夏 峰, 郭寶震, 余大新
(中國地震局第一監(jiān)測中心,天津 300180)
厚層淤泥質(zhì)粉質(zhì)黏土的動力特性參數(shù)對地表地震動參數(shù)的影響①
夏峰, 郭寶震, 余大新
(中國地震局第一監(jiān)測中心,天津 300180)
摘要:以天津濱海某軟弱場地為例,在不同強(qiáng)度不同相位的地震動時程輸入下,用等效線性化技術(shù)考慮土的動力非線性特性,計算水平成層場地的地震反應(yīng),研究天津地區(qū)厚層淤泥質(zhì)粉質(zhì)黏土的動剪模量比和阻尼比與剪應(yīng)變幅值的關(guān)系曲線的變異性對深軟場地地表峰值加速度及其反應(yīng)譜的影響。結(jié)果表明:(1)在阻尼比較均值加減一倍標(biāo)準(zhǔn)差對地表地震動參數(shù)變化影響不大;(2)在動剪模量比均值增加或減1倍標(biāo)準(zhǔn)差,對2%超越概率水平下地表峰值加速度影響顯著,對應(yīng)地表峰值加速度可能增加或減小20%~30%,其地表反應(yīng)譜譜型也有變高變瘦或變矮變胖的趨勢;(3)在動剪切模量均值減1倍標(biāo)準(zhǔn)差時,對10%超越概率水平下的地表峰值加速度的影響比較顯著,減小幅度在15%左右,反應(yīng)譜也存在變矮變胖的趨勢;在動剪切模量均值加1倍標(biāo)準(zhǔn)差時,對10%超越概率水平下的地表地震動參數(shù)影響不明顯;(4)在動剪切模量或阻尼比均值加減1倍標(biāo)準(zhǔn)差時,對63%的地表地震動參數(shù)影響均不明顯。
關(guān)鍵詞:土動力參數(shù); 變異性; 土層地震反應(yīng); 地震動峰值; 反應(yīng)譜曲線
0引言
近年來我國沿海城市工程建設(shè)項目數(shù)量迅速增加,超高層和大跨度等建設(shè)難度頗大的工程日益增多。沿海城市工程場地以深軟場地居多,且以厚層淤泥質(zhì)土場地為代表,如何科學(xué)合理地確定該類場地工程抗震設(shè)防問題變得更加重要。
自1998年《中國人民共和國防震減災(zāi)法》頒布實施以來,全國范圍廣泛運(yùn)用工程場地地震安全性評價方法確定一般重大工程抗震設(shè)防要求。該評價工作的三大技術(shù)核心是:地震危險性分析、人造地震動的合成和土層地震反應(yīng)分析。對特定的地震環(huán)境而言,土層地震反應(yīng)分析的合理性對工程設(shè)防要求的確定尤為關(guān)鍵。影響土層反應(yīng)分析結(jié)果的因素主要包括土層計算界面選取[1-2]、土層厚度、密度、剪切波速、動剪切模量比和阻尼比等。
震害經(jīng)驗和土層地震反應(yīng)分析結(jié)果均表明,土動力學(xué)參數(shù)是影響土層地震反應(yīng)分析結(jié)果的主要原因之一[3]。目前土的動剪切模量比和阻尼比的確定主要通過動三軸或共振柱試驗測定。由于實際工程場地千差萬別,不同儀器的動剪模量比和阻尼比試驗測試技術(shù)存在差異,以及影響土的動剪模量比和阻尼比因素的復(fù)雜性,試驗結(jié)果具有較大的離散性,因此土的動剪切模量比和阻尼比參數(shù)都是基于大量試驗數(shù)據(jù)資料給出的土的動剪模量比和阻尼比與剪應(yīng)變幅值的平均值的關(guān)系曲線。國內(nèi)外許多研究者對不同地區(qū)各類土的動剪切模量比和阻尼比進(jìn)行了大量試驗研究,并取得了許多有價值的研究成果[4-12]。然而這些成果忽略了特定場地土樣的差異性對土層地震反應(yīng)結(jié)果的影響,因此在確定重大工程建設(shè)非基巖場地的地震動參數(shù)時,GB17741-2005《工程場地地震安全性評價》明確規(guī)定對有代表性的土層必須取樣進(jìn)行土動力參數(shù)測定。不確定性對土層地震反應(yīng)的影響已引起研究人員的關(guān)注,并得出了一些初步的規(guī)律[13-17]。但這些研究限于單一土的動剪切模量、阻尼比或均質(zhì)場地土動力參數(shù)的不確定性對地表加速度峰值及其反應(yīng)譜的影響,而對于同時考慮土的動剪切模量和阻尼比的離散程度(變異性)對場地地表地震動參數(shù)的影響尚缺乏研究;在工程場地地震安全性評價工作中,對土的動剪模量和阻尼比的測試結(jié)果以及基于此得出的場地設(shè)計地震動參數(shù)的可靠性也沒有足夠的把握。因此,深入研究土的動剪模量(剪切波速)和阻尼比的變異性對場地地表地震動的影響具有重要的現(xiàn)實意義。
據(jù)工程經(jīng)驗,對厚層淤泥質(zhì)土場地,土層動剪切模量比和阻尼比對土層地震反應(yīng)結(jié)果影響尤為明顯。因篇幅所限,本文以天津濱海地區(qū)某深軟場地為例,以文獻(xiàn)[8]給出的淤泥質(zhì)粉質(zhì)黏土動三軸數(shù)據(jù)為基礎(chǔ),詳細(xì)研究淤泥質(zhì)粉質(zhì)黏土的動剪切模量和阻尼比的變異性對地表地震動參數(shù)確定的影響。
1工程場地地質(zhì)條件
2場地模型及參數(shù)確定
收集該工程場地地震安全性評價的鉆孔勘察、波速測試和動三軸實驗測試資料,建立如表1所列的地震反應(yīng)分析模型。表2為本場地地震安全性評價工作確定地表地震動參數(shù)進(jìn)行的動三軸實驗測試數(shù)據(jù)。
表 1 場地模型土層鉆孔剖面參數(shù)
3輸入地震動的選取
考慮工程場地所處的地震地質(zhì)環(huán)境,對場址所在區(qū)域地震區(qū)帶和潛在震源區(qū)進(jìn)行劃分并確定其相關(guān)地震參數(shù)。在考慮對場地有影響范圍的基礎(chǔ)上,進(jìn)行場地地震危險性分析計算,得到了場地50年超越概率2%、10%和63%的基巖5%阻尼比的反應(yīng)譜曲線(圖1),其對應(yīng)的基巖加速度峰值分別為371.1gal、200.4gal和57.4gal。
基巖加速度的工程特性主要由加速度峰值、頻譜和振動持續(xù)時間這三個要素決定。將地震危險性分析得到的基巖峰值加速度和反應(yīng)譜作為合成的目標(biāo)函數(shù),結(jié)合適應(yīng)本場址地區(qū)地震活動特征的強(qiáng)度包絡(luò)函數(shù),采用擬合目標(biāo)函數(shù)的三角級數(shù)迭加法合成基巖地震加速度時程,作為場地地震動反應(yīng)分析的輸入基巖地震動加速度的時程。給出三個以上相互獨立的隨機(jī)樣本時程,反應(yīng)譜擬合周期控制點數(shù)不得少于50個,周期控制點應(yīng)大體均勻地分布于周期的對數(shù)坐標(biāo)上,控制點譜的相對誤差應(yīng)小于5%。本次工作在滿足上述技術(shù)要求前提下,以場地地震危險性分析得到50年超越概率2%、10%和63%的基巖反應(yīng)譜為目標(biāo)譜各合成三個相互獨立樣本時程,作為土層地震反應(yīng)分析的輸入,如下圖2所示。s
圖1 場地基巖不同超越概率反應(yīng)譜Fig.1 Site rock response spectrum curves with different exceedance probabilities
表 2 場地土層地震反應(yīng)分析模型土動力學(xué)參數(shù)
圖2 場地基巖不同超越概率人造地震動時程Fig.2 Artificial ground motion time-history of the site rock with different exceedance probabilities
4場地地震反應(yīng)分析
為研究淤泥質(zhì)粉質(zhì)黏土動力學(xué)參數(shù)變異性對地表地震動參數(shù)的影響,收集了天津68個原狀土樣的動三軸試驗結(jié)果,現(xiàn)以文獻(xiàn)[8]的統(tǒng)計方法,給出天津地區(qū)淤泥質(zhì)粉質(zhì)黏土的動剪切模量比和阻尼比與剪應(yīng)變幅值的平均關(guān)系曲線及其代表值;同時給出土的動剪切模量比和阻尼比的標(biāo)準(zhǔn)差,如表3所列。
表 3 天津地區(qū)淤泥質(zhì)粉質(zhì)黏土的G/Gmax-γ和λ-γ平均關(guān)系曲線代表值及其標(biāo)準(zhǔn)差
表 4 土的動剪模量比和阻尼比與剪應(yīng)變幅值關(guān)系曲線變異性的不同組合
4.1地表峰值加速度的影響
在上文給出的人造地震動時程同等輸入情況下分別進(jìn)行10種工況的土層等效線性化地震反應(yīng)分析計算。在土層其他輸入?yún)?shù)不變的情況下,僅改變淤泥質(zhì)黏土層的動剪模量比和阻尼比的不同組合值,計算得到不同工況下地表峰值加速度和相比標(biāo)準(zhǔn)工況時的增幅值見表5,其對應(yīng)的反應(yīng)譜計算結(jié)果見圖3。
從表5可以看出,標(biāo)準(zhǔn)工況和實測工況計算峰值加速度差別不大,這表明本文給出的統(tǒng)計結(jié)果是可信的;和標(biāo)準(zhǔn)工況的地表地震動峰值加速度相比,在輸入不同地震動強(qiáng)度和不同相位時工況1和2均與之差別不大,這表明阻尼比均值加減1倍標(biāo)準(zhǔn)差對峰值加速度影響有限;而動剪切模量比均值加減1倍標(biāo)準(zhǔn)差,對大震和中震的地表峰值加速度影響顯著,對小震影響不太明顯。動剪切模量比均值加1倍標(biāo)準(zhǔn)差(工況3、4和5),相比標(biāo)準(zhǔn)工況對大震峰值加速度有顯著增大趨勢,在不同相位輸入情況下增大幅度在10%~30%左右,而對中震和小震影響不太明顯;動剪切模量比均值減1倍標(biāo)準(zhǔn)差(工況6、7和8),相比標(biāo)準(zhǔn)工況對大震、中震和小震峰值加速度有均有減小趨勢,在不同相位輸入情況下其減小幅度隨地震輸入強(qiáng)度增大而增大,而對中震和小震影響不太明顯。
4.2對地表加速度反應(yīng)譜的影響
在不同強(qiáng)度和不同相位地震動時程條件輸入下,不同工況時的地表加速度反應(yīng)譜如圖3所示。從圖中可見,土的動剪模量比和阻尼比與剪應(yīng)變幅值關(guān)系曲線的變異性在大震和中震輸入條件下對加速度反應(yīng)譜形狀有一定影響,在小震輸入條件下影響不大;在大震和中震輸入條件下,工況6、7、8反應(yīng)譜明顯偏低偏胖,場地的卓越周期有所增大,其中大震條件下尤為明顯;在大震和中震輸入條件下,工況3、4、5反應(yīng)譜明顯偏高偏瘦,場地的卓越周期也有所減?。幌啾戎拢枘岜绕骄导訙p標(biāo)準(zhǔn)差(工況1、2)對反應(yīng)譜的的影響有限。
5結(jié)語
本文以天津某軟弱場地為例,討論了在不同地震動強(qiáng)度輸入下厚層淤泥質(zhì)黏土層的動剪模量比和阻尼比與剪應(yīng)變幅值關(guān)系曲線的變異性對地表地震動參數(shù)確定的影響,計算結(jié)果分析表明相比標(biāo)準(zhǔn)工況:
表 5 場地各工況地表峰值加速度及相比標(biāo)準(zhǔn)工況下的增幅值結(jié)果表
圖3 不同工況不同相位不同超越概率水平地表加速度反應(yīng)譜圖Fig.3 The horizontal acceleration response spectrum curves with different exceedance probabilities and different phases under different conditions
(1) 在阻尼比較均值加減1倍標(biāo)準(zhǔn)差對地表地震動參數(shù)變化影響不大;
(2) 在動剪模量比均值增加或減1倍標(biāo)準(zhǔn)差,對2%超越概率水平下地表峰值加速度影響顯著,對應(yīng)地表峰值加速度可能增加或減小20%~30%,其地表反應(yīng)譜譜型也有變高變瘦或變矮變胖的趨勢。
(3) 在動剪切模量均值減1倍標(biāo)準(zhǔn)差時,對10%超越概率水平下的地表峰值加速度的影響影響比較顯著,其減小幅度在15%左右,其反應(yīng)譜也存在變矮變胖的趨勢;在動剪切模量均值加1倍標(biāo)準(zhǔn)差時,對10%超越概率水平下的地表地震動參數(shù)影響不明顯。
(4) 在動剪切模量或阻尼比均值加減1倍標(biāo)準(zhǔn)差時,對63%的地表地震動參數(shù)影響均不明顯。
綜上所述,對于含厚層淤泥質(zhì)粉質(zhì)黏土層的軟弱場地,在確定其地表地震動參數(shù)時,應(yīng)充分考慮淤泥質(zhì)粉質(zhì)黏土層在取樣、實驗和實驗結(jié)果數(shù)據(jù)處理上造成的變異性對地表地震動參數(shù)確定帶來的影響,否則可能嚴(yán)重低估場地地震危險性,給出不科學(xué)的工程設(shè)防依據(jù),從而帶來不必要經(jīng)濟(jì)損失。
參考文獻(xiàn)(References)
[1]王沖,劉明軍,齊文浩,等.輸入界面對反應(yīng)譜平臺值的影響[J].世界地震工程,2015,31(2):119-126.
WANG Chong,LIU Ming-jun,QI Wen-hao,et al.Effects of Inputting Interface of Earthquake Wave on Platform Value of Response Spectra[J].World Information on Earthquake Engineering,2015,31(2):119-116.(in Chinese)
[2]王沖,賀為民,齊文浩,等.輸入界面對反應(yīng)譜特征周期的影響[J].世界地震工程,2015,31(3):156-163.
WANG Chong,HE Wei-min,QI Wen-hao,et al.Effect of Inputting Interface on Characteristic Period of Response Spectra[J].World Information on Earthquake Engineering,2015,31(3):156-163.(in Chinese)
[3]王紹博,丁海平.土動力參數(shù)對土層動力反應(yīng)的影響[J].地震工程與工程震動,2001,21(1):105-108.
WANG Shao-bo,DING Hai-ping.Effect of Soil Dynamic Parameters on Seismic Responses of Soil Layers[J].Earthquake Engineering and Engineering Vibration,2001,21(1):105-108.(in Chinese)
[4]袁曉銘,孫銳,孫靜,等.常規(guī)土類動剪切模量比和阻尼比的試驗研究[J].地震工程與工程振動,2000,20(4):133-139
YUAN Xiao-ming,SUN Rui,SUN Jing,et al.Laboratory Experimental Study on Dynamic Shear Modulus Ratio and Damping Ratio of Soil[J].Earthquake Engineering and Engineering Vibration,2000,20(4):133-139.(in Chinese)
[5]陳國興,劉雪珠,朱定華,等.南京新近沉積土的動剪切模量比和阻尼比試驗研究[J].巖土工程學(xué)報,2006,28(8):1023-1027.
CHEN Guo-xing,LIU Xue-zhu,ZHU Ding-hua,et al.Experimenta Studies on Dynamic Shear Modulus Ratio and Damping Ratio of Recently Deposited Soils in Nanjing[J].Chinese Journal of Geotechnical Engineering,2006,28(8):1023-1027.(in Chinese)
[6]呂悅軍,唐榮余.渤海海底土類動剪切模量比和阻尼比試驗研究[J].防災(zāi)減災(zāi)工程學(xué)報,2003,23(2):35-42.
LV Yue-jun,TANG Rong-yu.Experimental Study on Dynamic Shear Modulus Ratio and Damping Ratio of the Soil of Bohai Sea Floor[J].Journal of Disaster Prevention and Mitigation Engineering,2003,23(2):35-42.(in Chinese)
[7]孫靜.巖土動剪切模量阻尼試驗及應(yīng)用研究[D].哈爾濱:中國地震局工程力學(xué)研究所,2004.
SUN Jing.Experimentand Application Studieson Dynamic Shear Modulus and Damping of Geotechnical Media[D].Harbin:Institute of Engineering Mechanics, China Earthquake Administration,2004.(in Chinese)
[8]夏峰,宋成科,孟慶筱,等.天津地區(qū)覆蓋層土動力學(xué)參數(shù)統(tǒng)計分析[J].地震工程學(xué)報,2015,37(1):48-54.
XIA Feng,SONG Cheng-ke,MENG Qing-xiao,et al.Analysis of Soli Dynamic Parameters of Overburden in Tianjin Area[J].China Earthquake Engineering Journal,2015,37(1):48-54.(in Chiness)
[9]Kokusho T.Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range [J].Soils and Foundations,1980,(2):45-60.[10]Seed H B,Wong R T,Idriss IM,et al.Modul and Damping Factors for Dynamic Analyses of Cohesionless Soils[J].Journal of Geot Eng ASCE,1986(11):1016-1032.
[11]Rollins K,Evans M D,Diehl N B,et al.Shear Modulus and Damping Relationships for Gravels[J].Journal of Geo-technical and Geo-environmental Eng ASCE,1998(5):396-405.
[12]Vucetic M,Dobry R.Degradation of Marine Clays under Cyclic Loading[J].Journal of Geot.Eng ASCE,1988(2):133-149.
[13]趙松戈,胡聿賢,廖旭.土層參數(shù)的隨機(jī)性對場地傳遞函數(shù)的影響[J].地震工程與工程振動,2000,20(2):7-12.
ZHAO Song-ge,HU Yu-xian,LIAO Xu.Effect of Soil Parameter Variations on Soil Transfer Function[J].Earthquake Engineering and Engineering Vibration,2000,20(2):7-12.(in Chinese)
[14]石玉成,蔡紅衛(wèi),徐暉平,等.場地地震反應(yīng)分析中的不確定性及其處理方法[J].西北地震學(xué)報,1999,21(3):242-247.
SHI Yu-cheng,CAI Hong-wei,XU Hui-ping,et al.Uncertainties in Site Earthquake Response and the Way of Its Processing[J].Northwestern Seismological Journal,1999,21(3):242-247.(in Chinese)
[15]樓夢麟,嚴(yán)國香,沈建文,等.上海軟土動力參數(shù)變異性對土層地震反應(yīng)的影響[J].巖土力學(xué),2004,25(9):1368-1372.
LOU Meng-lin,YAN Guo-xiang,SHEN Jian-wen,et al.Effect of Variability of Dynamic Parameters of Soft Soil in Shanghai Region on Seismic Response of Layered Soil[J].Rock and Soil Mechanics,2004,25(9):1368-1372.(in Chinese)
[16]劉紅帥,薄景山,吳兆營,等.土體參數(shù)對地表加速度峰值和反應(yīng)譜的影響[J].地震工程與工程振動,2005,25(2):167-171.
LIU Hong-shuai,BO Jing-shan,WU Zhao-yin,et al.Effects of Soil Parameters on Ground Surface Acceleration Peak and Response Spectra[J].Journal of Seismological Research,2005,25(2):167-171.(in Chinese)
[17]高玉峰,劉漢龍,朱偉,等.剪切波速對砂土層地震反應(yīng)的影響[J].工程勘察,2001,29(1):39-42.
GAO Yu-feng,LIU Han-long,ZHU Wei,et al.Effects of Shear Wave Velocity on Seismic Response of Sand Site[J].Geotechnical Investigation & Surveying,2001,29(1):39-42.(in Chinese)
InfluenceofDynamicCharacteristicParametersofThickMuckySiltyClayonSurfaceGroundMotionParameters
XIAFeng,GUOBao-zhen,YUDa-xin
(First Crust Monitoring and Application Center of China Earthquake Administration, Tianjin 300180, China))
Abstract:A soft site in the coastal area of Tianjin is used for analysis as an example of the seismic response of a site with horizontally-layered soil. The ground motion time history with different intensities and phases was input, and the equivalent linearization method was used to consider the nonlinear dynamic characteristics of the soil. This study also presents the effects of a relation between variability in the curves of dynamic parameters of a thick layer of mucky silty clay in the Tianjin area (including the soil dynamic shear modulus ratio and damping ratio) on the peak value of ground surface acceleration and its response spectra in deep soft sites. Numerical results obtained from a number of case studies were used to make a comparison with a standard condition, and the following was determined. Firstly, adding or reducing one standard deviation to the mean of the damping ratio has little effect on ground motion parameters. Secondly, addition or reduction of one standard deviation to the mean value of the dynamic shear modulus ratio has a prominent effect on the peak value of ground surface acceleration; when the ground motion time history input is 2% of the 50 years transcendental probability the corresponding peak value of ground surface acceleration increases or decreases by 20% to 30%, and the surface response spectra is changed into a thin-high or short-fat trend. Thirdly, the mean value of the dynamic shear modulus ratio when one standard deviation is added, has a significant effect on the peak value of ground surface acceleration for 10% of the 50 year exceedance probability, the corresponding peak value of the ground surface ratio decreases by about 15% and the response spectra is changed into a short fat trend. Finally, when one standard deviation is added or subtracted from the mean value of the dynamic shear modulus ratio or damping ratio there is little effect on the value of ground motion parameters.
Key words:soil dynamic parameters; variability; soil seismic response; peak acceleration; response spectrum curves
收稿日期:①2015-05-12
基金項目:2015年度震情跟蹤定向工作任務(wù)(2015010216)
作者簡介:夏峰,男,工程師,主要從事工程地震及地震監(jiān)測分析預(yù)報方面的研究。E-mail:272861761@qq.com。
中圖分類號:TU43; P315.9
文獻(xiàn)標(biāo)志碼:A
文章編號:1000-0844(2016)03-0391-07
DOI:10.3969/j.issn.1000-0844.2016.03.0391