紅薯藤葉、蔬菜剩余物等鮮青秸稈具有碳氮比低、含水量高、易腐爛降解、發(fā)酵周期短等特點(diǎn)[3-5].本文以鮮豆稈和風(fēng)干稻秸為原料,采用二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)[6],研究發(fā)酵溫度、干鮮比(鮮豆稈與風(fēng)干稻秸干物質(zhì)的質(zhì)量比)、接種物質(zhì)量分?jǐn)?shù)3因素對(duì)干鮮秸稈原料混合厭氧消化的影響,為提高秸稈類原料厭氧消化產(chǎn)沼效率提供理論和實(shí)踐依據(jù).

      1材料與方法

      1.1材料與裝置

      自然風(fēng)干水稻秸稈和新鮮大豆秸稈取自淮陰區(qū)郊區(qū)農(nóng)田,經(jīng)粉碎機(jī)粉碎至長(zhǎng)度1 cm.接種物取自江蘇省生物質(zhì)能與酶技術(shù)重點(diǎn)實(shí)驗(yàn)室自行馴化的厭氧發(fā)酵污泥,實(shí)驗(yàn)原料理化特性見(jiàn)表1.實(shí)驗(yàn)裝置為水壓式厭氧發(fā)酵裝置[7].

      1.2實(shí)驗(yàn)設(shè)計(jì)

      實(shí)驗(yàn)前期分別對(duì)可能影響厭氧發(fā)酵產(chǎn)氣效果的溫度條件、干鮮比和接種物質(zhì)量進(jìn)行單因素實(shí)驗(yàn),初步了解其在厭氧發(fā)酵過(guò)程中產(chǎn)氣量及甲烷含量變化情況.在此基礎(chǔ)上選擇合適的因素水平范圍進(jìn)行編碼,探討水稻、大豆秸稈原料混合厭氧消化的最佳工藝條件[8-10].因素水平編碼見(jiàn)表2.

      利用Design-expet.V8.0.6數(shù)據(jù)處理軟件進(jìn)行二次正交旋轉(zhuǎn)組合實(shí)驗(yàn)方案設(shè)計(jì),單純考慮沼氣產(chǎn)量作為響應(yīng)值,并對(duì)回歸方程進(jìn)行檢驗(yàn),分析單因素(溫度、干鮮比及接種物質(zhì)量分?jǐn)?shù))的變化對(duì)大豆、水稻秸稈混合厭氧消化累計(jì)沼氣產(chǎn)量變化的影響及其主次效應(yīng)[11]和不同因素間交互作用對(duì)干鮮秸稈混合厭氧發(fā)酵產(chǎn)氣量的影響,最終確定最優(yōu)工藝條件.

      表1 水稻、大豆秸稈原料及接種物理化特性

      表2 水平編碼表

      干鮮比指鮮豆稈與風(fēng)干稻秸干物質(zhì)的質(zhì)量比,下同.

      1.3檢測(cè)方法

      總碳(TOC):總有機(jī)碳分析儀(島津TOC儀);總氮(TN):凱氏定氮法;干物質(zhì)(TS)測(cè)定:在(105±1) ℃的干燥箱中干燥至質(zhì)量恒定;產(chǎn)氣量:排水法收集氣體,量筒測(cè)定其體積[12].

      2結(jié)果與分析

      2.1模型構(gòu)建

      通過(guò)Design-expet.V8.0.6實(shí)驗(yàn)設(shè)計(jì)軟件,對(duì)實(shí)際沼氣產(chǎn)率的結(jié)構(gòu)矩陣進(jìn)行排列并對(duì)其實(shí)驗(yàn)結(jié)果進(jìn)行預(yù)測(cè)建模,結(jié)果見(jiàn)表3.

      表3 三元二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)實(shí)驗(yàn)結(jié)果

      2.2擬合模型選擇

      使用Design-expert.V8.0.6實(shí)驗(yàn)設(shè)計(jì)軟件選擇CCD實(shí)驗(yàn)[13],對(duì)表3實(shí)驗(yàn)結(jié)果中產(chǎn)氣量進(jìn)行數(shù)據(jù)分析,結(jié)果見(jiàn)表4.分別采用線性、二次和三次回歸模型對(duì)干鮮秸稈混合厭氧發(fā)酵實(shí)驗(yàn)中的沼氣產(chǎn)率進(jìn)行模型擬合,選擇最優(yōu)的擬合模型.可知二次模型擬合效果極顯著(P<0.000 1).

      表4 模型參數(shù)擬合表

      對(duì)總產(chǎn)氣量數(shù)據(jù)進(jìn)行失擬檢驗(yàn),由數(shù)據(jù)分析可知,線性模型(P<0.000 1)和三次模型(P=0.131 0)的損失度均大于二次模型(P=0.373 1),因此,確定二次模型的擬合程度更優(yōu).

      對(duì)累計(jì)產(chǎn)氣量數(shù)據(jù)進(jìn)行R2綜合分析,線性、二次、三次模型R2依次為0.191 6、0.996 2、0.995 8,由表4可知,二次模型殘差平方和最小(1 476.340),據(jù)此推測(cè)二次模型預(yù)測(cè)值可信度更高.

      綜上所述,通過(guò)對(duì)建立的線性、二次項(xiàng)、三次項(xiàng)模型進(jìn)行方差分析、失擬檢驗(yàn)和R2綜合分析可知,選擇二次項(xiàng)模型對(duì)本實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合是理想的方式.

      2.3TS產(chǎn)氣率模型的建立

      采用Design-expet.V8.0.6數(shù)據(jù)分析軟件對(duì)表3數(shù)據(jù)進(jìn)行方差分析及系數(shù)估計(jì),結(jié)果見(jiàn)表5,沼氣產(chǎn)率為y值,得出以溫度(x1)、干鮮比(x2)、接種物質(zhì)量分?jǐn)?shù)(x3)3因素編碼值為自變量的三元二次回歸方程,見(jiàn)式1.

      y=286.99+35.15x1-8.03x2-47.58x3+11.25x1x2-9.00x1x3+

      6.75x2x3-55.22x12-48.32x22-40.55x32.

      (1)

      對(duì)各項(xiàng)回歸系數(shù)進(jìn)行顯著性檢驗(yàn)(P<0.01),回歸方差顯著,失擬方差不顯著(P=0.373 1),說(shuō)明該方程的擬合良好.實(shí)驗(yàn)采用數(shù)據(jù)與建立二次數(shù)學(xué)模型相符,不需要改變回歸模型.

      表5 回歸方程的方差分析

      2.4單因素效應(yīng)分析

      根據(jù)回歸模型(式 1),依次將3因素中的2個(gè)固定在零水平上,建立溫度、干鮮比和接種物質(zhì)量分?jǐn)?shù)分別對(duì)產(chǎn)氣量影響的單因素回歸模型,見(jiàn)式(2)、(3)、(4).以編碼值為橫坐標(biāo),產(chǎn)氣量為縱坐標(biāo),繪制出溫度、干鮮比、接種物質(zhì)量分?jǐn)?shù)對(duì)產(chǎn)氣量的影響曲線,并對(duì)其進(jìn)行擬合,如圖1所示.

      圖1 單因素與產(chǎn)氣量的關(guān)系 Fig.1 Relationship between single factor andbiogas yield

      由圖1可知,3因素水平變化對(duì)產(chǎn)氣量的影響趨勢(shì)均呈現(xiàn)出開(kāi)口向下的拋物線形態(tài),通過(guò)拋物線的坡度緩急程度以及式(1)中一次項(xiàng)系數(shù)絕對(duì)值大小可以判斷出對(duì)產(chǎn)氣量影響的主次效應(yīng),3因素對(duì)總產(chǎn)氣量的影響順序依次是:接種物質(zhì)量分?jǐn)?shù)>溫度>干鮮比.

      y=286.99+35.15x1-55.22x12,

      (2)

      y=286.99-8.03x2-48.32x22,

      (3)

      y=286.99-47.58x3-40.55x32.

      (4)

      2.5交互因素效應(yīng)分析

      采用Design-expet.V8.0.6數(shù)據(jù)分析軟件對(duì)3個(gè)因素兩兩之間的交互作用進(jìn)行分析,得到因素之間的響應(yīng)面及等高線圖(圖2).

      由圖2可知,發(fā)酵溫度與干鮮比之間交互效應(yīng)顯著.固定干鮮比,產(chǎn)氣量隨溫度增加呈現(xiàn)出先增大后減少的趨勢(shì).實(shí)驗(yàn)選取上水平條件時(shí)產(chǎn)氣量減少可能與實(shí)驗(yàn)所用馴化接種物有關(guān),發(fā)酵罐中所用微生物菌群在30 ℃條件下馴化,進(jìn)入溫度相似環(huán)境能很快適應(yīng),甲烷菌活性大.溫度的驟變給產(chǎn)甲烷微生物活性帶來(lái)顯著影響[14-15].

      圖3反應(yīng)發(fā)酵溫度與接種物質(zhì)量分?jǐn)?shù)的變化對(duì)累計(jì)產(chǎn)氣量的影響趨勢(shì),當(dāng)接種物質(zhì)量分?jǐn)?shù)處于上水平條件時(shí),產(chǎn)氣量有下降的趨勢(shì),在同樣容積負(fù)荷下,接種量越大,發(fā)酵罐中所添加的原料就越少,發(fā)酵罐的容積利用率越低,這對(duì)于發(fā)酵并不利,會(huì)增加同等質(zhì)量原料消化所需容積,降低發(fā)酵罐的容積利用率,增加投資和運(yùn)行成本[16];當(dāng)接種物質(zhì)量分?jǐn)?shù)處于下水平條件時(shí),產(chǎn)氣量總體偏高.說(shuō)明接種物質(zhì)量分?jǐn)?shù)在零水平條件時(shí),接種強(qiáng)度已經(jīng)足夠.在評(píng)估最終沼氣產(chǎn)量時(shí),接種量一般以能夠基本消除批量消化的延滯期和保持 pH值穩(wěn)定為佳[17-19].

      圖2 溫度(x1)、干鮮比(x2)對(duì)產(chǎn)氣量的影響圖3 溫度(x1)、接種物質(zhì)量分?jǐn)?shù)(x3)對(duì)產(chǎn)氣量的影響Fig.2 Effect of temperature(x1) and dry-fresh(x2) TS ratio on Fig.3 Effect of temperature(x1) and inoculation massbiogas productionfraction(x3) on biogas production

      由圖4可知,干鮮比與接種物質(zhì)量分?jǐn)?shù)對(duì)產(chǎn)氣量的影響均呈現(xiàn)開(kāi)口向下的拋物線形,同一接種物質(zhì)量分?jǐn)?shù)水平條件下,不同干鮮比條件對(duì)產(chǎn)氣量有小幅影響,本實(shí)驗(yàn)通過(guò)干鮮比調(diào)配控制碳、氮質(zhì)量比在23∶1~30∶1.一般認(rèn)為發(fā)酵原料的碳、氮質(zhì)量比以(20~30)∶1產(chǎn)氣效果較好[20].

      2.6最優(yōu)工藝條件確定

      通過(guò)模型尋優(yōu),得到干鮮秸稈混合厭氧發(fā)酵最佳工藝條件為:溫度28.97 ℃,干鮮比為2.23∶1,接種物質(zhì)量分?jǐn)?shù)30.11%,預(yù)測(cè)TS產(chǎn)氣率279.789 L/kg(表6).

      為證實(shí)預(yù)測(cè)結(jié)果,采用上述最優(yōu)條件進(jìn)行干鮮秸稈混合厭氧發(fā)酵實(shí)驗(yàn),3次重復(fù),實(shí)測(cè)累計(jì)沼氣產(chǎn)量平均19.63 L(即TS產(chǎn)氣率280.43 L/kg),較預(yù)測(cè)值相對(duì)偏差為0.23%(F<0.01),差異性不顯著,驗(yàn)證了該多元回歸模型的合理性.

      圖4 干鮮比(x2)、接種物質(zhì)量分?jǐn)?shù)(x3)對(duì)產(chǎn)氣量的影響Fig.4    Effect of dry-fresh(x2) TS ratio and inoculation mass   fraction(x3) on biogas production

      因 子編碼值實(shí)際值x10.668 28.97 x20.391 2.23 x3-0.031 30.11 穩(wěn)定點(diǎn)的TS預(yù)測(cè)值279.789L/kg

      3結(jié)論

      1)通過(guò)溫度(x1)、干鮮比 (x2)、接種物質(zhì)量分?jǐn)?shù)(x3) 3因素5水平二次旋轉(zhuǎn)正交組合實(shí)驗(yàn),得到累計(jì)沼氣產(chǎn)量(y)的回歸模型為

      y=286.99+35.15x1-8.03x2-47.58x3+11.25x1x2-9.00x1x3+

      6.75x2x3-55.22x12-48.32x22-40.55x32

      方差分析、失擬檢驗(yàn)和R2綜合分析表明,所得模型擬合良好,能夠用于描述累計(jì)沼氣產(chǎn)量隨發(fā)酵溫度、原料干鮮比、接種物質(zhì)量分?jǐn)?shù)的變化規(guī)律.

      2)3因素對(duì)干鮮秸稈混合厭氧發(fā)酵產(chǎn)氣的影響大小依次為接種物質(zhì)量分?jǐn)?shù)、溫度、干鮮比,且溫度與干鮮比、接種物質(zhì)量分?jǐn)?shù),干鮮比與接種物質(zhì)量分?jǐn)?shù)之間交互作用影響顯著.

      3)風(fēng)干水稻秸稈、新鮮大豆秸稈混合厭氧消化最優(yōu)沼氣產(chǎn)量工藝條件為:溫度28.97 ℃,干鮮比2.23∶1,接種物質(zhì)量分?jǐn)?shù)30.11%,預(yù)測(cè)TS產(chǎn)氣率 279.789L/kg.

      參考文獻(xiàn):

      [1]謝光輝,王曉玉,任蘭天.中國(guó)作物秸稈資源評(píng)估研究現(xiàn)狀[J].生物工程學(xué)報(bào),2010,26(7):855-863.DOI:10.13345/j.cjb.2010.07.023.

      XIE Guanghui,WANG Xiaoyu,REN Lantian.China’s crop residues resources evaluation[J].Chinese Journal of Biotechnology,2010,26(7):855-863.DOI:10.13345/j.cjb.2010.07.023.

      [2]李平,龍韓威,高立洪,等.不同預(yù)處理方式下水稻秸稈厭氧消化性能比較[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):200-205.DOI:10.11975/j.issn.1002-6819.2015.12.027.LI Ping,LONG Hanwei,GAO Lihong,et al.Comparison of anaerobic digestion capability of rice straw with different pretreatment methods[J].Transactions of the CSAE,2015,31(12):200-205.DOI:10.11975/j.issn.1002-6819.2015.12.027.

      [3]石勇,邱凌,邵艷秋,等.小麥秸稈與紅薯藤葉混合厭氧發(fā)酵特性[J].西北農(nóng)業(yè)學(xué)報(bào),2010,19(7):186-189.DOI:10.3969/j.issn.1004-1389.2010.07.040.

      SHI Yong,QIU Ling,SHAO Yanqiu,et al.Study on characteristics of anaerobic fermentation with wheat straw and sweet potato vine[J].Acta Agriculturae Boreali-Occidentalis Sinica,2010,19(7):186-189.DOI:10.3969/j.issn.1004-1389.2010.07.040.

      [4]劉榮厚,王遠(yuǎn)遠(yuǎn),孫辰,等.蔬菜廢棄物厭氧發(fā)酵制取沼氣的試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):209-213.DOI:10.3321/j.issn:1002-6819.2008.04.041.

      LIU Ronghou,WANG Yuanyuan,SUN Chen,et al.Experimental study on biogas production from vegetable waste by anaerobic fermentation[J].Transactions of the CSAE,2008,24(4):209-213.DOI:10.3321/j.issn:1002-6819.2008.04.041.

      [5]ZHANG R H,ZHANG Z Q.Anaerobic digestion of vegetable waste with an anaerobic phased solids digester system[J].Transactions of the CSAE,2002,18(5):134-139.DOI:10.3321/j.issn:1002-6819.2002.05.027.

      [6]盧恩雙,宋世德,郭滿才.回歸通用旋轉(zhuǎn)設(shè)計(jì)的幾個(gè)問(wèn)題[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2000,30(5):110-113.DOI:10.13207/j.cnki.jnwafu.2002.05.026.LU Enshuang,SONG Shide,GUO Mancai.Problems in second-order regression general rotation analysis[J].Journal of Northwest Sci-Tech University of Agriculture and Forestry,2000,30(5):110-113.DOI:10.13207/j.cnki.jnwafu.2002.05.026.

      [7]鄧媛方,邱凌,黃輝,等.酶預(yù)處理對(duì)秸稈類原料厭氧發(fā)酵特性的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):201-206.DOI:10.6041 /j.issn.1000-1298.2015.06.028.

      DENG Yuanfang,QIU Ling,HUANG Hui,et al.Effects of enzymatic pretreatment straw wastes on its characteristics of anaerobic digestion for biogas production[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(6):201-206.DOI:10.6041 /j.issn.1000-1298.2015.06.028.

      [8]KETTUNEN R H,RINTALA J A.The effect of low temperature(5~29 ℃) and adaptation on the methanogenic activity of biomass[J].Applied Microbiology and Biotechnology,1997,48(4):570-576.DOI:10.1007/s002530051098.

      [9]CHEN H,WU H Y.Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology[J].Bioresource Technology,2010,101(14):5487-5493.DOI:10.1016/j.biortech.2010.02.013.

      [10]NALLATHAMBI G.Effect of inoculum/substrate ration and pretreatments on methane yield from parthenium[J].Biomass and bioenergy,1995,8(1):39-44.DOI:10.1016/0961-9534(94)00086-9.

      [11]JEEWON L.Biological conversion of lignocellulosic biomass to ethanol[J].Journal of Biotechnology,1997(6):323-325.DOI:10.1016/S0168-1656(97)00073-4.

      [12]鄧媛方,邱凌.香菇廢棄菌棒厭氧發(fā)酵產(chǎn)氣規(guī)律正交試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(3):174-178.DOI:10.6041/j.issn.1000-1298.2014.03.029.

      DENG Yuanfang,QIU Ling.Orthogonal test and regression analysis for biogas production of shii-take cultivation waste[J] Transactions of the Chinese Society for Agricultural Machinery,2014,45(3):174-178.DOI:10.6041/j.issn.1000-1298.2014.03.029.

      [13]MOLPECERES J,GUZMAN M,ABERTURAS M R,et al.Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement.[J].Journal of pharmaceutical sciences,1996,85(2):206.DOI:10.1021/js950164r.

      [14]AHRING B K,IBRAHIM A A,MLADENOVSKA Z.Effect of temperature increase from 55 ℃ to 65 ℃ on performance and microbial population dynamics of an anaerobic reactor treating cattle manure[J].Water Research,2001,35:2446-2452.DOI:10.1016/S0043-1354(00)00526-1.

      [15]YOUNG Chaesong.Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge[J].Water Research,2004,38:1653-1662.DOI:10.1016/j.watres.2003.12.019.

      [16]LOPES W S,LEITE V D, PRASAD S.Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste[J].Bioresource Technology,2004,94(3):261-266.DOI:10.1016/j.biortech.2004.01.006.

      [17]HASHIMOTO A G.Effect of inoculum/substrate ratio on methane yield and production rate[J].Biological Wastes,1989,28(89):247-255.DOI:10.1016/0269-7483(89)90108-0.

      [18]GUNASEELAN V N.Anaerobic digestion of gliricidia leaves for biogas and organic manure[J].Biomass,1988,17(1):1-11.DOI:10.1016/0144-4565(88)90066-2.

      [19]GUNASEELAN V N.Effect of inoculum/substrate ratio and pretreatments on methane yield from parthenium[J].Biomass and Bioenergy,1995,8(1):39-44.DOI:10.1016/0961-9534(94)00086-9.

      [20]邱凌,盧旭珍,王蘭英,等.日光溫室生產(chǎn)廢棄物厭氧發(fā)酵特性初探[J].中國(guó)沼氣,2005,23(2):30-32.DOI:10.3969/j.issn.1000-1166.2005.02.008.

      QIU Ling,LU Xuzhen,WANG Lanying,el al.Study on anaerobic digestion character of vegetable waste from greenhouse[J].China biogas,2005,23(2):30-32.DOI:10.3969/j.issn.1000-1166.2005.02.008.

      (責(zé)任編輯:趙藏賞)

      Optimization design of anaerobic fermentation with mixed materials of bean stalk and rice straw

      DENG Yuanfang1,2,XU Jiaxing1.2,LIU Xiaoyan1,2,DAI Benlin1,2,XU Jiming1,2

      (1.Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology,Huaiyin Normal University,Huaian 223300,China;2.Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection,Huaiyin Normal University,Huaian 223300,China)

      Abstract:This experiment use fresh bean stalk and natural withering rice straw as fermentation materials.On the basis of earlier single factor test,three factors five levels quadratic regression orthogonal rotating combination design was adopted in this study,and only the accumulative gas production was involved in the response value.Effects of three factors on anaerobic fermentation were analyzed,including the environment of anaerobic fermentation temperature,dry-fresh TS ratio,inoculation percentage and the mathematical model for anaerobic mixed fermentation of bean stalk and rice straw was developed.The regression equation was optimized and analyzed when the optimum conditions and interactive effects were exposed.The results showed that the quadratic model had the optimal fitting data.The sequence of factors effecting anaerobic fermentation was inoculation percentage,the environment of anaerobic fermentation temperature

      and dry-fresh TS ratio.The optimum conditions for dry-fresh mixed-fermentation were determined as follows:the temperature was 28.97 ℃,dry-fresh TS ratio of fresh bean stalk and rice straw was 2.23∶1,inoculation percentage was 30.11% and prediction value of TS production rate was 279.789 L/kg.Through testing with related experimental data,the relative deviation of biogas production between experiment measurement and model prediction was 0.23 %(F<0.01),which proved the multiple regression model had high fitting degree and applicability.This study could provide certain theory reference for materials anaerobic digestion of mixed straw material.

      Key words:biogas;straw;anaerobic digestion;model optimization

      DOI:10.3969/j.issn.1000-1565.2016.01.010

      收稿日期:2015-06-25

      基金項(xiàng)目:國(guó)家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(21406083);江蘇省生物質(zhì)能與酶技術(shù)重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目(JSBEET1211)

      通信作者:許家興(1986—),男,山東日照人,淮陰師范學(xué)院副教授,博士,主要從事生物質(zhì)能研究.

      中圖分類號(hào):X712

      文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1000-1565(2016)01-0058-07

      第一作者:鄧媛方(1985—),女,河南南陽(yáng)人,淮陰師范學(xué)院講師,主要從事生物質(zhì)能研究.E-mail:dengyf@hytc.edu.cn

      E-mail:xujiaxing@hytc.edu.cn

      猜你喜歡
      厭氧發(fā)酵沼氣秸稈
      餐廚垃圾厭氧發(fā)酵熱電氣聯(lián)供系統(tǒng)優(yōu)化
      解讀“一號(hào)文件”:推進(jìn)秸稈綜合利用
      推廣秸稈還田 有效培肥土壤
      第四章 化糞土為力量——沼氣能
      第四章 化糞土為力量——沼氣能
      法國(guó)梧桐落葉、香樟青葉與豬糞混合厭氧發(fā)酵特性的探究
      秸稈綜合利用模式探索
      《中國(guó)沼氣》征稿簡(jiǎn)則
      水泡糞工藝制沼氣及沼氣的凈化提純
      上海煤氣(2016年1期)2016-05-09 07:12:35
      太陽(yáng)能-地能熱泵耦合系統(tǒng)在沼氣工程厭氧發(fā)酵增溫中的設(shè)計(jì)與應(yīng)用
      铁岭县| 禹城市| 龙游县| 高邑县| 临猗县| 东莞市| 晋中市| 三门县| 南漳县| 台东市| 梅河口市| 文昌市| 西盟| 阳高县| 迁西县| 香港| 清水县| 白城市| 兴城市| 合水县| 乳源| 黔西| 福贡县| 新宁县| 澎湖县| 泉州市| 榆社县| 高陵县| 梧州市| 武陟县| 靖远县| 沽源县| 四平市| 屏东县| 新田县| 武邑县| 那坡县| 池州市| 沂南县| 大兴区| 天镇县|