楊友運(yùn),劉喜強(qiáng),孫 睿
(1.西安石油大學(xué) 地球科學(xué)與工程學(xué)院,西安 710065; 2.西北大學(xué) 地質(zhì)學(xué)系,西安 710069)
?
深埋砂巖儲(chǔ)層長石溶孔率定量計(jì)算的新方法及應(yīng)用
——以鄂爾多斯盆地隴東地區(qū)長81儲(chǔ)層為例
楊友運(yùn)1,劉喜強(qiáng)2,孫睿2
(1.西安石油大學(xué) 地球科學(xué)與工程學(xué)院,西安710065; 2.西北大學(xué) 地質(zhì)學(xué)系,西安710069)
摘要:次生孔隙是砂巖儲(chǔ)層中重要的油氣儲(chǔ)集空間,而長石溶蝕產(chǎn)生的次生孔隙(即長石溶孔)往往是最重要的次生孔隙類型之一?;跓崃W(xué)原理,提出了依據(jù)溶蝕產(chǎn)物自生黏土礦物的含量定量計(jì)算深埋條件下長石溶蝕產(chǎn)生的次生孔隙率的新方法,即:鉀長石次生孔隙率 = 0.28×高嶺石含量或0.36×伊利石含量;鈉長石次生孔隙率= 0.10×高嶺石含量或0.17×伊利石含量;鈣長石次生孔隙率 = 0.014×高嶺石含量或0.08×伊利石含量。在對(duì)鄂爾多斯盆地隴東地區(qū)長81儲(chǔ)層的礦物巖石學(xué)特征進(jìn)行詳細(xì)研究的基礎(chǔ)上,依據(jù)新方法對(duì)隴東地區(qū)長81儲(chǔ)層深埋條件下長石溶蝕產(chǎn)生的次生孔隙率進(jìn)行了計(jì)算,并與實(shí)測(cè)面孔率和溶蝕模擬實(shí)驗(yàn)結(jié)果進(jìn)行了對(duì)比。結(jié)果表明,長81儲(chǔ)層51塊樣品長石溶蝕產(chǎn)生的次生孔隙率的計(jì)算平均值為1.32%,與長石溶孔率的實(shí)測(cè)值(平均1.44%)比較接近;與溶蝕模擬實(shí)驗(yàn)產(chǎn)生的溶孔率相比,新方法的計(jì)算結(jié)果也是合理的。
關(guān)鍵詞:長石溶蝕;次生孔隙;計(jì)算方法;模擬實(shí)驗(yàn),長81儲(chǔ)層;隴東地區(qū);鄂爾多斯盆地
次生孔隙是砂巖儲(chǔ)層中重要的油氣儲(chǔ)集空間,目前已知的砂巖孔隙中至少有1/3是由次生孔隙貢獻(xiàn)的[1-2]。砂巖儲(chǔ)層中的次生孔隙主要由長石、巖屑等不穩(wěn)定的骨架顆粒及早期形成的碳酸鹽膠結(jié)物等的溶蝕形成。大量研究表明,作為分布最廣泛的骨架組分,長石溶蝕形成的次生孔隙(即長石溶孔)有效提高了砂巖儲(chǔ)層的孔隙度和滲透率,尤其對(duì)深部埋藏的砂巖儲(chǔ)層孔滲條件有著明顯的改善。
自20世紀(jì)70年代以來,國內(nèi)外許多研究者深入研究了砂巖儲(chǔ)層中成巖作用與次生孔隙的形成及演化、次生孔隙的形成機(jī)制及識(shí)別標(biāo)志等問題[3-15]。對(duì)于溶蝕介質(zhì),普遍認(rèn)為次生孔隙是由有機(jī)質(zhì)熱成熟過程中形成的有機(jī)酸或有機(jī)質(zhì)脫羧作用所產(chǎn)生的CO2形成的酸性流體溶蝕長石等不穩(wěn)定組分形成的,而近年來有不少研究[2,14-15]認(rèn)為,近地表暴露或淺埋藏階段大氣淡水的淋濾和溶解作用也是形成次生孔隙的重要機(jī)制。許多研究者[16-25]采用模擬實(shí)驗(yàn)研究了礦物結(jié)構(gòu)與成分、流體性質(zhì)和反應(yīng)溫壓條件等因素對(duì)長石溶蝕速率和溶蝕量的影響。羅孝俊和楊衛(wèi)東[26]、賴興運(yùn)等[27]、黃可可等[28]、遠(yuǎn)光輝等[29]依據(jù)熱力學(xué)原理探討了溫度、pH、有機(jī)酸類型等因素對(duì)長石溶蝕程度的影響,而李汶國等[30]、趙國泉等[31]定量計(jì)算了當(dāng)溶蝕產(chǎn)物為高嶺石時(shí)鉀長石、鈉長石和鈣長石溶蝕理論上可產(chǎn)生的次生孔隙率。他們的計(jì)算表明,封閉系統(tǒng)中鉀長石溶蝕仍能產(chǎn)生可觀的次生孔隙,鈉長石次之,而鈣長石溶蝕幾乎不產(chǎn)生次生孔隙。
本文提出一個(gè)依據(jù)溶蝕產(chǎn)物自生黏土礦物的含量定量計(jì)算長石溶孔率的新方法,并應(yīng)用于鄂爾多斯盆地隴東地區(qū)長81儲(chǔ)層。長81儲(chǔ)層是長慶油田隴東地區(qū)的主力油層之一,屬于低滲透的陸相致密砂巖儲(chǔ)層,以長石溶孔為主的次生孔隙是長81儲(chǔ)層最主要的儲(chǔ)集空間之一。雖然對(duì)于鄂爾多斯盆地延長組長石溶蝕機(jī)理和次生孔隙形成機(jī)制存在一些不同看法[2,15,32-34],但普遍認(rèn)為長8油層組的次生孔隙主要是埋藏成巖過程中與長7烴源巖有關(guān)的有機(jī)酸溶蝕長石所形成的[34]。在對(duì)隴東地區(qū)長81儲(chǔ)層的礦物巖石學(xué)特征進(jìn)行詳細(xì)研究的基礎(chǔ)上,本文依據(jù)新方法對(duì)長81儲(chǔ)層在深埋條件下長石溶蝕產(chǎn)生的次生孔隙率進(jìn)行了計(jì)算,并與實(shí)測(cè)面孔率和溶蝕模擬實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,來驗(yàn)證計(jì)算結(jié)果的可靠性和計(jì)算方法的可行性,為隴東地區(qū)油氣資源的勘探和開發(fā)提供依據(jù)。
1儲(chǔ)層特征
1.1地質(zhì)概況
鄂爾多斯盆地是我國重要的含油氣盆地之一,是一個(gè)多構(gòu)造體系、多旋回演化、多沉積類型的克拉通盆地。其基底為早古生代碳酸鹽和蒸發(fā)鹽沉積以及晚古生代海陸交互相沉積;自晚三疊世開始,進(jìn)入內(nèi)陸坳陷盆地沉積時(shí)期。上三疊統(tǒng)延長組是在盆地持續(xù)坳陷和穩(wěn)定沉降過程中堆積的一套沖積扇與扇三角洲—河流—湖泊相陸源碎屑巖沉積體系,巖性主要為細(xì)砂巖、粉砂巖與泥巖互層,中夾油頁巖。根據(jù)盆地油層縱向分布規(guī)律,延長組自上而下分為10個(gè)油層組,各油層組之間均為連續(xù)沉積的整合接觸。其中長7是延長組油氣藏的主要烴源巖層,而長2、長6和長8是盆地內(nèi)主要的含油氣層系[35-36]。
隴東地區(qū)位于鄂爾多斯盆地西南部,區(qū)域構(gòu)造上屬伊陜斜坡西南部。由于三疊紀(jì)末印支運(yùn)動(dòng)使盆地西南部抬升,隴東地區(qū)遭受強(qiáng)烈風(fēng)化剝蝕,缺失長1、長2地層,因此長6及長8油層組是隴東地區(qū)的主力油層,兩者均屬于特低—低孔、特低滲型儲(chǔ)層。對(duì)于長8油層組,根據(jù)巖性性質(zhì)等特征,可將其自上而下分為長81、長82和長83等3個(gè)階段,其中長81為長8儲(chǔ)層最為發(fā)育的階段,因此本研究選擇隴東地區(qū)長81儲(chǔ)層為研究對(duì)象,探討深埋條件下長石溶孔率的定量計(jì)算。
1.2巖石學(xué)特征
通過對(duì)研究區(qū)32口井66塊巖心樣品的薄片鏡下觀察,本區(qū)儲(chǔ)層巖性以巖屑質(zhì)長石砂巖和長石砂巖為主,長石質(zhì)巖屑砂巖次之。碎屑組分以石英和長石為主,其中長石含量20%~56%,平均35.9%,主要為正長石和酸性斜長石,正長石含量略高于斜長石;石英含量16%~66%,平均32.7%;巖屑含量5%~25%,平均11.5%,以噴出巖、石英巖、千枚巖、粉砂巖、泥巖巖屑為主;黑云母和白云母含量介于1%~16%之間,平均4.2%;填隙物含量較高,其含量為5%~34%之間,平均值為15.2%,填隙物中主要有綠泥石和伊利石等黏土礦物、方解石和白云石等碳酸鹽膠結(jié)物以及硅質(zhì)膠結(jié)等。
碎屑顆粒粒度主要為中—細(xì)粒(0.1~0.5 mm),大多呈次圓—次棱角狀,分選中等—好,成熟度中等,反映了沉積區(qū)距離物源較近、沉積水動(dòng)力較強(qiáng)的特點(diǎn)。顆粒間接觸關(guān)系以點(diǎn)—線狀接觸為主,膠結(jié)方式為孔隙式膠結(jié)和基底式膠結(jié)。
1.3長石溶蝕與次生孔隙特征
長81儲(chǔ)層的儲(chǔ)集空間由原生孔隙和次生孔隙構(gòu)成,包含少量的微孔和微裂隙。次生孔隙由粒間溶孔、長石溶孔、晶間孔、巖屑溶孔、碳酸鹽膠結(jié)物溶孔等構(gòu)成,其中長石溶孔占據(jù)主導(dǎo)地位,鏡下特征為長石溶蝕形成粒內(nèi)溶孔,甚至完全溶蝕形成鑄???圖1a,b)。
圖1 鄂爾多斯盆地隴東地區(qū)長81儲(chǔ)層長石溶孔與自生伊利石
偏光顯微鏡觀察和掃描電鏡分析表明,正長石的溶蝕程度高于酸性斜長石,長石溶蝕生成的自生黏土礦物主要是伊利石,少量為高嶺石。這些自生伊利石主要以鱗片狀或網(wǎng)狀伊利石集合體形式(圖1c,d)分布在顆粒表面或充填于長石溶孔中,在掃描電鏡下呈卷曲片狀或絲縷狀(圖1e,f)。
2長石溶孔率計(jì)算原理
在有酸性介質(zhì)存在時(shí),鉀長石(Or)、鈉長石(Ab)及鈣長石(An)與水接觸均會(huì)發(fā)生溶蝕反應(yīng),生成高嶺石等自生黏土礦物,其反應(yīng)式分別為:
2KAlSi3O8(鉀長石)+2H++H2O=
Al2Si2O5(OH)4(高嶺石)+4SiO2(石英)+2K+
(1)
2NaAlSi3O8(鈉長石)+2H++H2O=
Al2Si2O5(OH)4(高嶺石)+4SiO2(石英)+2Na+
(2)
CaAl2Si2O8(鈣長石) +2H++H2O=
Al2Si2O5(OH)4(高嶺石)+Ca2+
(3)
埋藏條件下的儲(chǔ)層可看作封閉體系,即溶蝕產(chǎn)物全部保留在儲(chǔ)層中。將溶蝕反應(yīng)的體積差定義為固體產(chǎn)物體積的加和減去固體反應(yīng)物的體積,則根據(jù)礦物的摩爾體積數(shù)據(jù)(鉀長石109.1 cm3/mol、鈉長石100.2 cm3/mol、鈣長石100.7 cm3/mol、α石英22.7 cm3/mol、高嶺石99.3 cm3/mol、伊利石140.6 cm3/mol)[37]進(jìn)行計(jì)算可知,上述3個(gè)溶蝕反應(yīng)式的體積差均為負(fù)數(shù)(分別為-28.1,-10.3 ,-1.4 cm3/mol),即反應(yīng)后固相體積減少,這部分體積差就是鉀長石、鈉長石和鈣長石溶蝕所產(chǎn)生的次生孔隙。以原始礦物(鉀長石、鈉長石或鈣長石)所占體積為準(zhǔn),則反應(yīng)式(1)-(3)產(chǎn)生的次生孔隙度為12.9%,5.1%,1.4%,與李汶國等[30]的計(jì)算結(jié)果一致。
當(dāng)古地溫達(dá)到120~140 ℃并且孔隙流體中含有足夠量的鉀離子時(shí),將發(fā)生高嶺石的伊利石化作用[38-39]。溶蝕反應(yīng)式(1)-(3)伴隨高嶺石的伊利石化作用的凈效果等價(jià)于3種長石溶蝕生成伊利石的反應(yīng),即:
3KAlSi3O8(鉀長石)+2H+=
KAl3Si3O10(OH)2(伊利石)+6SiO2(石英)+2K+
(4)
3NaAlSi3O8(鈉長石)+K++2H+=
KAl3Si3O10(OH)2(伊利石) +6SiO2(石英)+2Na+
(5)
CaAl2Si2O8(鈣長石) +2K++4H+=
2KAl3Si3O10(OH)2(伊利石) +3Ca2+
(6)
式(5)和(6)所需的鉀離子可由式(4)提供。定量計(jì)算表明,只要儲(chǔ)層中鉀長石的溶蝕量(以體積計(jì))達(dá)到鈉長石溶蝕量的54.4%,則鉀長石溶蝕產(chǎn)生的K+足以使鈉長石溶蝕生成的高嶺石全部轉(zhuǎn)化為伊利石。同樣只要儲(chǔ)層中鉀長石的溶蝕量達(dá)到鈣長石溶蝕量的108.3%,則鉀長石溶蝕產(chǎn)生的K+能夠使鈣長石溶蝕生成的高嶺石全部轉(zhuǎn)化為伊利石。溶蝕反應(yīng)式(4)-(6)的體積差分別為-50.6,-23.9 ,-20.9cm3/mol,以原始礦物所占體積為準(zhǔn),這些反應(yīng)產(chǎn)生的次生孔隙度分別為15.5%,8.0%,6.9%。顯然,相對(duì)于溶蝕產(chǎn)物為高嶺石的情形,當(dāng)3種長石的溶蝕產(chǎn)物為伊利石時(shí)能夠產(chǎn)生更多的次生孔隙。
因?yàn)榉磻?yīng)式(1)-(6)均只生成一種自生黏土礦物,所以可根據(jù)產(chǎn)物高嶺石或伊利石的含量計(jì)算3種長石溶蝕所產(chǎn)生的次生孔隙度。對(duì)于式(1)-(6),相應(yīng)的計(jì)算公式分別為:
鉀長石次生孔隙率 = 0.28×高嶺石含量
(7)
鈉長石次生孔隙率 = 0.10×高嶺石含量
(8)
鈣長石次生孔隙率 = 0.014×高嶺石含量
(9)
鉀長石次生孔隙率 = 0.36×伊利石含量
(10)
鈉長石次生孔隙率 = 0.17×伊利石含量
(11)
鈣長石次生孔隙率 = 0.08×伊利石含量
(12)
3計(jì)算實(shí)例與討論
如前所述,普遍認(rèn)為鄂爾多斯盆地延長組長8油層組的次生孔隙主要是埋藏成巖過程中與長7烴源巖有關(guān)的有機(jī)酸溶蝕長石所形成的,因此本計(jì)算方法應(yīng)用的前提條件——封閉體系假定能夠近似滿足。隴東地區(qū)長81儲(chǔ)層中的自生黏土礦物除了綠泥石外,主要是伊利石,高嶺石和伊蒙混層礦物含量很低,另外正長石的溶蝕程度高于酸性斜長石。這些特征意味著長石類礦物溶蝕形成的高嶺石基本轉(zhuǎn)化成伊利石,因此本研究根據(jù)自生伊利石含量(以體積分?jǐn)?shù)計(jì))計(jì)算各類長石溶蝕產(chǎn)生的次生孔隙率(表1)。
正長石和斜長石成分的電子探針分析表明,絕大多數(shù)正長石中Or的含量超過80%(摩爾分?jǐn)?shù)),而斜長石以Ab組分為主(摩爾分?jǐn)?shù)大于80%),沒有發(fā)現(xiàn)富An的斜長石(這與長石族礦物中基性斜長石的熱力學(xué)性質(zhì)最不穩(wěn)定,極易在同生至淺埋藏條件下消耗殆盡的特點(diǎn)一致[38])。因此本研究將正長石的成分近似為純的鉀長石,斜長石的成分近似為純的鈉長石,根據(jù)公式(10)和(11)計(jì)算次生孔隙率。在統(tǒng)計(jì)伊利石含量時(shí),將正長石表面及周圍孔隙中的自生伊利石視為正長石溶蝕的產(chǎn)物,將斜長石表面及周圍孔隙中的自生伊利石視為斜長石溶蝕的產(chǎn)物,而充填于正長石與斜長石顆粒之間的孔隙中的自生伊利石則進(jìn)行均分。
通過偏光顯微鏡觀察測(cè)定了66塊鑄體薄片的正長石及斜長石含量、面孔率及其中的次生孔隙率、以及分別由正長石和斜長石溶蝕產(chǎn)生的自生伊利石含量,然后代入公式(10)和(11)分別計(jì)算正長石和斜長石溶蝕產(chǎn)生的次生孔隙率。部分樣品的礦物含量實(shí)測(cè)數(shù)據(jù)、長石溶孔率計(jì)算值以及實(shí)測(cè)值(單位均為體積分?jǐn)?shù))列于表1中。表1顯示,長石溶孔率的計(jì)算值變化范圍在0.6%~2.0% 之間,平均1.32%;而長石溶孔率實(shí)測(cè)值的范圍是0~3.0%(由于鑄膠技術(shù)的限制以及后期碳酸鹽膠結(jié)物的充填,部分鑄體薄片的次生孔隙率甚至總孔隙率幾乎為零),平均1.44%(排除實(shí)測(cè)值為零的樣品)。對(duì)于多數(shù)樣品,本研究的計(jì)算值與實(shí)測(cè)值比較接近或略偏低。總的來說,本研究提出的理論方法的計(jì)算結(jié)果與長81儲(chǔ)層的實(shí)際情況符合較好。
表1 鄂爾多斯盆地隴東地區(qū)長81儲(chǔ)層長石溶孔率計(jì)算值及實(shí)測(cè)值
當(dāng)然,本計(jì)算方法將儲(chǔ)層視為封閉體系的假定對(duì)于深埋儲(chǔ)層基本符合實(shí)際;但是淺埋藏儲(chǔ)層并非封閉體系,而是開放—半封閉體系,因此本方法不再適用。在淺埋藏條件下長石溶蝕釋放的硅和鋁元素隨地層水遷移并離開儲(chǔ)層(而不在原地形成自生黏土礦物沉淀)從而產(chǎn)生更多的次生孔隙。因?yàn)殚L81儲(chǔ)層中有部分長石溶孔形成于淺埋藏階段,所以本方法的計(jì)算值低于實(shí)測(cè)值是合理的。
為了探討長81儲(chǔ)層在有機(jī)酸作用下形成次生孔隙的潛力并與長石溶孔率計(jì)算值進(jìn)行對(duì)比,本研究委托中國石化石油勘探開發(fā)研究院無錫石油地質(zhì)研究所實(shí)驗(yàn)研究中心開展了溶蝕實(shí)驗(yàn)研究。本次模擬實(shí)驗(yàn)選取白280井一組巖樣分成4份,分別在4組不同的溫度—壓力條件下與0.5 mol/L的乙酸水溶液反應(yīng)約100 h。詳細(xì)的實(shí)驗(yàn)方法和過程本文省略,僅介紹實(shí)驗(yàn)結(jié)果。
借助掃描電鏡對(duì)反應(yīng)前后的樣品進(jìn)行定位觀察和能譜分析,發(fā)現(xiàn)砂巖中的長石顆粒和方解石膠結(jié)物發(fā)生了較明顯的溶蝕(圖2)。在4組不同的溫度—壓力條件下,樣品反應(yīng)后增加的次生孔隙率各不相同(表2)??偟膩碚f,溶蝕率隨溫度壓力的升高而增大(其中溫度是主要因素)。在90 ℃和120 ℃的溫度條件下溶蝕率分別為1.87%和2.47%??紤]到深埋條件下長石的大量溶蝕主要發(fā)生在生油高峰形成之前(100~120 ℃),這時(shí)有機(jī)質(zhì)分解產(chǎn)生的有機(jī)酸溶液(尤其是二元羧酸)可以使長石等鋁硅酸鹽礦物發(fā)生強(qiáng)烈的溶蝕形成次生孔隙,因此上述2個(gè)實(shí)驗(yàn)溫度能夠大致代表儲(chǔ)層中長石大規(guī)模溶蝕的溫度上下限。本研究長石溶孔率的計(jì)算值和實(shí)測(cè)值均低于人工實(shí)驗(yàn)值,考慮到溶蝕模擬實(shí)驗(yàn)產(chǎn)生的溶孔中有相當(dāng)比例是由碳酸鹽膠結(jié)物溶蝕產(chǎn)生的,本方法的計(jì)算結(jié)果是比較合理的。
圖2 鄂爾多斯盆地隴東地區(qū)白280井
溫度/℃壓力/MPa溶孔率/%65151.7690201.87120302.47150353.35
5結(jié)論
(1)基于熱力學(xué)原理,本研究提出了依據(jù)溶蝕產(chǎn)物自生黏土礦物的含量定量計(jì)算長石溶孔率的新方法。
(2)以長石溶孔為主的次生孔隙是隴東地區(qū)長81儲(chǔ)層的重要儲(chǔ)集空間,在深埋條件下正長石的溶蝕程度高于斜長石,長石溶蝕產(chǎn)物主要是自生伊利石,少量為高嶺石。
(3)根據(jù)自生伊利石含量計(jì)算了正長石及斜長石溶蝕產(chǎn)生的次生孔隙率(即長石溶孔率)。66塊樣品的長石溶孔率計(jì)算平均值為1.32%,與長石溶孔率的實(shí)測(cè)值(平均1.44%)接近,說明本方法的計(jì)算結(jié)果與長81儲(chǔ)層的實(shí)際情況符合較好。與溶蝕模擬實(shí)驗(yàn)產(chǎn)生的溶孔率相比,本方法的計(jì)算結(jié)果也是合理的。
參考文獻(xiàn):
[1]Surdam R C,Boese S W,Crossey L J.The chemistry of secondary porosity[M]//MacDonald D A,Surdam R C.Clastic diagenesis.Tulsa,Okla:American Association of Petroleum Geologists,1984:127-149.
[2]黃思靜,武文慧,劉潔,等.大氣水在碎屑巖次生孔隙形成中的作用:以鄂爾多斯盆地三疊系延長組為例[J].地球科學(xué),2003,28(4):419-424.
Huang Sijing,Wu Wenhui,Liu Jie,et al.Generation of secondary porosity by meteoric water during time of subaerial exposure:An example from Yanchang Formation sandstone of Triassic of Ordos basin[J].Earth Science,2003,28(4):419-424.
[3]Giles M,Marshall J D.Constraints on the development of secondary porosity in the subsurface:Re-evaluation of processes[J].Marine and Petroleum Geology,1986,3(3):243-255.
[4]Surdam R C,Crossey L J,Hagen E S,et al.Organic-inorganic and sandstone diagenesis[J].AAPG Bulletin,1989,73(1):1-23.
[5]Thyne G,Boudreau B P,Ramm M,et al.Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation,North Sea[J].AAPG Bulletin,2001,85(4):621-635.
[6]Taylor T R,Giles M R,Hathon L A,et al.Sandstone diagenesis and reservoir quality prediction:Models,myths,and reality[J].AAPG Bulletin,2010,94(8):1093-1132.
[7]陳麗華,趙澄林,紀(jì)友亮,等.碎屑巖天然氣儲(chǔ)集層次生孔隙的三種成因機(jī)理[J].石油勘探與開發(fā),1999,26(5):77-79.
Chen Lihua,Zhao Chenglin,Ji Youliang,et al.Three formation mecha-nisms of secondary porosity in clastic gas reservoir rocks[J].Petro-leum Exploration and Development,1999,26(5):77-79.
[8]張枝煥,胡文瑄,曾濺輝,等.東營凹陷下第三系流體—巖石相互作用研究[J].沉積學(xué)報(bào),2000,18(4):560-566.
Zhang Zhihuan,Hu Wenxuan,Zeng Jianhui,et al.Study of fluid-rock interactions in Eogene formation in Dongying Depression,Bohai Gulf Basin[J].Acta Sedimentologica Sinica,2000,18(4):560-566.
[9]鐘大康,朱筱敏,周新源,等.次生孔隙形成期次與溶蝕機(jī)理:以塔中地區(qū)志留系瀝青砂巖為例[J].天然氣工業(yè),2006,26(9):21-24.
Zhong Dakang,Zhu Xiaomin,Zhou Xinyuan,et al.Phases of secondary pore generation and dissolution mechanism:Taking Silurian asphaltic sandstone in Central Tarim Basin as an example[J].Natural Gas Industry,2006,26(9):21-24.
[10]季漢成,徐珍.深部碎屑巖儲(chǔ)層溶蝕作用實(shí)驗(yàn)?zāi)M研究[J].地質(zhì)學(xué)報(bào),2007,81(2):212-219.
Ji Hancheng,Xu Zhen.Experimental simulation for dissolution in clastic reservoirs of the deep zone[J].Acta Geologica Sinica,2007,81(2):212-219.
[11]朱筱敏,王英國,鐘大康,等.濟(jì)陽坳陷古近系儲(chǔ)層孔隙類型與次生孔隙成因[J].地質(zhì)學(xué)報(bào),2007,81(2):197-204.
Zhu Xiaomin,Wang Yingguo,Zhong Dakang,et al.Pore types and secondary pore evolution of Paleogene reservoir in the Ji-yang Sag[J].Acta Geologica Sinica,2007,81(2):197-204.
[12]郝樂偉,王琪,廖朋,等.番禺低隆起—白云凹陷北坡第三系儲(chǔ)層次生孔隙形成機(jī)理分析[J].沉積學(xué)報(bào),2011,29(4):734-743.
Hao Lewei,Wang Qi,Liao Peng,et al.Forming mechanism of secondary porosity in Tertiary reservoirs in Panyu Low Uplift and north slope of Baiyun Sag[J].Acta Sedimentologica Sinica,2011,29(4):734-743.
[13]趙珊珊,張哨楠,萬友利.塔中順托果勒低隆區(qū)柯坪塔格組長石溶蝕及對(duì)儲(chǔ)層的影響[J].石油實(shí)驗(yàn)地質(zhì),2015,37(3):293-299.
Zhao Shanshan,Zhang Shaonan,Wan Youli.Feldspar dissolution and its effect on reservoir in Kepingtage Formation,Shun-tuoguole Low Uplift,central Tarim Basin[J].Petroleum Geology & Experiment,2015,37(3):293-299.
[14]Fran?a A B,Araújo L M,Maynard J B,et al.Secondary porosity formed by deep meteoric leaching:Botucatu eolianite,southern South America[J].AAPG Bulletin,2003,87(7):1073-1082.
[15]丁曉琪,韓玫梅,張哨楠,等.大氣淡水在碎屑巖次生孔隙中的作用[J].地質(zhì)論評(píng),2014,60(1):145-158.
Ding Xiaoqi,Han Meimei,Zhang Shaonan,et al.Roles of meteoric water on secondary porosity of siliciclastic reservoirs[J].Geological Review,2014,60(1):145-158.
[16]Stoessell R K,Pittman E D.Secondary porosity revisited:The che-mistry of feldspar dissolution by carboxylic acids and anions[J].AAPG Bulletin,1990,74(12):1795-1805.
[17]Huang W L,Longo J M.The effect of organics on feldspar dissolution and the development of secondary porosity[J].Chemical Geology,1992,98(3/4):271-292.
[18]Franklin S P,Hajash Jr A,Dewers T A,et al.The role of carbo-xylic acids in albite and quartz dissolution:An experimental study under diagenetic conditions[J].Geochimica et Cosmochimica Acta,1994,58(20):4259-4279.
[19]黃思靜,楊俊杰,張文正,等.不同溫度條件下乙酸對(duì)長石溶蝕過程的實(shí)驗(yàn)研究[J].沉積學(xué)報(bào),1995,13(1):7-17.
Huang Sijing,Yang Junjie,Zhang Wenzheng,et al.Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J].Acta Sedimentologica Sinica,1995,13(1):7-17.
[20]楊俊杰,黃月明,張文正,等.乙酸對(duì)長石砂巖溶蝕作用的實(shí)驗(yàn)?zāi)M[J].石油勘探與開發(fā),1995,22(4):82-91.
Yang Junjie,Huang Yueming,Zhang Wenzheng,et al.Experimental approach of dissolution of feldspar sand stone by acetic acid[J].Petroleum Exploration and Development,1995,22(4):82-91.
[21]向廷生,蔡春芳,付華娥.不同溫度、羧酸溶液中長石溶解模擬實(shí)驗(yàn)[J].沉積學(xué)報(bào),2004,22(4):597-602.
Xiang Tingsheng,Cai Chunfang,Fu Hua’e.Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J].Acta Sedimentologica Sinica,2004,22(4):597-602.
[22]陳傳平,固旭,周蘇閩,等.不同有機(jī)酸對(duì)礦物溶解的動(dòng)力學(xué)實(shí)驗(yàn)研究[J].地質(zhì)學(xué)報(bào),2008,82(7):1007-1012.
Chen Chuanping,Gu Xu,Zhou Sumin,et al.Experimental research on dissolution dynamics of main minerals in several aqueous orga-nic acid solutions[J].Acta Geologica Sinica,2008,82(7):1007-1012.
[23]張永旺,曾濺輝,郭建宇.低溫條件下長石溶解模擬實(shí)驗(yàn)研究[J].地質(zhì)論評(píng),2009,55(1):134-142.
Zhang Yongwang,Zeng Jianhui,Guo Jianyu.Simulated experimental study of feldspar dissolution in low temperature[J].Geological Review,2009,55(1):134-142.
[24]朱煥來,曲希玉,劉立,等.CO2流體—長石相互作用實(shí)驗(yàn)研究[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2011,41(3):697-706.
Zhu Huanlai,Qu Xiyu,Liu Li,et al.Study on interaction between the feldspar and CO2fluid[J].Journal of Jilin University(Earth Science Edition),2011,41(3):697-706.
[25]于川淇,李劭彧,鄧西里,等.長石與流體相互作用的模擬實(shí)驗(yàn)研究[J].特種油氣藏,2014,21(1):120-123.
Yu Chuanqi,Li Shaoyu,Deng Xili,et al.Physical modeling experimental study on feldspar-fluid interaction[J].Special Oil and Gas Reservoirs,2014,21(1):120-123.
[26]羅孝俊,楊衛(wèi)東.有機(jī)酸對(duì)長石溶解度影響的熱力學(xué)研究[J].礦物學(xué)報(bào),2001,21(2):183-188.
Luo Xiaojun,Yang Weidong.The effect of organic acid on feldspar solubility:A thermodynamic study[J].Acta Mineralogica Sinica,2001,21(2):183-188.
[27]賴興運(yùn),于炳松,陳軍元,等.碎屑巖骨架顆粒溶解的熱力學(xué)條件及其在克拉2氣田的應(yīng)用[J].中國科學(xué)(D輯 地球科學(xué)),2004,34(1):45-53.
Lai Xingyun,Yu Bingsong,Chen Junyuan,et al.Thermodynamic conditions of framework grain dissolution of clastic rocks and its application in Kela 2 gas field[J].Science in China (Series D Earth Sciences),2005,48(1):21-31.
[28]黃可可,黃思靜,佟宏鵬,等.長石溶解過程的熱力學(xué)計(jì)算及其在碎屑巖儲(chǔ)層研究中的意義[J].地質(zhì)通報(bào),2009,28(4):474-482.
Huang Keke,Huang Sijing,Tong Hongpeng,et al.Thermodynamic calculation of feldspar dissolution and its significance on research of clastic reservoir[J].Geological Bulletin of China,2009,28(4):474-482.
[29]遠(yuǎn)光輝,操應(yīng)長,楊田,等.論碎屑巖儲(chǔ)層成巖過程中有機(jī)酸的溶蝕增孔能力[J].地學(xué)前緣,2013,20(5):207-219.
Yuan Guanghui,Cao Yingchang,Yang Tian,et al.Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J].Earth Science Frontiers,2013,20(5):207-219.
[30]李汶國,張曉鵬,鐘玉梅.長石砂巖次生溶孔的形成機(jī)理[J].石油與天然氣地質(zhì),2005,26(2):220-223.
Li Wenguo,Zhang Xiaopeng,ZhongYumei.Formation mechanism of secondary dissolved pores in arcose[J].Oil & Gas Geology,2005,26(2):220-223.
[31]趙國泉,李凱明,趙海玲,等.鄂爾多斯盆地上古生界天然氣儲(chǔ)集層長石的溶蝕與次生孔隙的形成[J].石油勘探與開發(fā),2005,32(1):53-55.
Zhao Guoquan,Li Kaiming,Zhao Hailing,et al.Feldspar corrosion and secondary pore formation in the Upper Paleozoic gas reservoir,Ordos Basin[J].Petroleum Exploration and Development,2005,32(1):53-55.
[32]張霞,林春明,陳召佑,等.鄂爾多斯盆地鎮(zhèn)涇區(qū)塊延長組長8油層組砂巖儲(chǔ)層特征[J].高校地質(zhì)學(xué)報(bào),2012,18(2):328-340.
Zhang Xia,Lin Chunming,Chen Zhaoyou,et al.The reservoir characteristics of Chang 8 oil layer group from the Yanchang Formation in Zhenjing area,Ordos Basin[J].Geological Journal of China Universities,2012,18(2):328-340.
[33]楊華,鐘大康,姚涇利,等.鄂爾多斯盆地隴東地區(qū)延長組砂巖儲(chǔ)層孔隙成因類型及其控制因素[J].地學(xué)前緣,2013,20(2):69-76.
Yang Hua,Zhong Dakang,Yao Jingli,et al.Pore genetic types and their controlling factors in sandstone reservoir of Yanchang Formation in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2):69-76.
[34]蘭葉芳,鄧秀芹,程黨性,等.鄂爾多斯盆地三疊系延長組次生孔隙形成機(jī)制[J].地質(zhì)科技情報(bào),2014,33(6):128-136.
Lan Yefang,Deng Xiuqin,Cheng Dangxing,et al.Formation mechanisms of secondary porosity in the Triassic Yanchang Formation,Ordos Basin[J].Geological Science and Technology Information,2014,33(6):128-136.
[35]羅靜蘭,李忠興,史成恩,等.鄂爾多斯盆地西南部上三疊統(tǒng)延長組長8、長6油層組的沉積體系與物源方向[J].地質(zhì)通報(bào),2008,27(1):101-111.
Luo Jinglan,Li Zhongxing,Shi Cheng’en,et al.Depositional systems and provenance directions for the Chang 6 and Chang 8 reservoir groups of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin,China[J].Geological Bulletin of China,2008,27(1):101-111.
[36]付晶,吳勝和,羅安湘,等.鄂爾多斯盆地隴東地區(qū)延長組縱向儲(chǔ)層質(zhì)量差異及主控因素分析[J].地學(xué)前緣,2013,20(2):98-107.
Fu Jing,Wu Shenghe,Luo Anxiang,et al.Reservoir quality and its controlling factors of Chang 8 and Chang 6 members in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2):98-107.
[37]林傳仙,白正華,張哲儒.礦物及有關(guān)化合物熱力學(xué)數(shù)據(jù)手冊(cè)[M].北京:科學(xué)出版社,1985.
Lin Chuanxian,Bai Zhenghua,Zhang Zheru.Handbook of thermodynamic data of minerals and related compounds[M].Beijing:Science Press,1985.
[38]黃思靜,黃可可,馮文立,等.成巖過程中長石、高嶺石、伊利石之間的物質(zhì)交換與次生孔隙的形成:來自鄂爾多斯盆地上古生界和川西凹陷三疊系須家河組的研究[J].地球化學(xué),2009,38(5):498-506.
Huang Sijing,Huang Keke,Feng Wenli,et al.Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis:A case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation,western Sichuan Depression[J].Geochimica,2009,38(5):498-506.
[39]孟萬斌,呂正祥,馮明石,等.致密砂巖自生伊利石的成因及其對(duì)相對(duì)優(yōu)質(zhì)儲(chǔ)層發(fā)育的影響:以川西地區(qū)須四段儲(chǔ)層為例[J].石油學(xué)報(bào),2011,32(5):783-790.
Meng Wanbin,Lü Zhengxiang,Feng Mingshi,et al.The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs:A case study on sandstones in the 4th member of Xujiahe Formation,western Sichuan Basin[J].Acta Petrolei Sinica,2011,32(5):783-790.
(編輯徐文明)
A new method for the calculation of secondary porosity originating from the dissolution of feldspars in deeply buried formations and its application:A case study of the Chang 81Formation in Longdong area, Ordos Basin
Yang Youyun1, Liu Xiqiang2, Sun Rui2
(1.SchoolofEarthScienceandEngineering,Xi’anShiyouUniversity,Xi’an,Shaanxi710065,China;2.DepartmentofGeology,NorthwestUniversity,Xi’an,Shaanxi710069,China)
Abstract:Secondary porosity is an important accumulation space in clastic reservoirs. Among secondary pores, those pores originating from the dissolution of feldspars are dominant. A new method to calculate the volumes of secondary porosity from the dissolution of feldspars in deeply buried formations based on thermodynamic principle is proposed. The calculation method is as follows. The volume of secondary porosity originating from the dissolution of potassium feldspars=0.28×kaolinite content or 0.36×illite content. The volume of secondary porosity originating from the dissolution of albite feldspars=0.10×kaolinite content or 0.17×illite content. The volume of secondary porosity originating from the dissolution of anorthite feldspars=0.014×kaolinite content or 0.08×illite content. After a thorough investigation of petrologic characteristics, the new calculation method was applied to the Chang 81 Formation in Longdong area, Ordos Basin. The volumes of secondary porosity originating from the dissolution of feldspars in deeply buried formations in the Chang 81 Formation in the study area were calculated with the new method, and were compared with measured and simulated porosities. The average value of calculated secondary porosity from the dissolution of feldspars of 51 core samples from the Chang 81 Formation is 1.32%, which is close to the average measured value (1.44%) for those samples. The comparison between calculated and simulated results also confirms the reliability of this new method.
Keywords:feldspar dissolution; secondary porosity; calculation method; simulation experiment; Chang 81 Formation; Longdong area; Ordos Basin
文章編號(hào):1001-6112(2016)03-0395-07
doi:10.11781/sysydz201603395
收稿日期:2015-06-17;
修訂日期:2016-04-05。
作者簡介:楊友運(yùn)(1959—),男,教授,從事沉積學(xué)與儲(chǔ)層地質(zhì)學(xué)教學(xué)與研究。E-mail:yyyang@xsyu.edu.cn。
基金項(xiàng)目:國家油氣重大專項(xiàng)(2011ZX05044)和國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃 (973計(jì)劃)項(xiàng)目(2014CB239003)資助。
中圖分類號(hào):TE122.2
文獻(xiàn)標(biāo)識(shí)碼:A