孟 平 陳壯桂 張?zhí)焱小±詈闈∴u小玲 楊海玲
(中山大學(xué)附屬第三醫(yī)院呼吸內(nèi)科,廣州510630)
·基礎(chǔ)免疫學(xué)·
TSLP促進(jìn)肌成纖維細(xì)胞向哮喘小鼠氣道募集①
孟平陳壯桂②張?zhí)焱欣詈闈u小玲楊海玲
(中山大學(xué)附屬第三醫(yī)院呼吸內(nèi)科,廣州510630)
[摘要]目的:探討胸腺基質(zhì)淋巴細(xì)胞生成素(Thymic stromal lymphopoietin,TSLP)與慢性哮喘小鼠氣道組織中浸潤(rùn)的肌成纖維細(xì)胞的關(guān)系。方法:將12只BALB/c小鼠隨機(jī)分為4組:生理鹽水組、屋塵螨(House dust mite,HDM)組、anti-TSLP組、同型對(duì)照組。激光共聚焦檢測(cè)氣道組織中出現(xiàn)的肌成纖維細(xì)胞。ELISA法檢測(cè)肺泡灌洗液中TSLP、TGF-β1、IL-25和IL-33的表達(dá)水平。結(jié)果:拮抗TSLP可顯著抑制HDM持續(xù)暴露導(dǎo)致的氣道結(jié)構(gòu)改變,減少肌成纖維細(xì)胞向哮喘小鼠氣道組織募集。Anti-TSLP組小鼠BALF中TSLP、TGF-β1和IL-33蛋白水平也較同型對(duì)照組明顯降低(P值均<0.05)。結(jié)論:TSLP促進(jìn)肌成纖維細(xì)胞向慢性哮喘小鼠氣道募集是其參與氣道重塑的主要機(jī)制之一。
[關(guān)鍵詞]TSLP;肌成纖維細(xì)胞;哮喘;氣道重塑
氣道重塑和能夠維持慢性氣道炎癥的微環(huán)境是慢性持續(xù)性哮喘形成的兩個(gè)必要條件。吸入激素等抗炎治療能夠抑制哮喘的狀態(tài),但不能改變病人的預(yù)后[1,2]。因此,發(fā)現(xiàn)抗炎治療以外的阻斷氣道重塑的治療新方法,是目前亟待解決的臨床問題。氣道重塑病理結(jié)構(gòu)主要包括上皮細(xì)胞黏液化生、肌成纖維細(xì)胞增多、細(xì)胞外基質(zhì)過度沉積及上皮下纖維化等[3]。其中,肌成纖維細(xì)胞是造成細(xì)胞外基質(zhì)沉積和上皮下纖維化的關(guān)鍵結(jié)構(gòu)細(xì)胞。氣道上皮在啟動(dòng)宿主氣道重塑和纖維增殖的炎癥反應(yīng)中,起著關(guān)鍵作用。胸腺基質(zhì)淋巴細(xì)胞生成素(Thymic stromal lymphopoietin,TSLP)在哮喘患者損傷的氣道上皮細(xì)胞表達(dá)是增加的,且其表達(dá)水平和疾病的嚴(yán)重程度成正相關(guān)[4]。拮抗TSLP可明顯減輕氣道炎癥、抑制甚至逆轉(zhuǎn)哮喘氣道結(jié)構(gòu)的病理改變,被認(rèn)為是氣道炎癥和氣道重塑的總開關(guān)[2]。近年來,很多研究發(fā)現(xiàn),TSLP可通過與氣道上皮細(xì)胞、成纖維細(xì)胞、氣道平滑肌細(xì)胞等多種結(jié)構(gòu)細(xì)胞相互作用促進(jìn)哮喘氣道重塑[5-7]。然而,TSLP與肌成纖維細(xì)胞在慢性過敏性哮喘中的關(guān)系,目前尚未見文獻(xiàn)報(bào)道。本研究利用慢性哮喘小鼠模型初步探討TSLP在慢性哮喘氣道重塑過程中對(duì)肌成纖維細(xì)胞的影響。
1材料與方法
1.1實(shí)驗(yàn)材料、試劑屋塵螨提取蛋白(House dust mite,HDM)購(gòu)自購(gòu)自美國(guó)Greer實(shí)驗(yàn)室。Rabbit anti-mouse collagen I(Col I)抗體、 Mouse anti-mouse α-smooth muscle Actin (α-SMA) 抗體均購(gòu)美國(guó)abcam公司;Alexa Fluor@594 goat anti-Rabbit、 Alexa Fluor@488 goat anti-mouse二抗均購(gòu)自美國(guó)Invitrogen公司;小鼠TSLP ELISA試劑盒、小鼠TGF-β1 ELISA試劑盒、小鼠IL-25 ELISA試劑盒和小鼠IL-33 ELISA試劑盒均購(gòu)自中國(guó)深圳欣博盛公司。
1.2方法
1.2.1構(gòu)建慢性哮喘小鼠氣道重塑模型SPF級(jí)6周齡雌性BALB/c小鼠(購(gòu)于上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司) 12只,體重(18±2)g。我們按隨機(jī)數(shù)字表法隨機(jī)均分為4組:生理鹽水組,HDM組,同型對(duì)照組,anti-TSLP組。過濾式動(dòng)物飼養(yǎng)柜內(nèi)分籠飼養(yǎng),喂食不含致敏原的特殊飼料。HDM氣道暴露方法:小鼠用混合麻醉劑腹腔注射麻醉后,垂直懸掛于9號(hào)無菌手術(shù)縫線,經(jīng)鼻腔緩慢滴入10 μl HDM懸液(15 μg HDM溶于10 μl NS),生理鹽水組小鼠滴NS,每天1次,連續(xù)3 d,停止4 d,共持續(xù)5周。Anti-TSLP組從第4周起,在滴入HDM 30 min前,TSLP mAb 20 μg溶于100 μl生理鹽水腹腔注射。同型對(duì)照組腹腔注射相同劑量的IgG同型對(duì)照抗體,生理鹽水組和HDM組注射相同劑量的抗體稀釋液。
1.2.2支氣管激發(fā)試驗(yàn)第33天進(jìn)行小鼠氣道反應(yīng)性測(cè)定,將小鼠放入體積描箱,隨后霧化生理鹽水作為空白對(duì)照,再進(jìn)行乙酰甲膽堿激發(fā),依次由低濃度開始,分別為6.25、12.5、25、50、100 mg/ml。每一個(gè)濃度霧化后檢測(cè)3 min,兩次檢測(cè)之間間隔5 min,觀察小鼠出現(xiàn)的生物學(xué)行為改變。
1.2.3收集支氣管肺泡灌洗液將取血后的小鼠平放于小動(dòng)物手術(shù)臺(tái),用醫(yī)用膠布固定四肢,分離小鼠頸部皮膚、肌肉,切開分離出氣管,24G聚乙烯導(dǎo)管行小鼠氣管插管,自導(dǎo)管注入NS 1 ml,進(jìn)行小鼠支氣管肺泡灌洗,動(dòng)作輕柔,反復(fù)灌洗3次,回收約0.8~0.9 ml灌洗液。2 000 r/min 4℃低溫離心機(jī)離心10 min,上清液于-80℃冰箱凍存。
1.2.4小鼠肺臟組織染色及病理組織學(xué)觀察摘除小鼠左肺,投入4%中性甲醛中固定過夜。梯度乙醇脫水,二甲苯透明30 min,石蠟包埋,切成5 μm厚薄片。脫蠟后進(jìn)行H&E和PAS染色,分別觀察肺組織炎性細(xì)胞浸潤(rùn)和氣道上皮損傷情況,杯狀細(xì)胞增生情況。
1.2.5ELISA法檢測(cè)肺泡灌洗液中TSLP、TGF-β1、IL-25、IL-33的濃度(按試劑盒操作說明書)。
1.2.6免疫熒光標(biāo)本經(jīng)脫蠟、水化后,用二抗相同宿主的血清(0.3 mol/ml的甘氨酸+1%BSA+3%的山羊血清)封閉30 min。加入稀釋的一抗(anti-collgenⅠ或anti-α-SMA),4℃冰箱孵育過夜。PBS洗10 min × 3次。次日,加入稀釋過的偶聯(lián)熒光二抗。室溫下,暗盒中避光孵育1 h。PBS洗10 min×5次。Gold Antifade Reagent with DAPI封片過夜。借助于共聚焦激光共聚焦掃描、攝像并分析。
2結(jié)果
2.1觀察各組小鼠體征改變各組小鼠隨吸入乙酰甲膽堿劑量的增加,均會(huì)出現(xiàn)典型的哮喘癥狀,包括毛發(fā)豎起、呼吸急促、易激惹、煩躁不安等。但當(dāng)吸入同等劑量的乙酰甲膽堿劑量時(shí),HDM組小鼠和同型對(duì)照組小鼠的反應(yīng)明顯強(qiáng)于生理鹽水組和anti-TSLP組,有個(gè)別小鼠甚至出現(xiàn)腹肌抽搐、大小便失禁等重度哮喘表現(xiàn)。此外,Anti-TSLP組小鼠開始出現(xiàn)過激反應(yīng)的乙酰甲膽堿濃度高于同型對(duì)照組。
2.2拮抗TSLP可抑制慢性哮喘小鼠氣道結(jié)構(gòu)改變HDM持續(xù)暴露導(dǎo)致氣道結(jié)構(gòu)病理改變,包括支氣管壁炎癥細(xì)胞大量浸潤(rùn)(圖1)、杯狀細(xì)胞增生(圖2)、α-SMA陽(yáng)性的氣道平滑肌層增厚(圖3) 和上皮下ColⅠ大量沉積(圖4)。與同型對(duì)照組相比,anti-TSLP組小鼠的支氣管壁周圍炎癥細(xì)胞和杯狀細(xì)胞數(shù)量顯著減少。此外,阻斷TSLP還可防止氣道平滑肌層增厚,抑制ColⅠ分泌,減輕上皮下纖維化。
2.3拮抗TSLP可減少肌成纖維細(xì)胞在氣道壁的浸潤(rùn)HDM組小鼠氣道組織中聚集的肌成纖維細(xì)胞數(shù)(26.33±2.186)mm-2明顯高于生理鹽水組(7.667±0.881 6)mm-2,兩組差異有顯著統(tǒng)計(jì)學(xué)意義(t值為7.920,P<0.01);Anti-TSLP組小鼠氣道組織中肌成纖維細(xì)胞(10.33±1.202)mm-2明顯低于同型對(duì)照組(20.67±2.603)mm-2,兩組差異有統(tǒng)計(jì)學(xué)意義(t值為-3.604,P<0.05)。見圖5、6。
2.4拮抗TSLP可下調(diào)其他上皮源性細(xì)胞因子的表達(dá)水平HDM組小鼠BALF中TSLP水平[(206.6±19.7)pg/ml]高于生理鹽水組[(93.49±5.062)pg/ml],兩組差異有顯著統(tǒng)計(jì)學(xué)意義(t值為5.558,P<0.01);Anti-TSLP組小鼠BALF中TSLP水平[(115.6±11.59)pg/ml]低于同型對(duì)照組為[(236.5±34.18)pg/ml],兩組差異有統(tǒng)計(jì)學(xué)意義(t值為-3.35,P<0.05)。Anti-TSLP組小鼠BALF中TGF-β1水平[(75.02±9.48)pg/ml]和IL-33水平[(83.21±4.072)pg/ml]低于同型對(duì)照組[分別(405.9±33.09)pg/ml和(146.0±8.832)pg/ml],兩組差異有統(tǒng)計(jì)學(xué)意義(t值分別為-9.612和-6.457,均P< 0.05)。Anti-TSLP組小鼠BALF中IL-25[(84.56±7.685)pg/ml]水平和同型對(duì)照組[(107.9±8.434)pg/ml],兩組差異有統(tǒng)計(jì)學(xué)意義(t值為-2.044,P> 0.05),但均高于生理鹽水組[(44.68±2.267)pg/ml](t值分別為4.727和7.007,均P> 0.05)。見圖7。
圖1 H&E染色觀察氣道壁增厚以及支氣管壁周圍炎癥細(xì)胞浸潤(rùn)情況(×400,標(biāo)尺=50 μm)Fig.1 Representative photographs of H&E staining revealed thickness of airway walls and level of inflammatory cell infiltration(×400,bar=50 μm)Note: A.Saline group;B.HDM-exposed group;C.IgG isotype-treated group;D.Anti-TSLP-treated group.
圖2 PAS染色觀察氣道上皮細(xì)胞黏液化生情況(×400,標(biāo)尺=50 μm)Fig.2 Representative photographs of PAS staining revealed hyperplasia of airway goblet cell(×400,bar=50 μm)Note: A.Saline group;B.HDM-exposed group;C.IgG isotype-treated group;D.Anti-TLP-treated group.
圖3 熒光染色觀察支氣管上皮下α-SMA陽(yáng)性(綠色熒光表示)的氣道平滑肌層增厚情況(×400,標(biāo)尺=50 μm)Fig.3 Representative photographs of α-SMA (α-SMA:green) staining revealed thickness of airway smooth muscle(×400,bar=50 μm)Note: A.Saline group;B.HDM-exposed group;C.IgG isotype-treated group;D.Anti-TLP-treated group.
圖4 熒光染色觀察支氣管壁周圍Ⅰ型膠原蛋白(紅色熒光表示)沉積厚度(×400,標(biāo)尺=50 μm)Fig.4 Representative photographs of collagen Ⅰ (collagen Ⅰ:red) staining revealed thickness of peribronchial collagen Ⅰ(×400,bar=50 μm)Note: A.Saline group;B.HDM-exposed group;C.IgG isotype-treated group;D.Anti-TSLP-treated group.
圖5 激光共聚焦檢測(cè)氣道組織中出現(xiàn)的Col I/α-SMA雙陽(yáng)性的肌成纖維細(xì)胞(×400,標(biāo)尺=50 μm)Fig.5 Fluorescence-labeled Col I/α-SMA-dual-positive fibrocytes in lung were examined by confocal microscopy (×400,Bar=50 μm )Note: α-SMA.Green;Col Ⅰ.Red;DAPI.Blue.
圖6 定量分析各組小鼠肺組織中出現(xiàn)的肌成纖維細(xì)胞數(shù)Fig.6 Quantification of Col Ⅰ+/α-SMA+myofibroblasts in lungNote: Data are expressed as the mean number of myofibroblasts in per mm2 of airway wall (n=3 per group);*.P< 0.01,**.P< 0.001 compared with the saline control group;#.P< 0.05 compared with the IgG isotype control group.
圖7 各組小鼠肺泡灌洗液中TSLP、TGF-β1、IL-33和IL-25的蛋白表達(dá)水平Fig.7 Expression levels of TSLP,TGF-β1,IL-33 and IL-25 in BALFNote: *.P< 0.05,**.P< 0.01,***.P< 0.001 compared with the saline control group;#.P< 0.05,##.P< 0.001 compared with the IgG isotype control group.
3討論
肌成纖維細(xì)胞是一群具有高度遷移能力的氣道平滑肌樣細(xì)胞,在許多正常和病理組織中存在,既具有平滑肌細(xì)胞的收縮特性,又兼有成纖維細(xì)胞的基質(zhì)重塑特性[8,9]。一些研究在慢性阻塞性哮喘患者的氣道平滑肌組織中檢測(cè)到大量肌成纖維細(xì)胞,且其數(shù)量和基底膜厚度以及哮喘嚴(yán)重程度成正相關(guān)[10,11]。此外,細(xì)胞外基質(zhì)過度沉積和上皮下纖維化是哮喘氣道重塑發(fā)生最早和最關(guān)鍵的部分。而肌成纖維細(xì)胞被認(rèn)為是組織損傷時(shí)最具活性的分泌組織細(xì)胞之一。因此,肌成纖維細(xì)胞是誘導(dǎo)哮喘氣道重構(gòu)的關(guān)鍵間質(zhì)細(xì)胞,在哮喘氣道重塑過程中扮演了重要角色。和先前的研究結(jié)果一致,我們?cè)陂L(zhǎng)期接受過敏原暴露的小鼠支氣管上皮下發(fā)現(xiàn)了大量Ⅰ型膠原蛋白沉積Col Ⅰ和α-SMA雙陽(yáng)性的肌成纖維細(xì)胞,且其主要定居在膠原沉積的區(qū)域。
目前研究發(fā)現(xiàn),哮喘重塑的氣道組織中出現(xiàn)的肌成纖維細(xì)胞主要有4種來源:間充質(zhì)干細(xì)胞、肺間質(zhì)成纖維細(xì)胞、肺泡上皮細(xì)胞以及循環(huán)纖維細(xì)胞[9,12]。雖然內(nèi)皮素-1、表皮生成因子等很多細(xì)胞因子在肌成纖維細(xì)胞增殖和轉(zhuǎn)化中的作用已經(jīng)被相繼報(bào)道[10,11],但仍有一些未知影響因素需要進(jìn)一步的探索和驗(yàn)證。哮喘患者的上皮細(xì)胞具有易感性,在外來物質(zhì)的侵襲下容易發(fā)生損傷。越來越多的學(xué)者認(rèn)為上皮-間充質(zhì)營(yíng)養(yǎng)單位(Epithelial mesenchymal trophic unit,EMTU)的活化是氣道重塑發(fā)生發(fā)展的中心環(huán)節(jié)[13]。該學(xué)說認(rèn)為,損傷的上皮細(xì)胞可分泌大量上皮源性細(xì)胞信號(hào)分子,如TSLP、TGF-β1、ET-1、成纖維生長(zhǎng)因子等[14,15]。這些信號(hào)分子與上皮下的間質(zhì)細(xì)胞相互作用,使開始于修復(fù)上皮的重構(gòu)信號(hào)向黏膜下層傳播,進(jìn)而導(dǎo)致氣道壁下層炎癥和重塑反應(yīng)的放大。因此,EMTU的活化既維持了哮喘患者慢性炎癥微環(huán)境,又促進(jìn)了氣道重塑,是慢性持續(xù)性哮喘患者的主要發(fā)病機(jī)制。EMTU的活化在肌成纖維細(xì)胞向哮喘重塑的氣道組織中募集的過程中起關(guān)鍵的作用。
TGF-β1是上皮細(xì)胞和間質(zhì)細(xì)胞之間進(jìn)行信息交流的經(jīng)典生長(zhǎng)因子。TGF-β1可誘導(dǎo)纖維祖細(xì)胞、支氣管上皮細(xì)胞及肺成纖維細(xì)胞等多種細(xì)胞轉(zhuǎn)化為α-SMA陽(yáng)性的肌成纖維細(xì)胞[16-18]。然而,很多結(jié)構(gòu)細(xì)胞不只對(duì)TGF-β1起作用,還同時(shí)表達(dá)TSLP受體。其配體TSLP是氣道上皮損傷后分泌的一種類IL-7樣細(xì)胞因子,在慢性哮喘小鼠肺組織表達(dá)上調(diào),是哮喘氣道重塑的重要參與者[2]。已有文獻(xiàn)證實(shí),在哮喘氣道重塑過程中,TSLP可通過Th2極化之外的途徑促進(jìn)上皮細(xì)胞增殖[19]、趨化氣道平滑肌細(xì)胞遷移[5]。我們?cè)诒狙芯恐邪l(fā)現(xiàn),拮抗TSLP可明顯抑制肌成纖維細(xì)胞在氣道組織的聚集。此外,我們還發(fā)現(xiàn)拮抗TSLP可降低BALF中TGF-β1的蛋白濃度。TSLP和TGF-β1在哮喘發(fā)病機(jī)制中可能不是獨(dú)立發(fā)揮作用的。綜上,我們認(rèn)為TSLP影響肺組織中肌成纖維細(xì)胞數(shù)量的機(jī)制可能包括:(1)TSLP直接誘導(dǎo)肌成纖維細(xì)胞增殖或促進(jìn)其他來源的細(xì)胞轉(zhuǎn)分化;(2)通過促進(jìn)TGF-β1表達(dá),間接促進(jìn)肌成纖維細(xì)胞的遷移和轉(zhuǎn)化。在未來的實(shí)驗(yàn)中,我們將通過體外實(shí)驗(yàn)對(duì)TSLP和TGF-β1在哮喘氣道重塑中的相互作用做進(jìn)一步的探索。
氣道上皮是外界和內(nèi)環(huán)境進(jìn)行交流的主要物理屏障,為了進(jìn)一步探索損傷的氣道上皮與其下的間充質(zhì)之間的交流信號(hào),我們檢測(cè)了肺泡灌洗液中TSLP、TGF-β1、IL-25和IL-33的表達(dá)水平。數(shù)據(jù)顯示,屋塵螨持續(xù)暴露5周可誘導(dǎo)TSLP、TGF-β1、IL-25和IL-33過表達(dá),中和TSLP可降低肺泡灌洗液中TSLP、TGF-β1和IL-33的表達(dá)水平。盡管anti-TSLP組和同型對(duì)照組BALF中的IL-25表達(dá)水平?jīng)]有統(tǒng)計(jì)學(xué)差異,但還是可以觀察到下降的趨勢(shì)。IL-33可促進(jìn)循環(huán)纖維細(xì)胞和造血祖細(xì)胞向哮喘急性加重病人的氣道遷移[6,20]。動(dòng)物研究表明,肺組織IL-33和IL-25的增加可導(dǎo)致氣道高反應(yīng)性和杯狀細(xì)胞的增生以及IL-13、IL-5、IL-4等的高表達(dá),IL-25還可直接誘導(dǎo)血管生成參與氣道重塑過程[21]。Gregory[22]和Yao[23]等通過經(jīng)鼻滴注IL-25細(xì)胞因子誘導(dǎo)了與OVA刺激類似的經(jīng)典氣道重塑表現(xiàn),拮抗IL-25小鼠氣道異常的病理結(jié)構(gòu)改變可被抑制或逆轉(zhuǎn)。盡管IL-25和IL-33也是哮喘氣道重塑的重要影響因素,單獨(dú)抑制任何一個(gè)并不能完全阻斷氣道重塑的發(fā)展[24-26],意味著單一細(xì)胞因子在哮喘氣道重塑中的作用是有限的。我們的數(shù)據(jù)提示,TSLP的表達(dá)水平和IL-25、IL-33、TGF-β1密切相關(guān)。由于人支氣管上皮細(xì)胞本身表達(dá)TSLPR和IL-7Rα[27],因此TSLP在體內(nèi)可以通過自分泌或旁分泌的形式反作用于上皮細(xì)胞,進(jìn)而調(diào)節(jié)其他細(xì)胞因子的表達(dá)。先前Gregory等認(rèn)為拮抗IL-25下調(diào)TSLP和 IL-33的表達(dá)[24]。因此,在TSLP和其他細(xì)胞因子之間存在雙向調(diào)節(jié)機(jī)制,相互協(xié)調(diào)以更好的調(diào)控纖維化反應(yīng)。這些正反饋通路是否真正存在需要進(jìn)一步的探索。
氣道高反應(yīng)性是哮喘的另一重要特征,表現(xiàn)為氣道對(duì)各種刺激因子產(chǎn)生過強(qiáng)過早的收縮反應(yīng)。Gabehart等認(rèn)為氣道炎癥和氣道重塑都可引發(fā)氣道高反應(yīng)性,氣道高反應(yīng)性主要與氣道結(jié)構(gòu)改變有關(guān)而不依賴于氣道炎癥[28]。新近有學(xué)者提出,氣道炎癥和氣道重塑是平行發(fā)生的,Gabehart等的研究進(jìn)一步解釋了,為何常規(guī)吸入激素抗炎治療不能使哮喘患者的臨床癥狀得到有效控制。我們的研究結(jié)果表明,拮抗TSLP治療可降低氣道高反應(yīng)性,改善肺功能。由于TSLP不僅誘導(dǎo)氣道炎癥,還參與氣道重塑,是氣道炎癥和氣道重塑的總開關(guān)。所以抑制了TSLP,可以顯著降低氣道高反應(yīng)性。
綜上,本研究首次證實(shí)拮抗TSLP可抑制肌成纖維細(xì)胞向慢性哮喘小鼠氣道組織募集。因此,我們今后對(duì)哮喘的研究不能僅局限于控制Th2型免疫炎癥反應(yīng),保護(hù)氣道上皮免受損傷和針對(duì)肌成纖維細(xì)胞的遷移機(jī)制進(jìn)行靶向干預(yù)有望成為未來根治哮喘的新思路。
參考文獻(xiàn):
[1]Grainge CL,Lau LCK,Ward JA,etal.Effect of bronchoconstriction on airway remodeling in asthma[J].N Engl J Med,2011,364(21):2006-2015.
[2]Chen ZG,Zhang TT,Li HT,etal.Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite[J].PLoS One,2013,8(1):e51268.
[3]Berair R,Saunders R,Brightling CE.Origins of increased airway smooth muscle mass in asthma[J].BMC Med,2013,11:145.
[4]Cianferoni A,Spergel J.The importance of TSLP in allergic disease and its role as a potential therapeutic target[J].Expert Rev Clin Immunol,2014,10(11):1463-1474.
[5]Redhu NS,Shan L,Movassagh H,etal.Thymic stromal lymphopoietin induces migration in human airway smooth muscle cells[J].Sci Rep,2013,3:2301.
[6]Smith SG,Gugilla A,Mukherjee M,etal.Thymic stromal lymphopoietin and IL-33 modulate migration of hematopoietic progenitor cells in patients with allergic asthma[J].J Allergy Clin Immunol,2015,135(6):1594-1602.
[7]Semlali A,Jacques E,Koussih L,etal.Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway[J].J Allergy Clin Immunol,2010,125(4):844-850.
[8]Hinz B,Phan SH,Thannickal VJ,etal.Recent developments in myofibroblast biology[J].Am J Pathol,2012,180(4):1340-1355.
[9]Phan SH.Genesis of the myofibroblast in lung injury and fibrosis[J].Proc Am Thorac Soci,2012,9(3):148-152.
[10]Wang CH,Huang CD,Lin HC,etal.Increased activation of fibrocytes in patients with chronic obstructive asthma through an epidermal growth factor receptor-dependent pathway[J].J Allergy Clin Immunol,2012,129(5):1367-1376.
[11]Weng C,Chen B,Wang C,etal.The endothelin A receptor mediates fibrocyte differentiation in chronic obstructive asthma.The involvement of connective tissue growth factor[J].Am J Respir Crit Care Med,2013,188(3):298-308.
[12]Lo C,Michaeloudes C,Bhavsar PK,etal.Increased phenotypic differentiation and reduced corticosteroid sensitivity of fibrocytes in severe asthma[J].J Allergy Clin Immunol,2015,135(5):1186-1195.
[13]Hackett TL,Warner SM,Stefanowicz D,etal.Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1[J].Am J Respir Cri Care Med,2009,180(2):122-133.
[14]Divekar R,Kita H.Recent advances in epithelium-derived cytokines (IL-33,IL-25,and thymic stromal lymphopoietin) and allergic inflammation[J].Curr Opin Allergy Clin Immunol,2015,15(1):98-103.
[15]Royce SG,Li X,Tortorella S,etal.Mechanistic insights into the contribution of epithelial damage to airway remodeling.Novel therapeutic targets for asthma[J].Am J Respir Cell Mol Biol,2014,50(1):180-192.
[16]Itoigawa Y,Harada N,Harada S,etal.TWEAK enhances TGF-β-induced epithelial-mesenchymal transition in human bronchial epithelial cells[J].Respiratory Res,2015,16(1):48.
[17]Yang ZC,Yi MJ,Ran N,etal.Transforming growth factor-beta1 induces bronchial epithelial cells to mesenchymal transition by activating the Snail pathway and promotes airway remodeling in asthma[J].Mol Med Rep,2013,8(6):1663-1668.
[18]Wojcik KA,Skoda M,Koczurkiewicz P,etal.Apigenin inhibits TGF-beta1 induced fibroblast-to-myofibroblast transition in human lung fibroblast populations[J].Pharmacol Rep,2013,65(1):164-172.
[19]Semlali A,Jacques E,Koussih L,etal.Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway[J].J Allergy Clin Immunol,2010,125(4):844-850.
[20]Bianchetti L,Marini MA,Isgrò M,etal.IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma[J].Biochem Biophys Res Commun,2012,426(1):116-121.
[21]Morita H,Arae K,Unno H,etal.IL-25 and IL-33 contribute to development of eosinophilic airway inflammation in epicutaneously antigen-sensitized mice[J].PLoS One,2015,10(7):e134226.
[22]Gregory LG,Jones CP,Walker SA,etal.IL-25 drives remodelling in allergic airways disease induced by house dust mite[J].Thorax,2013,68(1):82-90.
[23]Yao X,Wang W,Li Y,etal.Characteristics of IL-25 and allergen-induced airway fibrosis in a murine model of asthma[J].Respirology,2015,20(5):730-738.
[24]Gregory LG,Jones CP,Walker SA,etal.IL-25 drives remodelling in allergic airways disease induced by house dust mite[J].Thorax,2013,68(1):82-90.
[25]Bianchetti L,Marini MA,Isgrò M,etal.IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma[J].Biochem Biophys Res Commun,2012,426(1):116-121.
[26]Mizutani N,Nabe T,Yoshino S.Interleukin-33 and alveolar macr-ophages contribute to the mechanisms underlying the exacerbation of IgE-mediated airway inflammation and remodelling in mice[J].Immunology,2013,139(2):205-218.
[27]Miazgowicz MM,Elliott MS,Debley JS,etal.Respiratory syncytial virus induces functional thymic stromal lymphopoietin receptor in airway epithelial cells[J].J Inflamm Res,2013,6:53-61.
[28]Gabehart KE,Royce SG,Maselli DJ,etal.Airway hyperresponsi-veness is associated with airway remodeling but not inflammation in aging Cav1-/-mice[J].Respiratory Res,2013,14(1):110.
[收稿2016-03-21修回2016-06-04]
(編輯張曉舟)
TSLP promotes recruitment of myofibroblasts into airway in asthmatic mice
MENG Ping,CHEN Zhuang-Gui,ZHANG Tian-Tuo,LI Hong-Tao,ZOU Xiao-Ling,YANG Hai-Ling.
Department of Pulmonary Diseases,the Third Affiliated Hospital of Sun Yat-Sen University,Guangzhou 510630,China
[Abstract]Objective:To investigate whether thymic stromal lymphopoietin (TSLP) participate in asthmatic airway remodeling partially by promoting myofibroblast accumulating in the lung.Methods: Twelve mice evenly were randomly divided into four groups:a saline group;an HDM-exposed group;an IgG isotype-treated group and an anti-TSLP-treated group.The supernatant of bronchoalveolar lavage fluid (BALF) was used to analyze the levels of TSLP,IL-25 and IL-33 by ELISA.Fluorescence-labeled collagen Ⅰ(Col Ⅰ)/α-smooth muscle actin (α-SMA) -dual-positive myofibroblasts were examined by confocal microscopy.Results: Chronic allergen exposure induced obviously abnormal airway structural changes,which were inhibited by blocking TSLP.We detected a highly increased number of myofibroblasts in the sub-epithelial zone in mice from HDM-challenged group.However,TSLP neutralization significantly reduced myofibroblasts recruitment.Moreover,blocking TSLP not only decreased the level of TSLP,but also inhibited the expression levels of TGF-β1 and IL-33 in BAL fluid.Conclusion: The results suggest that orchestrating myofibroblasts recruiting into the lungs is one of the main pathogenesis that TSLP involves in airway remodeling in asthmatic mice.
[Key words]TSLP;Myofibroblast;Asthma;Airway remodeling
doi:10.3969/j.issn.1000-484X.2016.06.002
作者簡(jiǎn)介:孟平(1990年-),女,在讀碩士,主要從事哮喘氣道重塑的發(fā)病機(jī)制的研究,E-mail:814985146@qq.com。 通訊作者及指導(dǎo)教師:張?zhí)焱?1962年-),男,教授,博士生導(dǎo)師,主要從事哮喘及肺部細(xì)菌感染方面的研究,E-mail:zhtituli@163.com。
中圖分類號(hào)R562.2+5
文獻(xiàn)標(biāo)志碼A
文章編號(hào)1000-484X(2016)06-0777-06
①本文受國(guó)家自然科學(xué)基金(81470219、81370114)和廣東省自然科學(xué)基金(S2013010016330)資助。
②共同第一作者。