李倩, 易亮,3, 劉素貞, 于洪軍, 陳燕萍,
徐興永2, 李萍2, 鄧成龍1*
1 中國(guó)科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100029 2 國(guó)家海洋局第一海洋研究所海洋沉積與環(huán)境地質(zhì)重點(diǎn)實(shí)驗(yàn)室, 青島 266061 3 中國(guó)科學(xué)院三亞深海科學(xué)與工程研究所, 三亞 572000 4 國(guó)家深?;毓芾碇行?, 青島 266061 5 國(guó)家海洋局第二海洋研究所工程海洋學(xué)重點(diǎn)實(shí)驗(yàn)室, 杭州 310012
渤海南部萊州灣Lz908孔沉積物的巖石磁學(xué)性質(zhì)
李倩1, 易亮1,3, 劉素貞1, 于洪軍2,4, 陳燕萍5,
徐興永2, 李萍2, 鄧成龍1*
1 中國(guó)科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京100029 2 國(guó)家海洋局第一海洋研究所海洋沉積與環(huán)境地質(zhì)重點(diǎn)實(shí)驗(yàn)室, 青島266061 3 中國(guó)科學(xué)院三亞深??茖W(xué)與工程研究所, 三亞572000 4 國(guó)家深?;毓芾碇行?, 青島266061 5 國(guó)家海洋局第二海洋研究所工程海洋學(xué)重點(diǎn)實(shí)驗(yàn)室, 杭州310012
摘要亞洲大陸邊緣海和陸表海在區(qū)域的物質(zhì)和能量交換以及區(qū)域氣候與環(huán)境演化過(guò)程中扮演了關(guān)鍵角色.磁性地層學(xué)和環(huán)境磁學(xué)方法是建立年代框架和環(huán)境演變序列的有效手段,但是,由于該地區(qū)邊緣海和陸表海沉積物中磁性礦物來(lái)源十分復(fù)雜,磁性地層學(xué)和環(huán)境磁學(xué)研究的重要基礎(chǔ)是要精細(xì)地解譯沉積物的巖石磁學(xué)性質(zhì).為此,本文利用渤海南部萊州灣Lz908孔與鉆孔附近的現(xiàn)代沉積物樣品進(jìn)行了詳細(xì)的巖石磁學(xué)對(duì)比研究.結(jié)果顯示,渤海南部沉積物中的磁性礦物主要是較粗顆粒(較大的準(zhǔn)單疇至多疇)磁鐵礦,還有少量磁赤鐵礦,部分沉積物還含有赤鐵礦和針鐵礦,其中磁鐵礦是特征剩磁的主要載體;萊州灣現(xiàn)代河流-海洋沉積物和鉆孔樣品之間的磁性特征無(wú)顯著差異,說(shuō)明萊州灣沉積物堆積之后尚未經(jīng)歷明顯的沉積后期改造.
關(guān)鍵詞巖石磁學(xué); 渤海; 萊州灣
1引言
晚新生代以來(lái),伴隨著太平洋板塊向亞歐板塊俯沖,在亞洲大陸東部形成了一系列邊緣海(Wang, 2005).與此同時(shí),亞洲大陸與太平洋之間的物質(zhì)與能量交換過(guò)程也發(fā)生了深刻變革(Wang, 1999).因此,與這些邊緣海及其周邊陸表海演化相關(guān)地質(zhì)過(guò)程一直是學(xué)術(shù)界關(guān)注的熱點(diǎn)(如Tamaki and Honza, 1991; Jolivet et al., 1994; Wang, 1999, 2005).
渤海是我國(guó)東部一個(gè)三面被陸地環(huán)繞的陸表海,僅以狹窄的海峽與黃海相通(中國(guó)科學(xué)院海洋研究所, 1985).由于海陸相互作用強(qiáng)烈,渤海地區(qū)對(duì)氣候、環(huán)境演變及海平面變化十分敏感.構(gòu)造上,渤海從新生代開(kāi)始到漸新世末期一直以伸展斷陷為主,形成一系列隆起和坳陷相間的構(gòu)造單元(Allen et al., 1997).從新近紀(jì)開(kāi)始,渤海進(jìn)入坳陷階段,呈現(xiàn)整體沉降(Allen et al., 1997; Hu et al., 2001; He and Wang, 2003),堆積了厚達(dá)2000~3000 m的湖相、河流相、海相等多種類型的沉積地層,為研究東亞季風(fēng)歷史、亞洲內(nèi)陸干旱化的海洋角色、海陸交互影響等重要問(wèn)題提供了豐富的地質(zhì)材料(中國(guó)科學(xué)院海洋研究所, 1985; 劉東生, 2009).自20世紀(jì)60年代以來(lái),渤海地區(qū)布設(shè)了數(shù)以千計(jì)的勘探鉆孔,為揭示區(qū)域地質(zhì)構(gòu)造、水文過(guò)程、資源狀況提供了寶貴依據(jù).例如,趙松齡等(1978)根據(jù)71個(gè)沿海平原鉆孔的層序地層學(xué)研究,確立了晚第四紀(jì)以來(lái)中國(guó)東部三次海侵的基本框架.中國(guó)科學(xué)院海洋研究所(1985)采用古地磁、微體古生物、植物孢粉、沉積物粒度等多指標(biāo)分析方法,系統(tǒng)研究了位于渤海中央海盆的BC-1孔,確定了渤海中部過(guò)去十五萬(wàn)年以來(lái)經(jīng)歷了六次海侵事件,并且其周期與太陽(yáng)輻射的歲差基本一致.Wang等(1986)和Zhao(1986)基于近百口鉆井資料,分別給出了三次主要海侵事件的可能影響范圍,并提出第二次海侵事件的影響范圍是三次事件中最大的.20世紀(jì)90年代以來(lái),發(fā)表的成果顯著增多,如BQ1孔(閻玉忠等, 2006)、壽光E孔(趙松齡, 1996; 韓德亮, 2001)、S3孔(莊振業(yè)等, 1999)、A1和A5孔(張祖陸等, 2005)、G3和DY孔(Yang et al., 2006)、HB-1孔(Liu et al., 2009)、BZ1-BZ2-TN3孔(姚政權(quán)等, 2006; 陳宇坤等, 2008; 肖國(guó)橋等, 2008)等等.王強(qiáng)和田國(guó)強(qiáng)(1999)在總結(jié)這些海侵研究成果的基礎(chǔ)上,討論了新構(gòu)造運(yùn)動(dòng)的可能影響.王宏等(2004)、王宏和范昌福(2005)對(duì)渤海地區(qū)的全新世地層中的14C測(cè)年進(jìn)行了統(tǒng)計(jì),給出了各地區(qū)碳庫(kù)效應(yīng)的大小及其校正系數(shù).
由于長(zhǎng)序列的樣品不易獲取,相關(guān)研究主要集中在華北的濱海平原區(qū)和現(xiàn)代黃河三角洲地區(qū).雖然經(jīng)過(guò)磁性地層學(xué)研究的鉆孔已有40余個(gè),但不同地點(diǎn)、不同構(gòu)造單元鉆孔的磁性地層年代結(jié)果存在較大差異(如,施林峰等, 2009;劉東生,2009).根據(jù)這些磁性地層學(xué)結(jié)果推斷的第四紀(jì)期間所發(fā)生的重要環(huán)境事件,雖然偶能粗略對(duì)比(劉東生,2009),但有時(shí)年代差異較大,難以統(tǒng)一.造成這種情況的重要原因之一是,由于客觀條件的限制,早期的古地磁工作常常缺乏詳細(xì)的巖石磁學(xué)研究基礎(chǔ),尤其對(duì)于物質(zhì)來(lái)源和沉積動(dòng)力均非常復(fù)雜的海陸交互相沉積物,對(duì)載磁礦物及其記錄剩磁特征的準(zhǔn)確厘定對(duì)評(píng)價(jià)古地磁結(jié)果的可靠性至關(guān)重要.
此外,對(duì)從渤海沉積物中獲得的環(huán)境變化序列也存在截然不同的解釋.例如,趙松齡(1996)認(rèn)為渤海海陸交互相沉積物的磁化率與黃土磁化率類似,可以反映區(qū)域的干濕狀況.但Yi等(2012)則更傾向于認(rèn)為渤海海陸交互相沉積物的磁化率變化反映的是物源區(qū)的剝蝕過(guò)程.對(duì)環(huán)境替代指標(biāo)序列的環(huán)境意義的不同解釋,反映了對(duì)沉積物剝蝕、運(yùn)移和沉積過(guò)程的認(rèn)識(shí)不足.因此,本文利用渤海南部海域萊州灣獲得的一支沉積柱狀樣品進(jìn)行詳細(xì)的巖石磁學(xué)研究,并與鉆孔附近海域的現(xiàn)代沉積物進(jìn)行對(duì)比,以獲得陸源碎屑物質(zhì)在沉積過(guò)程中可能發(fā)生的變化,進(jìn)而評(píng)估古地磁數(shù)據(jù)的可靠性與環(huán)境變化序列的意義.
2地質(zhì)背景與研究材料
研究區(qū)位于郯廬斷裂中段沂沭斷裂的東西兩支之間(高維明等, 1980; Zhang et al., 2003),在中新世中晚期以后,整體基本處于穩(wěn)定的沉降環(huán)境(Allen et al., 1997; Hu et al., 2001; He and Wang, 2003),表現(xiàn)為地震剖面上不整合面以上同相軸基本平行、連續(xù)穩(wěn)定,地層無(wú)較大的起伏,也無(wú)較大的不整合面產(chǎn)生(吳時(shí)國(guó)等,2006;Yu et al.,2008).
晚第四紀(jì)以來(lái),沉積環(huán)境之間的轉(zhuǎn)化主要集中于三角洲—河口—潮坪三種環(huán)境(薛春汀和丁東,2008),當(dāng)海水大范圍退去后,海陸交互相沉積有可能為河流沖積扇的前緣所替代(孟慶海等,1999),或者成為洪積扇(陳明等, 1991)、海岸沙丘(陳明等, 1991; 趙松齡, 1996; 于洪軍等, 1999)的一部分.在此之前,研究區(qū)的沉積環(huán)境主要為河湖相(中國(guó)科學(xué)院海洋研究所, 1985).
Lz908孔的GPS坐標(biāo)為37°09′N、118°58′E,海拔約6 m,于2007年鉆進(jìn)取芯.全孔取芯率為75%,實(shí)際進(jìn)尺101.3 m.20世紀(jì)中期之前,鉆井區(qū)為海水覆蓋.鉆孔上部54.3 m為晚第四紀(jì)海侵沉積,下部47 m是河湖相沉積 (Yi et al., 2015).本次研究從不同沉積相類型中(包括海相、河流相和湖相)選擇樣品共31份,連同鉆孔附近海域的小清河及其河口外現(xiàn)代表層沉積物樣品7份(杜廷芹等, 2008; 陳斌等, 2009),一起進(jìn)行多參數(shù)的巖石磁學(xué)研究(38份樣品的詳細(xì)信息見(jiàn)表1),詳細(xì)解析Lz908孔沉積物及現(xiàn)代小清河表層沉積物中磁性礦物的組成、粒度特征以及剩磁載體的類型,為下一步開(kāi)展磁性地層學(xué)與環(huán)境磁學(xué)研究提供堅(jiān)實(shí)的巖石磁學(xué)基礎(chǔ).
3實(shí)驗(yàn)方法與實(shí)驗(yàn)結(jié)果
表1 本文測(cè)試樣品的信息
所有樣品的升溫曲線都在580 ℃(即磁鐵礦的居里溫度)左右出現(xiàn)明顯轉(zhuǎn)折,說(shuō)明所測(cè)樣品的磁化率主要是由磁鐵礦貢獻(xiàn)的.部分樣品的升溫曲線在280 ℃左右呈現(xiàn)微弱的峰值,并且在280~330 ℃磁化率逐漸下降(圖2g),這是由于高磁化率、熱不穩(wěn)定的磁赤鐵礦受熱分解轉(zhuǎn)化成低磁化率、熱穩(wěn)定的赤鐵礦造成的(Deng et al., 2001, 2004).部分樣品的升溫曲線在520 ℃左右(圖2a, 2e—2g)出現(xiàn)顯著的峰值,這通常是由于加熱過(guò)程中熱不穩(wěn)定的含鐵硅酸鹽和黏土礦物受熱分解新生成磁鐵礦所致(Deng et al., 2004).
所有樣品的降溫曲線都位于升溫曲線之上,并且也都在580 ℃左右出現(xiàn)明顯轉(zhuǎn)折,如果以升溫、降溫曲線上室溫磁化率為基準(zhǔn),熱處理后磁化率增強(qiáng)了3~20倍不等,說(shuō)明在熱處理過(guò)程中生成了大量的磁鐵礦.此外,圖2c所示的樣品,其降溫曲線在580 ℃至室溫之間基本保持水平,磁化率變化不大,說(shuō)明新生成的磁鐵礦粒度較粗,可能為較大的準(zhǔn)單疇至多疇磁鐵礦顆粒(Deng et al., 2006).
3.2磁滯回線
磁滯行為強(qiáng)烈受控于磁性礦物的類型和粒度,因此,可用磁滯回線來(lái)確定巖石中磁性礦物的組成(Tauxe et al., 1996).磁滯回線的測(cè)試?yán)谜駝?dòng)樣品磁力儀(MicroMag 3900 VSM)完成,最大外加磁場(chǎng)為±1.5 T.
鉆孔與現(xiàn)代沉積物樣品的磁滯回線均表現(xiàn)出相似的特征.大部分樣品的磁滯回線均在0.3~0.5 T閉合(圖3a—3h),說(shuō)明沉積物中以低矯頑力的磁性組分為主.少量樣品表現(xiàn)為微弱的“鵝頸”狀特征(圖2c),說(shuō)明樣品中不僅含有低矯頑力磁性礦物,還含有高矯頑力磁性礦物.
由磁滯回線推導(dǎo)出來(lái)的ΔM和dΔM/dB曲線可以用來(lái)區(qū)分不同磁組分的矯頑力譜,僅反映剩磁載體的信息,不能反映超順磁組分,因此可以用來(lái)區(qū)分這兩種因素導(dǎo)致的磁滯回線變形特征(Tauxe et al., 1996; He et al., 2012).鉆孔樣品的dΔM/dB曲線(圖3j)表現(xiàn)為三峰特征,三個(gè)峰值分布位于30~60 mT, 90~110 mT和200~300 mT.現(xiàn)代沉積物樣品的dΔM/dB曲線(圖3k)也表現(xiàn)為三峰特征,但峰值略有差別,分別位于30~60 mT, 120~140 mT和~300 mT.
圖1 區(qū)域地形地貌略圖及Lz908孔的位置(a)及現(xiàn)代表層沉積物樣品的采樣位置(b)Fig.1 (a) Geographical settings and location of the south Bohai Sea in eastern China and the Lz908 borehole (solid triangles); (b) Locations of the samples of modern fluvial/marine sediments (dots)
圖2 磁化率隨溫度變化曲線. (a—d) 鉆孔沉積物(對(duì)應(yīng)深度為a,28.7 m:b,60.4 m;c,90.4 m;d, 92.0 m;下同);(e—h) 現(xiàn)代小清河表層沉積物(對(duì)應(yīng)站位為:e,A2:f,E2;g,H1;h,H8;下同)箭頭指示加熱(粗)與冷卻(細(xì))過(guò)程.Fig.2 High-temperature magnetic susceptibility measurements (-T curves) of samples from the Lz908 borehole (a—d) and modern sediments (e—h)Arrows represent heating (bold) and cooling (thin) runs.
圖3 磁滯回線(a—d,鉆孔樣品;e—h,現(xiàn)代沉積物),ΔM曲線(i,灰色粗線為鉆孔樣品,藍(lán)色細(xì)線為現(xiàn)代沉積物樣品)和dΔM/dB曲線(j,鉆孔樣品;k,現(xiàn)代沉積物樣品)測(cè)磁滯回線的最大外加場(chǎng)為±1.5 T,dΔM/dB曲線的數(shù)據(jù)截至0.5 T.Fig.3 Hysteresis loops (a—h) along with the ΔM (i) and dΔM/dB (j,k) curves. (a—d) Borehole samples; (e—h) Modern sediment samples. Grey bold lines and blue thin lines in (i) represent ΔM curves for borehole samples and modern sediment samples, respectively. dΔM/dB curves for borehole samples and modern sediment samples are shown in (j) and (k), respectivelyNote that the hysteresis loops were measured in fields up to ±1.5 T, and that the dΔM/dB curves are cut off at 0.5 T for reasons of clarity.
圖4 IRM獲得曲線及其反向場(chǎng)退磁曲線(a),Day氏圖(b,灰點(diǎn)為鉆孔樣品,藍(lán)色三角形為現(xiàn)代沉積物樣品)和矯頑力譜分析(c為鉆孔樣品,d為現(xiàn)代沉積物樣品)Fig.4 (a) IRM acquisition curves and DC field demagnetization curves of the SIRM; (b) Day plots (Grey dots, borehole samples; blue triangles, modern sediment samples); (c) & (d) Coercivity distributions for borehole and modern sediment samples, which are calculated using the Matlab@ 7.1 program
3.3等溫剩磁獲得曲線和矯頑力譜分析
等溫剩磁(IRM)獲得曲線與飽和等溫剩磁(SIRM)的反向場(chǎng)退磁曲線能夠提供矯頑力的信息(Deng et al., 2005; 任收麥等, 2015),這有助于識(shí)別沉積物中磁性礦物的成分.使用振動(dòng)樣品磁力儀(MicroMag 3900 VSM)測(cè)量樣品的IRM獲得曲線(最大外加磁場(chǎng)為1.5 T)及SIRM的反向場(chǎng)退磁曲線(圖4a).
對(duì)于鉆孔樣品,不同沉積環(huán)境樣品的IRM獲得曲線及其反向場(chǎng)退磁曲線并無(wú)本質(zhì)差異,而IRM0.3T/SIRM 較大的變化范圍(0.63~0.95)說(shuō)明了含有兩種以上的矯頑力成分.有些樣品具有較高的IRM0.3T/SIRM說(shuō)明沉積物中主要的磁性礦物為低矯頑力組分或者順磁性礦物.而個(gè)別樣品的IRM0.3T/SIRM值很低,指示了高矯頑力礦物的存在.對(duì)于現(xiàn)代樣品,IRM獲得曲線的變化特征與鉆孔樣品十分接近.
Day氏圖(Dunlop, 2002)Lz908孔沉積物和現(xiàn)代小清河沉積物中磁鐵礦的平均粒度較粗,為較大的準(zhǔn)單疇(PSD)至多疇(MD)(圖4b),這與-T曲線揭示出的部分樣品中含有較粗顆粒磁鐵礦的特征一致(圖2).
通常來(lái)說(shuō),沉積物中的磁性礦物是多種成分的組合.研究者因此利用數(shù)學(xué)方法將具有不同矯頑力特征的礦物組分區(qū)分開(kāi)來(lái)(如, Egli, 2003).這里,我們利用Matlab 7.1對(duì)IRM獲得曲線進(jìn)行矯頑力分解(圖4c,4d).這種方法可以有效揭示沉積物中不同矯頑力的磁性礦物組分(如, He et al., 2012; Li et al., 2013).
對(duì)于鉆孔樣品,主要有兩種情況(圖4c):(1)僅有一個(gè)低矯頑力分量,其峰值位于20~60 mT,代表磁鐵礦的信號(hào);(2)另一種是具有兩個(gè)分量,其中高矯頑力分量的峰值位于200~300 mT,代表赤鐵礦的信號(hào).而現(xiàn)代沉積物樣品的矯頑力譜特征顯示,樣品中磁性礦物以低矯頑力組分為主,峰值低于100 mT,但顯示多個(gè)峰值(圖4d).這一結(jié)果與dΔM/dB曲線的結(jié)果(圖3j,3k)基本一致,反映了沉積物中主要含有低矯頑力的磁性礦物,同時(shí)還有少量高矯頑力的組分.
3.4一階反轉(zhuǎn)曲線(FORC)
FORC不但可以用來(lái)確定磁性礦物矯頑力的分布以及磁性礦物顆粒之間磁相互作用的強(qiáng)弱,而且還可以幫助區(qū)分磁性礦物的種類和磁疇狀態(tài)(秦華鋒等, 2008; Liu et al., 2015).典型樣品的FORC曲線利用振動(dòng)樣品磁力儀(MicroMag 3900 VSM)測(cè)量.最大外加場(chǎng)強(qiáng)為1.5 T,測(cè)量步長(zhǎng)為3.2 mT,每條FORC由125條子曲線組成.測(cè)量原始數(shù)據(jù)由FORCinel version 1.17軟件(Harrison and Feinberg, 2008)生成FORC圖(圖5).結(jié)果顯示,鉆孔樣品與現(xiàn)代沉積物樣品的表現(xiàn)類似,矯頑力分布在10~30 mT之間,峰值位于15 mT左右;所有樣品的FORC等值線均在縱軸上有所展布,說(shuō)明樣品中存在明顯的靜磁相互作用;等值線橢圓與縱軸相交.綜合上述信息,所測(cè)樣品中的磁性礦物主要是PSD顆粒的(鈦)磁鐵礦或(鈦)磁赤鐵礦.部分樣品(如圖5d, 5h)中可能含有MD顆粒.
3.5系統(tǒng)退磁結(jié)果
我們對(duì)其中6個(gè)鉆孔樣品進(jìn)行系統(tǒng)交變退磁,退磁步驟為0(天然剩磁)、5、10、15、20、25、30、35、40、50、60、70、80 mT共13步;再對(duì)12個(gè)鉆孔樣品進(jìn)行系統(tǒng)熱退磁,退磁步驟為室溫(天然剩磁)、50、75、100、125、150、200、250、300、350、400、450、500、525、550、575、600、625 ℃共18步.退磁正交投影圖(Zijderveld, 1967)見(jiàn)圖6.樣品的剩磁衰減情況見(jiàn)圖7.
圖6a—6e為其中5個(gè)樣品的交變退磁結(jié)果,均直接趨向原點(diǎn).在20~30 mT之前,剩磁強(qiáng)度降低較快(圖7a),這代表低矯頑力磁性礦物(主要是磁鐵礦)的信號(hào).到70~80 mT時(shí),樣品的剩磁強(qiáng)度衰減至天然剩磁的5%~40%,說(shuō)明高矯頑力磁性礦物(主要是赤鐵礦)也是重要的剩磁載體.對(duì)這些交變退磁的樣品,在30~80 mT之間可分離出線性較好的特征剩磁分量.
熱退磁的結(jié)果總體上不太理想,圖6f—6i為其中4個(gè)樣品的熱退磁結(jié)果,只有圖6i所示的樣品退磁效果較好,在300 ℃以后可分離出線性較好的特征剩磁分量.部分樣品在200 ℃時(shí)剩磁強(qiáng)度已降低到天然剩磁的25%以下(圖7b).對(duì)比上述交變退磁與熱退磁的結(jié)果,對(duì)于Lz908孔的沉積物的古地磁學(xué)研究,交變退磁方法可能比熱退磁方法更為有效;而熱退磁效果不好的主要原因,可能是由于沉積物剩磁較弱,加熱過(guò)程中存在一定的噪聲,使得退磁曲線無(wú)法穩(wěn)定趨于原點(diǎn),或者低解阻溫度磁性礦物(如針鐵礦)攜帶的剩磁比例較高,200 ℃以后,可用于計(jì)算特征剩磁的點(diǎn)較少所致.
4討論
通過(guò)上述多參數(shù)的巖石磁學(xué)研究表明,渤海南部萊州灣Lz908孔沉積物及其附近小清河的現(xiàn)代河流沉積物中的磁性礦物主要是磁鐵礦,還有少量磁赤鐵礦,部分沉積物還含有赤鐵礦或者針鐵礦.磁鐵礦的粒度較粗,為較大的準(zhǔn)單疇至多疇顆粒.這些磁性礦物都對(duì)樣品的天然剩磁有貢獻(xiàn),但特征剩磁的載體主要是磁鐵礦.
圖6 系統(tǒng)退磁結(jié)果正交投影圖.(a—e)為交變退磁,圖中數(shù)字單位為mT. (f—i)為熱退磁實(shí)心圓代表水平投影,空心圓代表垂直投影.Fig.6 Orthogonal projections of progressive alternating field (a—e) and thermal (f—i) demagnetization. The numbers in (a—e) refer to the alternating fields in mTThe solid (open) circles represent the horizontal (vertical) planes. NRM is the natural remanent magnetization. Note that the magnetic declinations are arbitrary.
圖7 交變退磁(a)與熱退磁(b)過(guò)程中剩磁的變化情況Fig.7 Remanence decay curves for AF demagnetized (a) and thermally demagnetized (b) samples
區(qū)域地質(zhì)資料研究表明,渤海南部的沉積物主要是由小清河、彌河、濰河等區(qū)域性河流輸入(薛春汀和丁東,2008).我們的巖石磁學(xué)研究表明,鉆孔樣品與現(xiàn)代沉積物樣品的磁性礦物成分、粒度等沒(méi)有顯著差異,并且這些樣品含的磁性礦物成分也與物源區(qū)的巖石中磁性礦物組成較為吻合,因此推斷渤海南部的這些沉積物由魯中山區(qū)搬運(yùn)與堆積至此的過(guò)程及沉積后期改造并未顯著改變其磁性特征.
磁化率是反映物質(zhì)被磁化難易程度的一個(gè)度量,已被廣泛應(yīng)用于黃土-古土壤序列的研究中,并被認(rèn)為是有效反映氣候變化特征、旋回的環(huán)境代用指標(biāo)(如,Heller and Liu, 1986; 劉青松和鄧成龍, 2009; Deng et al., 2005).在海洋沉積物的研究中,磁化率的變化也被認(rèn)為在一定程度上能夠反映陸源物質(zhì)的輸入、區(qū)域風(fēng)化特征和后期沉積改造等過(guò)程,進(jìn)而與沉積物的粒度變化特征一起用于反演區(qū)域環(huán)境氣候的歷史(Yim et al., 2004; Ghilardi et al., 2008; Larrasoaa et al., 2008).海陸交互相沉積物的磁化率主要有四個(gè)控制因素(Nádor et al., 2003):(1)區(qū)域的風(fēng)化作用(機(jī)械風(fēng)化與化學(xué)風(fēng)化),這一因素直接影響了磁性礦物的數(shù)量、類型、顆粒大??;(2)不同物質(zhì)源區(qū)的混合作用;(3)動(dòng)力搬運(yùn)條件,如水動(dòng)力、風(fēng)力等,是否具備搬運(yùn)大顆粒磁性礦物至沉積區(qū)的能力;(4)沉積分異作用.
渤海南部的沉積物來(lái)源于魯中山區(qū),其搬運(yùn)動(dòng)力為具有高縱比降的區(qū)域性河流.這些河流的縱比降在山區(qū)內(nèi)為8~15 m·km-1,在沿海平原變?yōu)?.1~0.5 m·km-1.較高的縱比降值說(shuō)明河流的搬運(yùn)動(dòng)力非常強(qiáng),在大多數(shù)時(shí)候能搬運(yùn)較粗的砂粒級(jí)的物質(zhì)至沿海平原(Yi et al., 2012; 李琰等, 2014).此外,渤海南部的沉積物主要屬于化學(xué)風(fēng)化脫鈣脫鈉的初級(jí)階段(易亮, 2010),指示源區(qū)的風(fēng)化強(qiáng)度相對(duì)較弱,控制碎屑物質(zhì)對(duì)河流供應(yīng)的主導(dǎo)因素可能是機(jī)械剝蝕過(guò)程.因此,我們認(rèn)為機(jī)械剝蝕作用可能是影響渤海南部沉積物磁化率變化的主導(dǎo)過(guò)程.
由于渤海南部沉積物中的主要磁學(xué)礦物是顆粒較粗的磁鐵礦,我們推測(cè):當(dāng)魯中山區(qū)剝蝕作用加強(qiáng)時(shí),碎屑物質(zhì)的增多同時(shí)豐富了沉積物中磁性礦物的數(shù)量,因此研究區(qū)沉積物的磁化率增大;而在機(jī)械剝蝕作用減弱的時(shí)候,由于碎屑物質(zhì)減少,沉積物中磁性礦物的數(shù)量也相應(yīng)減少.
另一方面,有研究認(rèn)為渤海南部沉積物的高磁化率值對(duì)應(yīng)了海侵事件(趙松齡, 1996).由于濱海平原區(qū)的河流縱比降相對(duì)山區(qū)而言變小了許多,當(dāng)海侵發(fā)生時(shí),海岸線向內(nèi)陸山區(qū)方向推進(jìn),有更多的粗粒磁鐵礦顆粒進(jìn)入海洋環(huán)境,進(jìn)而在海洋動(dòng)力作用下向外搬運(yùn).因此,在渤海南部地區(qū),剝蝕過(guò)程、沉積作用和海平面變化之間的具有相關(guān)性特征,還需積累更多的材料記錄才能揭示.
5結(jié)論
綜合IRM獲得磁化率隨溫度變化特征、磁滯回線、等溫剩磁獲得曲線及其反向場(chǎng)退磁曲線、一階反轉(zhuǎn)曲線以及系統(tǒng)交變退磁和熱退磁等方法,我們?cè)敿?xì)解析了渤海南部萊州灣鉆孔Lz908孔及其鄰近的現(xiàn)代沉積物的巖石磁學(xué)特征,為下一步開(kāi)展詳細(xì)的磁性地層年代學(xué)和環(huán)境磁學(xué)研究提供了堅(jiān)實(shí)的巖石磁學(xué)基礎(chǔ).結(jié)果顯示,渤海南部沉積物中的磁性礦物顆粒主要是粗顆粒(較大的準(zhǔn)單疇至多疇)磁鐵礦,還有少量磁赤鐵礦,部分沉積物還含有赤鐵礦和針鐵礦,其中磁鐵礦是特征剩磁的主要載體;現(xiàn)代河流-海洋沉積物和鉆孔樣品之間的磁性特征并未顯著差異,說(shuō)明沉積物堆積之后并未經(jīng)歷重要的沉積后期改造;高磁化率粗顆粒磁鐵礦主要來(lái)自源剝蝕,磁化率可能與源區(qū)剝蝕作用或者區(qū)域海平面變化均存在一定的聯(lián)系.
References
Allen M B, Macdonald D I M, Xun Z, et al. 1997. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China.MarineandPetroleumGeology, 14(7-8): 951-972.
Chen B, Huang H J, Mei B. 2009. Characteristics of sediment transportation near Xiaoqing estuary.MarineGeology&QuaternaryGeology(in Chinese), 29(5): 35-42.Chen M, Chen J G, Wang J F. 1991. The evolutional trend of swamping salting and desertization along the coast of Bohai sea and its relationship to global change.QuaternarySciences(in Chinese), 11(2): 113-122.
Chen Y K, Li Z H, Shao Y X, et al. 2008. Study on the Quaternary chronostratigraphic section in Tianjin Area.SeismologyandGeology(in Chinese), 30(2): 383-399.
Deng C, Zhu R, Jackson M J, et al. 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator.PhysicsandChemistryoftheEarth,PartA:SolidEarthandGeodesy, 26(11-12): 873-878.
Deng C L, Yuan B Y, Zhu R X, et al. 2000. Magnetic susceptibility of Holocene loess-black loam sequence from Jiaodao, Shaanxi before and after citrate-bicarbonate-dithionite extraction.ChineseJournalofGeophysics(in Chinese), 43(4): 505-514. Deng C L, Zhu R X, Verosub K L, et al. 2004. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr.JournalofGeophysicalResearch, 109: B01103, doi: 10.1029/2003JB002532. Deng C L, Vidic N J, Verosub K L, et al. 2005. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability.JournalofGeophysicalResearch, 110: B03103, doi: 10.1029/2004JB003451. Deng C L, Shaw J, Liu Q S, et al. 2006. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling.EarthandPlanetaryScienceLetters, 241(1-2): 248-259.
Du T Q, Huang H J, Yan L W, et al. 2008. Characteristics of suspended matters in winter water off the Xiaoqing River Estuary.MarineGeologyandQuaternaryGeology(in Chinese), 28(6): 41-48. Dunlop D J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils.JournalofGeophysicalResearch, 107(B3): EPM 5-1-EPM 5-15, doi: 10.1029/2001JB000486.
Egli R. 2003. Analysis of the field dependence of remanent magnetization curves.JournalofGeophysicalResearch, 108(B2): 2081, doi: 10.1029/2002JB002023.
Gao W M, Li J L, Sun Z Y. 1980. Formation and evolution of the Yihe-Suhe continental rift.SeismologyandGeology(in Chinese), 2(3): 11-18. Ghilardi M, Kunesch S, Styllas M, et al. 2008. Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses.Geomorphology, 97(3-4): 617-630. Han D L. 2001. Geochemistry of core E in the Laizhou Bay since late stage of Middle Pleistocene.ActaOceanologicaSinica(in Chinese), 23(2): 79-85.
Harrison R J, Feinberg J M. 2008. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing.GeochemistryGeophysicsGeosystems, 9(5): Q05016, doi: 10.1029/2008GC001987. He H Y, Deng C L, Wang P J, et al. 2012. Toward age determination of the termination of the Cretaceous Normal Superchron.GeochemistryGeophysicsGeosystems, 13(2): Q02002, doi: 10.1029/2011GC003901. He L J, Wang J Y. 2003. Cenozoic thermal history of the Bohai Bay Basin: constraints from heat flow and coupled basin-mountain modeling.PhysicsandChemistryoftheEarth,PartsA/B/C, 28(9-11): 421-429.
Heller F, Liu T S. 1986. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China.GeophysicalResearchLetters, 13(11): 1169-1172, doi: 10.1029/GL013i011p01169. Hu S B, O′Sullivan P B, Raza A, et al. 2001. Thermal history and tectonic subsidence of the Bohai Basin, northern China: a Cenozoic rifted and local pull-apart basin.PhysicsoftheEarthandPlanetaryInteriors, 126(3-4): 221-235.
IOCAS (Institute of Oceanography, Chinese Academy of Sciences). 1985. Geology of the Bohai Sea (in Chinese). Beijing: Science Press, 1-232.
Jolivet L, Tamaki K, Fournier M. 1994. Japan Sea, opening history and mechanism: A synthesis.JournalofGeophysicalResearch, 99(B11): 22237-22259. Larrasoaa J C, Roberts A P, Rohling E J. 2008. Magnetic susceptibility of eastern Mediterranean marine sediments as a proxy for Saharan dust supply?.MarineGeology, 254(3-4): 224-229.
Li S H, Deng C L, Yao H T, et al. 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau.JournalofGeophysicalResearch, 118(3): 791-807, doi: 10.1002/jgrb.50129.
Li Y, Yu H J, Yi L, et al. 2014. Grain-size characteristics and its sedimentary significance of coastal sediments of the borehole Lz908 in the south Bohai Sea (the Laizhou Bay), China.MarineSciences(in Chinese), 38(5): 107-113.
Liu J, Saito Y, Wang H, et al. 2009. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea.JournalofAsianEarthSciences, 36(4-5): 318-331.
Liu Q S, Deng C L. 2009. Magnetic susceptibility and its environmental significances.ChineseJournalofGeophysics(in Chinese), 52(4): 1041-1048, doi: 10.3969/j.issn.0001-5733.2009.04.021.
Liu S Z, Deng C L, Xiao J L, et al. 2015. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia.ScientificReports, 5: 8001, doi: 10.1038/srep08001.
Liu D S. 2009. Loess and Arid Environment (in Chinese). Hefei: Anhui Science and Technology Press, 1-537.
Meng Q H, Han M, Zhao M H, et al. 1999. A Preliminary study of the Mihe river alluvial diluvial fan and the palaeochannels.JournalofShandongNormalUniversity(NaturalScience) (in Chinese), 14(1): 46-50.
Nádor A, Lantos M, Tóth-Makk, et al. 2003. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary.QuaternaryScienceReviews, 22(20): 2157-2175. Qin H F, Liu Q S, Pan Y X. 2008. The first-order reversal curve (FORC) diagram: Theory and case study.ChineseJournalofGeophysics(in Chinese), 51(3): 743-751.
Ren S M, Zhu R X, Qiu H J, et al. 2015. Paleomagnetic study on Middle Jurassic lavas of Heilongjiang Province, NE China and its tectonic implications.ChineseJournalofGeophysics(in Chinese), 58(4): 1269-1283, doi: 10.6038/cjg20150415. Shi L F, Zhai Z M, Wang Q, et al. 2009. Geochronological study on transgression layers of the CQJ4 borehole at Dagang area in Tianjin, China.GeologicalReview(in Chinese), 55(3): 375-384.
Tamaki K, Honza E. 1991. Global tectonics and formation of marginal basins: Role of the western Pacific.Episodes, 14(3): 224-230.
Tauxe L, Mullender T A T, Pick T. 1996. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis.JournalofGeophysicalResearch, 101(B1): 571-583, doi: 10.1029/95JB03041.Wang H, Li F L, Fan C F, et al. 2004. The14C database (I) on the circum-Bohai Sea-Coast.QuaternarySciences(in Chinese), 24(6): 601-613.
Wang H, Fan C F. 2005. The14C Database (II) on the Circum-Bohai Sea-Coast.QuaternarySciences(in Chinese), 25(2): 141-156.
Wang P X. 1999. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features.MarineGeology, 156(1-4): 5-39.
Wang P X. 2005. Cenozoic deformation and the history of sea-land interactions in Asia.EarthScience-JournalofChinaUniversityofGeosciences, 30(1): 1-18.
Wang Q, Li F, Li Y, et al. 1986. Shoreline changes in west-southern coastal plain of the Bohai Sea since 150 ka.∥ Qin Y, Zhao S, eds. Late Quaternary Sea-Level Changes. Beijing: China Ocean Press, 62-71. Wang Q, Tian G Q. 1999. The neotectonic setting of late Quaternary transgressions on the eastern coastal plain of China.JournalofGeomechanics(in Chinese), 5(4): 41-48. Wu S G, Yu C H, Zou D B, et al. 2006. Structural features and Cenozoic evolution of the Tan-Lu fault zone in the Laizhou Bay, Bohai sea.MarineGeology&QuaternaryGeology(in Chinese), 26(6): 101-110. Xiao G Q, Guo Z T, Chen Y K, et al. 2008. Magnetostratigraphy of BZ1bore hole in west coast of Bohai Bay, northern China.QuaternarySciences(in Chinese), 28(5): 909-916.
Xue C D, Ding D. 2008. Weihe River-Mihe River delta in South Coast of Bohai Sea, China: sedimentary sequence and architecture.ScientiaGeographicaSinica(in Chinese), 28(5): 672-676. Yan Y Z, Wang H, Li F L, et al. 2006. Sedimentary environment and sea-level fluctuations revealed by Borehole BQ1 on the west coast of the Bohai Bay, China.GeologicalBulletinofChina(in Chinese), 25(3): 357-382.
Yang S Y, Li C X, Cai J G. 2006. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes.Palaeogeography,Palaeoclimatology,Palaeoecology, 229(4): 287-302. Yao Z Q, Guo Z T, Chen Y K, et al. 2006. Magnetostratigraphy of marine-terrigenous facies deposits in Bohai Bay.MarineGeologyandQuaternaryGeology(in Chinese), 26(1): 9-15.
Yi L. 2010. Environment history of south Bohai Sea during the past 250 ka: inferred from the Lz908 borehole [Ph. D. thesis] (in Chinese). Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences.
Yi L, Yu H J, Ortiz J D, et al. 2012. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China.Palaeogeography,Palaeoclimatology,Palaeoecology, 329-330: 101-117. Yi L, Deng C L, Xu X Y, et al. 2015. Paleo-megalake termination in the Quaternary: Paleomagnetic and water-level evidence from south Bohai Sea, China.SedimentaryGeology, 319: 1-12.
Yim W W S, Huang G, Chan L S. 2004. Magnetic susceptibility study of Late Quaternary inner continental shelf sediments in the Hong Kong SAR, China.QuaternaryInternational, 117(1): 41-54.
Yu H Z, Han D L, Liu X, et al. 1999. Study on the disintegration of marine stratum in the northern shelf region of nearshore seas of China.ActaOceanologicaSinica(in Chinese), 21(3): 83-89.
Yu Z H, Wu S G, Zou D B, et al. 2008. Seismic profiles across the middle Tan-Lu fault zone in Laizhou Bay, Bohai Sea, eastern China.JournalofAsianEarthSciences, 33(5-6): 383-394.
Zhang Y Q, Dong S W, Shi W. 2003. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China.Tectonophysics, 363(3-4): 243-258.
Zhang Z L, Nie X H, Liu N F, et al. 2005. The accumulation records of environmental evolution on the salt-water intruded area south of Laizhou Bay since late Pleistocene.GeographicalResearch(in Chinese), 24(1): 105-112.
Zhao S. 1986. Transgression and coastal changes in Bohai Sea and its vicinities since the Late Pleistocene.∥ Qin Y, Zhao S, eds. Late Quaternary Sea-Level Changes. Beijing: China Ocean Press, 53-62.
Zhao S L, Yang G F, Cang S X, et al. 1978. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai.OceanologiaetLimnologiaSinica(in Chinese), 9(1): 15-25.
Zhao S L. 1996. Desertification in Continental Shelf (in Chinese). Beijing: China Ocean Press, 1-194.
Zhuang Z Y, Xu W D, Liu D S, et al. 1999. Division and Environmental Evolution of Late Quaternary Marine Beds of S3 Hole in the Bohai Sea.MarineGeologyandQuaternaryGeology(in Chinese), 19(2): 27-35.
Zijderveld J D A. 1967. AC demagnetization of rocks: analysis of results.∥ Collinson D W, Creer K M, Runcorn S K, eds. Methods in Palaeomagnetism. New York: Elsevier, 254-286.
附中文參考文獻(xiàn)
陳斌, 黃海軍, 梅冰. 2009. 小清河口海域泥沙運(yùn)動(dòng)特征. 海洋地質(zhì)與第四紀(jì)地質(zhì), 29(5): 35-42.
陳明, 陳建國(guó), 王建芬. 1991. 環(huán)渤海沿岸沼澤化、鹽漬化和沙漠化的演化及其與全球變化的關(guān)系. 第四紀(jì)研究, 11(2): 113-122.
陳宇坤, 李振海, 邵永新等. 2008. 天津地區(qū)第四紀(jì)年代地層剖面研究. 地震地質(zhì), 30(2): 383-399.
鄧成龍, 袁寶印, 朱日祥等. 2000. 陜西交道全新世黃土-黑壚土磁化率的CBD研究. 地球物理學(xué)報(bào), 43(4): 505-514.
杜廷芹, 黃海軍, 嚴(yán)立文等. 2008. 小清河河口海域冬季懸浮體特征. 海洋地質(zhì)與第四紀(jì)地質(zhì), 28(6): 41-48.
高維明, 李家靈, 孫竹友. 1980. 沂沭大陸裂谷的生成與演化. 地震地質(zhì), 2(3): 11-18.
韓德亮. 2001. 萊州灣E孔中更新世末期以來(lái)的地球化學(xué)特征. 海洋學(xué)報(bào), 23(2): 79-85.
李琰, 于洪軍, 易亮等. 2014. 渤海南部Lz908孔海陸交互沉積的粒度特征及其對(duì)沉積環(huán)境的指示. 海洋科學(xué), 38(5): 107-113. 劉青松, 鄧成龍. 2009. 磁化率及其環(huán)境意義. 地球物理學(xué)報(bào), 52(4): 1041-1048, doi: 10.3969/j.issn.0001-5733.2009.04.021. 劉東生. 2009. 黃土與干旱環(huán)境. 合肥: 安徽科學(xué)技術(shù)出版社, 1-537. 孟慶海, 韓美, 趙明華等. 1999. 彌河沖洪積扇和古河道初步研究. 山東師大學(xué)報(bào)(自然科學(xué)版), 14(1): 46-50.
秦華鋒, 劉青松, 潘永信. 2008. 一階反轉(zhuǎn)曲線(FORC)圖的原理及應(yīng)用實(shí)例. 地球物理學(xué)報(bào), 51(3): 743-751.
任收麥, 朱日祥, 邱海峻等. 2015. 黑龍江省饒河枕狀玄武巖古地磁學(xué)研究及其構(gòu)造意義. 地球物理學(xué)報(bào), 58(4): 1269-1283, doi: 10.6038/cjg20150415.
施林峰, 翟子梅, 王強(qiáng)等. 2009. 從天津CQJ4孔探討中國(guó)東部海侵層的年代問(wèn)題. 地質(zhì)論評(píng), 55(3): 375-384.
王宏, 李鳳林, 范昌福等. 2004. 環(huán)渤海海岸帶14C數(shù)據(jù)集(I). 第四紀(jì)研究, 24(6): 601-613.
王宏, 范昌福. 2005. 環(huán)渤海海岸帶14C數(shù)據(jù)集(II). 第四紀(jì)研究, 25(2): 141-156.
王強(qiáng), 田國(guó)強(qiáng). 1999. 中國(guó)東部晚第四紀(jì)海侵的新構(gòu)造背景. 地質(zhì)力學(xué)學(xué)報(bào), 5(4): 41-48.
吳時(shí)國(guó), 余朝華, 鄒東波等. 2006. 萊州灣地區(qū)郯廬斷裂帶的構(gòu)造特征及其新生代演化. 海洋地質(zhì)與第四紀(jì)地質(zhì), 26(6): 101-110. 肖國(guó)橋, 郭正堂, 陳宇坤等. 2008. 渤海灣西岸BZ1鉆孔的磁性地層學(xué)研究. 第四紀(jì)研究, 28(5): 909-916.
薛春汀, 丁東. 2008. 渤海萊州灣南岸濰河—彌河三角洲: 沉積序列和沉積格架. 地理科學(xué), 28(5): 672-676.
閻玉忠, 王宏, 李鳳林等. 2006. 渤海灣西岸BQ1孔揭示的沉積環(huán)境與海面波動(dòng). 地質(zhì)通報(bào), 25(3): 357-382.
姚政權(quán), 郭正堂. 陳宇坤等. 2006. 渤海灣海陸交互相沉積的磁性地層學(xué)研究. 海洋地質(zhì)與第四紀(jì)地質(zhì), 26(1): 9-15.
易亮. 2010. 渤海南部Lz908孔250 ka以來(lái)的環(huán)境演化研究[博士論文]. 煙臺(tái): 中國(guó)科學(xué)院煙臺(tái)海岸帶研究所.
于洪軍, 韓德亮, 劉選等. 1999. 中國(guó)近海北部陸架海相地層解體問(wèn)題的研究. 海洋學(xué)報(bào), 21(3): 83-89.
張祖陸, 聶曉紅, 劉恩峰等. 2005. 萊州灣南岸咸水入侵區(qū)晚更新世以來(lái)的古環(huán)境演變. 地理研究, 24(1): 105-112.
趙松齡, 楊光復(fù), 蒼松溪等. 1978. 關(guān)于渤海灣西岸海相地層與海岸線問(wèn)題. 海洋與湖沼, 9(1): 15-25.
趙松齡. 1996. 陸架沙漠化. 北京: 海洋出版社, 1-194. 中國(guó)科學(xué)院海洋研究所. 1985. 渤海地質(zhì). 北京: 科學(xué)出版社, 1-232. 莊振業(yè), 許衛(wèi)東, 劉東生等. 1999. 渤海南部S3孔晚第四紀(jì)海相地層的劃分及環(huán)境演變. 海洋地質(zhì)與第四紀(jì)地質(zhì), 19(2): 27-35.
(本文編輯何燕)
Rock magnetic properties of the Lz908 borehole sediments from the southern Bohai Sea, eastern China
LI Qian1, YI Liang1,3, LIU Su-Zhen1, YU Hong-Jun2,4, CHEN Yan-Ping5,XU Xing-Yong2, LI Ping2, DENG Cheng-Long1*
1StateKeyLaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2KeyLaboratoryofMarineSedimentologyandEnvironmentalGeology,FirstInstituteofOceanography,StateOceanicAdministration,Qingdao266061,China3SanyaInstituteofDeep-seaScienceandEngineering,ChineseAcademyofSciences,Sanya572000,China4NationalDeepSeaCenter,Qingdao266061,China5KeyLaboratoryofEngineeringOceanography,SecondInstituteofOceanography,StateOceanicAdministration,Hangzhou310012,China
AbstractMarginal seas and epicontinental seas in eastern Asia play an important role in moderating material and energy flux linkages between Asia and Northwest Pacific and subsequently have a profound climatic and environmental impact. Magnetostratigraphy and environmental magnetism have been proven to be useful in the establishment of chronostratigraphic framework and paleoenvironmental processes, respectively. However, due to the complexities of magnetic mineralogy, magnetic grain size and magnetic concentration for the sediments in marginal and epicontinental seas of eastern Asia, it is necessary to carry out detailed rock magnetic studies using multiple parameters before magnetostratigraphic and enviromagnetic analyses.
The Bohai Sea is part of the epicontinental seas in eastern China, and the Bohai Basin is one of the Cenozoic extensional basins in this area. In this study, we have carried out detailed rock magnetic investigations on the sediments from the Lz908 borehole sedimentary sequence of the southern Bohai Sea and the modern fluvial/marine sediments from the adjacent areas. The Lz908 core was drilled to a depth of 101.3 m below the surface. The upper 54.3 m of the core contains dominantly marine and coastal silts, sandy silts and fine-grained sands, and the lower 47.0 m consists mainly of lacustrine and fluvial silts. The rock magnetic measurements include temperature-dependent magnetic susceptibility (-Tcurves), hysteresis loops and associated ΔMand dΔM/dBcurves, isothermal remanent magnetization (IRM) acquisition curves and backfield curves of IRM, first order reversal curve (FORC) diagrams, and stepwise thermal and alternating field demagnetization.
The multiparameter rock magnetic measurements indicate that the sediments consist of a mixture of different magnetic minerals with variable grain size or concentration. The behaviors of-Tcurves suggest the presence of magnetite and maghemite in the sediments and the dominant contribution to susceptibility by magnetite. The combination of hysteresis loops and associated ΔMand dΔM/dBcurves, IRM acquisition curves and backfield curves of IRM, and stepwise demagnetization suggest the dominance of low-coercivity magnetic minerals, such as magnetite and/or maghemite. High-coercivity magnetic minerals, e.g., hematite and/or goethite are also present, but do not dominate the magnetic signals. The Day plot and FORC diagrams indicate that the dominant ferrimagnetic mineral (magnetite) is of relatively coarse-grained nature, that is, large pseudo-single domain to multidomain-like. Magnetite is the dominant carrier of the characteristic remanent magnetizations (ChRMs). There is no remarkable difference about rock magnetic properties between modern fluvial/marine and borehole sediments, suggesting negligible post-depositional reworking.
KeywordsRock magnetism; Bohai Sea; Laizhou Bay
基金項(xiàng)目國(guó)家自然科學(xué)基金項(xiàng)目(41106062, 41402153)、國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2012CB821900)和中國(guó)博士后基金項(xiàng)目(2013T60164)聯(lián)合資助.
作者簡(jiǎn)介李倩,女,博士研究生,主要從事古地磁學(xué)研究.E-mail: wojiaolqld@sina.com *通訊作者鄧成龍,男,研究員,主要從事古地磁學(xué)研究.E-mail: cldeng@mail.iggcas.ac.cn
doi:10.6038/cjg20160516 中圖分類號(hào)P318
收稿日期2014-03-27,2015-12-29收修定稿
李倩, 易亮, 劉素貞等. 2016. 渤海南部萊州灣Lz908孔沉積物的巖石磁學(xué)性質(zhì).地球物理學(xué)報(bào),59(5):1717-1728,doi:10.6038/cjg20160516.
Li Q, Yi L, Liu S Z, et al. 2016. Rock magnetic properties of the Lz908 borehole sediments from the southern Bohai Sea, eastern China.ChineseJ.Geophys. (in Chinese),59(5):1717-1728,doi:10.6038/cjg20160516.