林 津, 曾有棟
(福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州 350116)
一類(lèi)非線性?huà)佄锓匠探M解的爆破時(shí)間下界估計(jì)
林 津, 曾有棟
(福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州350116)
摘要:使用構(gòu)造輔助函數(shù)和微分不等式方法,得到在有界區(qū)域Ω?Rn(n≥3)且滿(mǎn)足齊次Dirichlet邊界條件情況下,帶有梯度項(xiàng)的非線性?huà)佄锓匠探M解的爆破時(shí)間下界.
關(guān)鍵詞:下界; 爆破時(shí)間; 拋物方程組; 梯度項(xiàng)
0引言
考慮一類(lèi)帶梯度項(xiàng)的非線性?huà)佄锓匠探M解的爆破時(shí)間下界,方程具體形式如下:
(1)
其中: Ω?Rn(n≥3)是邊界光滑的有界區(qū)域;Δ為n維Laplace算子;為n維梯度算子; T是解的爆破時(shí)間; (1, 1)≤(q1, q2)<(p1, p2); 這里(x1, y1)≤(x2, y2)表示x1≤x2且y1≤y2.
Payne等在文獻(xiàn)[1]中運(yùn)用微分不等式方法得到當(dāng)Ω?R3,半線性熱傳導(dǎo)方程
(2)
解的爆破時(shí)間下界. 其中f滿(mǎn)足適當(dāng)?shù)臈l件且式(2)帶有Dirichlet邊界條件.此后,在Ω?R3情況下,對(duì)各類(lèi)拋物方程解的爆破時(shí)間下界進(jìn)行估計(jì),得到許多有效結(jié)論.例如Payne等在文獻(xiàn)[2]中對(duì)
(3)
Liu等在文獻(xiàn)[3]中對(duì)
(4)
進(jìn)行研究,得到了相應(yīng)解的爆破時(shí)間下界. 但是,以上文獻(xiàn)都只是在Ω?R3的情形下對(duì)解的爆破時(shí)間下界進(jìn)行估計(jì),對(duì)于n≥3的情況并未給出相應(yīng)結(jié)論.
Baghaei等在文獻(xiàn)[4]中對(duì)Ω?Rn(n≥3)的爆破時(shí)間下界進(jìn)行估計(jì),得到滿(mǎn)足Dirichlet邊界條件時(shí),解的爆破時(shí)間下界. 文獻(xiàn)[5]和[6]分別得出滿(mǎn)足一定邊界條件且Ω?Rn(n≥3)時(shí),式(3)和擬線性?huà)佄锓匠探獾谋茣r(shí)間下界估計(jì).本文根據(jù)文獻(xiàn)[7]的方法,對(duì)式(3)的方程組形式進(jìn)行討論,得出式(1)解的爆破時(shí)間下界.
(5)
在文獻(xiàn)[8]中, Chen等對(duì)一類(lèi)擬線性?huà)佄镄头匠探M進(jìn)行研究,得出當(dāng)對(duì)應(yīng)函數(shù)滿(mǎn)足一定條件時(shí),方程組解的全局存在性和爆破性結(jié)論,包括式(1)形式的方程組. 由于本文討論的是解的爆破時(shí)間T的下界估計(jì),因此只對(duì)方程組的解在有限時(shí)刻爆破的情況進(jìn)行考慮.
1主要結(jié)論
定理1設(shè)(u, v)是問(wèn)題(1)的非負(fù)古典解,其中(1, 1)≤(q1, q2)<(p1, p2),Ω?Rn(n≥3)是帶有光滑邊界的區(qū)域. 定義
Θ(t)=∫Ωukdx+∫Ωvkdx
其中: k是滿(mǎn)足如下條件的參數(shù)
(6)
如果問(wèn)題(1)的解在有限時(shí)間T爆破,那么T的下界滿(mǎn)足如下估計(jì)
(7)
其中:C1和C2是正值常數(shù),將在證明過(guò)程中具體定義.
證明對(duì)方程(1)進(jìn)行計(jì)算,根據(jù)散度定理,有
(8)
參考文獻(xiàn)[9]可知:
(9)
其中正值常數(shù)λ是如下問(wèn)題的第一特征值
(10)
結(jié)合式(8)和(9),有
(11)
根據(jù)式(6)中k的定義,針對(duì)式(8)右端第二項(xiàng),由H?lder不等式和Young不等式,有
(12)
其中i=1, 2.
將式(12)代入式(11),有
(13)
對(duì)式(13)的第三項(xiàng),運(yùn)用H?lder不等式,有
(14)
(15)
(16)
再根據(jù)帶ε的Young不等式,有
(17)
同理可得
(18)
這里的ε1和ε2為正值常數(shù),具體定義之后給出. 接著運(yùn)用H?lder不等式,得到
(19)
根據(jù)式(6)中k的定義,對(duì)式(17)和(18)相關(guān)項(xiàng)運(yùn)用帶ε的Young不等式,得到
(20)
其中:
ε3和ε4為正值常數(shù),具體定義之后給出. 將式(17)~(20)代入式(13), 有
(21)
(22)
可知式(22)為
(23)
對(duì)微分不等式(23)從0到t進(jìn)行積分,得到
(24)
最后,對(duì)t取極限,即t→T-,得到
(25)
定理證明完畢.
[1] PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. Math Anal Appl, 2007, 328(2):1 196-1 205.
[2] PAYNE L E, SONG J C. Lower bounds for blow-up time in a nonlinear parabolic problem[J]. Math Anal Appl, 2009, 354(1): 394-396.
[3] LIU D, MU C, XIN Q. Lower bounds estimate for the blowup time of a nonlinear nonlocal porous medium equation[J]. Acta Mathematica Scientia B, 2012, 32(3): 1 206-1 212.
[4] BAGHAEI K, GHAEMIA M, HESAARAKI M. Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source[J]. Applied Mathematics Letters, 2014, 27: 49-52.
[5] LI H, GAO H, HAN C Y. Lower bounds for the blowup time of solutions to a nonlinear parabolic problem[J]. Electronic Journal of Differential Equations, 2014, 20: 1-6.
[6] BAO A G, SONG X F. Bounds for the blowup time of the solutions to quasi-linear parabolic problems[J]. Z Angew Math Phys, 2014, 65(1): 115 -123.
[7] BAGHAEI K, HESAARAKI M. Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions[J]. Math Meth Appl Sci , 2015, 38(3): 527-536.
[8] CHEN S H, MACDONALD K. Global and blowup solutions for general quasilinear parabolic systems[J]. Nonlinear Analysis: Real World Applications 2013, 14(1): 423-433.
[9] PAYNE L E, PHILIPPIN G A, SCHAEFER P W. Blow-up phenomena for some nonlinear para-bolic problems[J]. Nonlinear Anal, 2008, 69(10): 3 495-3 502.
[10] TALENTI G. Best constants in sobolev inequality[J]. Ann Math Pura Appl ,1976, 110(1): 353-372.
[11] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Berlin: Springer, 2001.
(責(zé)任編輯:蔣培玉 )
Lower bounds for the blowup time of solutions to a nonlinear parabolic system
LIN Jin,ZENG Youdong
(College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350116, China)
Abstract:In this paper, by means of constructing an auxiliary function and the differential inequality technique, we derive a lower bound for the blow-up time of solutions to a parabolic system with a gradient nonlinearity under homogeneous Dirichlet boundary conditions in a bounded domain Ω?Rn for any n≥3.
Keywords:lower bounds; blow-up time; parabolic system; gradient nonlinearity
DOI:10.7631/issn.1000-2243.2016.03.0354
文章編號(hào):1000-2243(2016)03-0354-05
收稿日期:2014-04-22
通訊作者:曾有棟(1961-),教授,主要從事偏微分方程研究,zengyd@fzu.edu.cn
基金項(xiàng)目:福建省自然科學(xué)基金資助項(xiàng)目(Z0511015)
中圖分類(lèi)號(hào):O175.26
文獻(xiàn)標(biāo)識(shí)碼:A