洪曉建, 劉 柳, 洪學(xué)智
(華南師范大學(xué)華南先進(jìn)光電子研究院,廣州 510006)
?
CO-OFDM中基于線性插值的子載波間串?dāng)_盲抑制算法
洪曉建, 劉柳, 洪學(xué)智*
(華南師范大學(xué)華南先進(jìn)光電子研究院,廣州 510006)
摘要:提出了一種高性能的基于線性插值的子載波間串?dāng)_盲抑制算法(LI-BL-ICI算法):盲估計(jì)出次符號(hào)間相位噪聲差值,進(jìn)行線性插值擬合以獲得更加精確的相位噪聲估計(jì),將插值獲得的相位噪聲用于載波相位補(bǔ)償,從而實(shí)現(xiàn)對(duì)子載波間串?dāng)_(ICI)的盲抑制,并利用少量導(dǎo)頻對(duì)殘余的共同相位噪聲進(jìn)行估計(jì)和補(bǔ)償;推導(dǎo)了算法的數(shù)學(xué)模型,通過(guò)蒙特卡洛仿真分別分析了算法在背靠背和320 km光纖傳輸后系統(tǒng)的性能,與傳統(tǒng)的共同相位噪聲抑制算法(CPEC算法)和改進(jìn)前的盲估計(jì)算法(BL-ICI算法)進(jìn)行了橫行對(duì)比.?dāng)?shù)值仿真結(jié)果表明,LI-BL-ICI算法能有效地抑制光相位噪聲,其光源線寬的容忍度得到進(jìn)一步提升.此外,LI-BL-ICI算法允許將次符號(hào)切割成任意塊數(shù),且在獲取觀測(cè)矩陣的過(guò)程中無(wú)需任何的角度相關(guān)運(yùn)算.研究結(jié)果表明,LI-BL-ICI算法存在一個(gè)適中的次符號(hào)切割塊數(shù),使得其既能兼顧復(fù)雜度又能保證一定的系統(tǒng)性能,對(duì)于相干光正交頻分復(fù)用(CO-OFDM)技術(shù)在采用廉價(jià)光源和采用高階調(diào)制格式的光接入/光城域網(wǎng)中的應(yīng)用具有重要的意義.
關(guān)鍵詞:光相位噪聲抑制; 相干光正交頻分復(fù)用; ICI盲抑制; 次符號(hào)
基于多載波并行傳輸?shù)南喔晒庹活l分復(fù)用(CO-OFDM)技術(shù)可實(shí)現(xiàn)靈活的頻譜分配和高效的信道均衡[1-2],被認(rèn)為是下一代高光譜效率、高靈活度的彈性光網(wǎng)絡(luò)的物理層的重要解決方案[3-5].然而,由于CO-OFDM系統(tǒng)中的符號(hào)周期遠(yuǎn)大于單載波系統(tǒng),因此其對(duì)光相位噪聲非常敏感.換言之,CO-OFDM系統(tǒng)對(duì)光源線寬的容忍度較單載波相干光通信系統(tǒng)要低[6].在接收端時(shí)域-頻域轉(zhuǎn)換后,時(shí)變的光相位噪聲的零階頻譜分量在各子載波通道引入共同相位誤差(Common Phase Error,即CPE),而其非零階頻譜分量引入子載波間串?dāng)_(Inter-Carrier-Interference,即ICI)[6]1311.雖然共同光相位噪聲抑制算法(CPEC算法)可有效地估計(jì)并補(bǔ)償CPE[7-8],但是CPEC算法中ICI往往被近似成高斯白噪聲,因此在相位噪聲比較大時(shí),殘留的ICI分量將極大地影響系統(tǒng)的性能.
為了能同時(shí)抑制CPE和ICI對(duì)系統(tǒng)性能的影響,學(xué)者們針對(duì)大相噪情況下的CO-OFDM系統(tǒng)提出了許多高性能的抑制算法[9-15].RABIEI等[9]通過(guò)對(duì)相鄰符號(hào)的共同相位噪聲做線性插值擬合來(lái)提高系統(tǒng)對(duì)相位噪聲的容忍度,但是該算法受限于求角度運(yùn)算的2π不確定性,只能在較小線寬系統(tǒng)中提供優(yōu)于CPEC算法的性能.YI等[10]提出一種將發(fā)送端的數(shù)據(jù)設(shè)置成厄米共軛的數(shù)據(jù)相干疊加的方案,該方案雖然對(duì)光相位噪聲有很好的抑制效果,但卻以一半的頻譜效率為代價(jià)來(lái)?yè)Q取性能的提升.從頻域角度來(lái)看,光相位噪聲具有洛倫茲(Lorentz)頻譜,是典型的低通信號(hào).利用光相位噪聲的這個(gè)特點(diǎn),CHUNG[11]利用判決引導(dǎo)的最小均方算法(DD-LMS)多次迭代求出相位噪聲的多階頻譜分量,但是該算法復(fù)雜度較高.為了降低DD-LMS算法的復(fù)雜度,HONG等[12]提出利用復(fù)雜度較低的最小二乘法(LS),以遞推的形式逐個(gè)估計(jì)出光相位噪聲的多階頻譜分量.除了頻譜域的方法,另一類(lèi)可行的方案是在時(shí)域?qū)庀辔辉肼曔M(jìn)行切塊處理以提高相位噪聲估計(jì)的精度[13-15].方案[13]利用導(dǎo)頻輔助和判決引導(dǎo),在時(shí)域估計(jì)各子塊(即次符號(hào))內(nèi)的共同相位噪聲來(lái)實(shí)現(xiàn)高精度的相位噪聲估計(jì).為了實(shí)現(xiàn)對(duì)ICI分量的全盲估計(jì),LEE等[14]提出先基于恒模調(diào)制格式的時(shí)域分塊盲估計(jì)出ICI,然后對(duì)殘余的CPE進(jìn)行補(bǔ)償?shù)南辔辉肼曇种品桨?即BL-ICI算法).而CAO等[15]在文獻(xiàn)[14]的基礎(chǔ)上,將BL-ICI算法擴(kuò)展到非恒模調(diào)制格式的情況.本文基于盲切塊的思想,提出了一種高性能的基于線性插值的子載波間串?dāng)_盲抑制算法(簡(jiǎn)記為“LI-BL-ICI算法”),改進(jìn)了BL-ICI算法. LI-BL-ICI算法具有以下優(yōu)點(diǎn):(1)BL-ICI算法中的次符號(hào)切割塊數(shù)只能是2的n次冪,而LI-BL-ICI算法的次符號(hào)切割塊數(shù)可以任意選擇;(2)BL-ICI算法為了獲得觀測(cè)矩陣需要多次使用sin(·)、cos(·)和angle(·) 等角度相關(guān)運(yùn)算,LI-BL-ICI算法無(wú)需角度運(yùn)算,降低了算法復(fù)雜度;(3)對(duì)估計(jì)出的次符號(hào)間相位噪聲差值進(jìn)行線性插值擬合,使得系統(tǒng)對(duì)光源線寬的容忍度進(jìn)一步提升.本文完成了算法原理的理論推導(dǎo),并利用蒙特卡洛仿真驗(yàn)證了其性能.
1算法原理
LI-BL-ICI算法的原理框圖見(jiàn)圖1.為方便描述,本文僅考慮單個(gè)偏振態(tài)傳輸?shù)那闆r.發(fā)送端信號(hào)在光纖傳輸過(guò)程中,受到激光器光相位噪聲、傳輸鏈路中線性損傷(例如色度色散)和非線性損傷(例如自相位調(diào)制SPM),以及光放大器引入的自發(fā)輻射噪聲的影響后,在接收端通過(guò)相干探測(cè)將光域信號(hào)轉(zhuǎn)換成電域信號(hào),并進(jìn)行后續(xù)的數(shù)字信號(hào)處理(DSP).經(jīng)過(guò)準(zhǔn)確的時(shí)頻同步和去循環(huán)前綴后,接收端的CO-OFDM時(shí)域信號(hào)y=[y(0),y(1),…,y(N-1)]T跟發(fā)送端的頻域信號(hào)X=[X(0),X(1),…,X(N-1)]T間的關(guān)系可以表示為:
HX=FΦ*y+ΔζASE,
(1)
圖1 采用基于線性插值的子載波間串?dāng)_盲抑制算法(LI-BL-ICI算法)的原理框圖
HX?FΦ*y?BΦsub,
(3)
(4)
對(duì)式(3)兩邊取復(fù)共軛運(yùn)算,得到:
(5)
(0≤k≤N-1).
(6)
(7)
重新整理式(6)和式(7),可得:
(8)其中
Re(·)、Im(·)分別表示取實(shí)部、虛部運(yùn)算.將式(8)寫(xiě)成矩陣運(yùn)算的形式:
P=CΔΦsub+Δδ,
(11)
在ICI盲抑制后,利用CPEC算法[7]1993補(bǔ)償殘余相噪的CPE,而后進(jìn)行信道均衡,最后判決并輸出:
圖2 LI-BL-ICI算法中進(jìn)行線性插值的具體處理過(guò)程
圖3中黑色實(shí)線是真實(shí)的載波相位;紅色虛線表示估計(jì)出的次符號(hào)間相噪差值(參考系為第一個(gè)次符號(hào)的相噪);綠色虛線表示對(duì)次符號(hào)相噪差值作線性插值擬合,以獲取更加精確的相噪估計(jì);藍(lán)色實(shí)線是ICI盲抑制后的殘余相噪;紫色點(diǎn)畫(huà)線代表ICI盲抑制后殘余相噪的均值.由圖可知,經(jīng)過(guò)ICI盲抑制后的殘余相噪的變化幅度明顯小于ICI抑制前的相噪.
圖3 不同算法的載波相位估計(jì)結(jié)果
Figure3Theestimatedresultsofcarrierphasewithdifferentalgorithms
注:對(duì)應(yīng)系統(tǒng)采用的調(diào)制格式為QPSK,光源的綜合線寬為1MHz.
2性能分析
通過(guò)Matlab和VPItransmissionmaker聯(lián)合仿真研究LI-BL-ICI算法在恒模(QPSK調(diào)制格式)和非恒模(16QAM調(diào)制格式)情況下系統(tǒng)的性能,具體參數(shù)如下:OFDM符號(hào)的總子載波數(shù)N= 256,有效承載數(shù)據(jù)子載波數(shù)Ncarrier= 212,空白子載波數(shù)Nnull= 40(其中10個(gè)位于頻帶中央,30個(gè)位于頻帶兩側(cè)),導(dǎo)頻子載波數(shù)Npilot= 4(頻帶內(nèi)均勻分布),循環(huán)前綴長(zhǎng)度Ncp= 32,DAC/ADC采樣率Rsampling=10 Gsamples/s.對(duì)QPSK和16QAM的調(diào)制格式,系統(tǒng)對(duì)應(yīng)的有效速率分別為14.72 Gb/s和29.44 Gb/s.本文使用2個(gè)訓(xùn)練序列進(jìn)行信道估計(jì)并采用符號(hào)內(nèi)頻域平均算法(ISFA)進(jìn)行信道均衡[16],同時(shí)與CPEC算法[7]和BL-ICI算法[14-15]進(jìn)行性能對(duì)比.
由圖4可知,得益于高性能的ICI抑制,ICI抑制算法優(yōu)于傳統(tǒng)的CPEC算法.同時(shí),LI-BL-ICI算法在相同切割塊數(shù)的情況下,其性能都優(yōu)于BL-ICI算法.相比BL-ICI算法,為達(dá)到BER = 1.0×10-3,LI-BL-ICI算法(NB= 2)分別提供0.96 dB(QPSK)和 0.77 dB(16QAM)的OSNR增益,而在切割數(shù)目較大時(shí)兩者性能差別將逐漸減?。?/p>
圖4 系統(tǒng)的誤碼率(BER)與光信噪比(OSNR)關(guān)系
注:分辨率為0.1 nm.
BER=1.0×10-3時(shí),由圖5可知,在光源綜合線寬比較大時(shí),CPEC算法性能受限,而LI-BL-ICI算法相比BL-ICI算法提供更大的光源線寬容忍度.當(dāng)NB=2時(shí),對(duì)QPSK系統(tǒng)(OSNR=12 dB),BL-ICI算法和LI-BL-ICI算法能提供的線寬容忍度分別約為2.19 MHz 和2.65 MHz;而對(duì)16QAM系統(tǒng)(OSNR=22 dB),BL-ICI算法和LI-BL-ICI算法能提供的線寬容忍度分別約為661 kHz 和804 kHz.值得注意的是,在相同的切割塊數(shù)的情況下,LI-BL-ICI算法都優(yōu)于BL-ICI算法,并且其優(yōu)勢(shì)隨著線寬的增加而變大.
圖5 系統(tǒng)所需的OSNR與光源綜合線寬的關(guān)系圖
Figure 5Relationship of required OSNR and combined laser linewidths in the system
注:誤碼率為1.0×10-3,分辨率為0.1 nm.
以上結(jié)果表明:切割成的次符號(hào)的塊數(shù)NB會(huì)對(duì)算法的性能產(chǎn)生影響.下面通過(guò)圖6 來(lái)進(jìn)一步說(shuō)明算法性能對(duì)NB的依賴度.圖6 給出的是為達(dá)到BER=1.0×10-3,在不同的次符號(hào)數(shù)目NB、不同的OSNR下,16QAM系統(tǒng)所能容忍的光源綜合線寬等高線圖.值得注意的是,BL-ICI算法中切割的次符號(hào)數(shù)目只能是2的n次冪,而LI-BL-ICI算法可以將整個(gè)時(shí)域的CO-OFDM切割成任意的塊數(shù).圖6表明對(duì)于特定的光源線寬,存在一個(gè)最佳的切割塊數(shù)使得系統(tǒng)所需要的OSNR最小,而隨著光源線寬的增加,最佳的切塊數(shù)NB取值也逐漸變大.這主要是因?yàn)楫?dāng)光源線寬增大時(shí),增加切塊數(shù)能有效降低算法的建模誤差,從而提升系統(tǒng)性能.值得注意的是,切塊數(shù)的增加將使得單個(gè)次符號(hào)內(nèi)的相噪估計(jì)精度下降.因此,算法最佳切塊數(shù)(次符號(hào)的數(shù)目)由建模誤差和單個(gè)次符號(hào)內(nèi)相噪估計(jì)誤差共同決定.另一方面,增加切塊數(shù)目又會(huì)增大系統(tǒng)的復(fù)雜度,所以,為了兼顧復(fù)雜度與系統(tǒng)的性能,可以選擇一個(gè)比較合適的切塊數(shù),如NB= 4,在綜合線寬 ≤ 950 kHz,系統(tǒng)選擇NB= 4 所需的OSNR與選擇最佳切塊數(shù)時(shí)所需OSNR相差小于0.4 dB.
圖6 16QAM CO-OFDM系統(tǒng)光源綜合線寬容忍度等高線圖
Figure 6The contour plot of combined laser linewidths tolerance of a 16QAM CO-OFDM system
注:誤碼率為1.0×103,分辨率為0.1 nm.
除了分析系統(tǒng)在背靠背下的性能外,本文也分析了系統(tǒng)在傳輸后的性能.圖7中光纖的色度色散CD為 17 ps/(nm·km), 光纖非線性系數(shù)為 1.3 W-1·km-1, 光纖損耗為 0.2 dB/km,單段光纖長(zhǎng)度為80 km.每段光纖只使用一個(gè)摻鉺光纖放大器進(jìn)行放大,放大器噪聲系數(shù)為6 dB,增益系數(shù)為16 dB,光發(fā)送功率設(shè)為-6 dBm.由圖7觀察到,跟背靠背一樣, LI-BL-ICI算法在傳輸過(guò)程中的對(duì)光源線寬容忍度高于BL-ICI算法.在BER=1.0×10-3時(shí),該系統(tǒng)中LI-BL-ICI算法(NB= 2)能提供約907 kHz的線寬容忍度,約為BL-ICI算法 (NB= 2)的1.23倍.
圖7320 km光纖傳輸?shù)?6QAM CO-OFDM 系統(tǒng)中,BER與光源綜合線寬的關(guān)系圖
Figure 7Relationship of BER and combined laser linewidths in a 16QAM CO-OFDM system after 320 km SSMF transmission
3結(jié)論
本文提出了一種在CO-OFDM系統(tǒng)中基于線性插值的載波間串?dāng)_盲抑制算法(LI-BL-ICI算法),給出了其原理的理論推導(dǎo),并通過(guò)蒙特卡洛仿真研究了該算法在背靠背和320 km 光纖傳輸系統(tǒng)中的性能.研究結(jié)果表明,相比BL-ICI算法,LI-BL-ICI算法能提供更大的光源線寬容忍度,此外,對(duì)次符號(hào)數(shù)目NB對(duì)算法性能的影響進(jìn)行了研究,發(fā)現(xiàn)可以選擇一個(gè)適中的次符號(hào)數(shù)目NB,使得算法既能兼顧系統(tǒng)復(fù)雜度又能保證系統(tǒng)的性能.在本文單偏振系統(tǒng)算法基礎(chǔ)上,我們將進(jìn)一步研究與偏振復(fù)用系統(tǒng)相適配的算法.
參考文獻(xiàn):
[1]LIU X, CHANDRASEKHAR S, ZHU B, et al. 448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000km of ultra-large-area fiber and five 80-GHz-grid ROADMs[J]. Journal of Lightwave Technology, 2011, 29(4): 483-490.[2]SHIEH W. OFDM for flexible high-speed optical networks[J]. Journal of Lightwave Technology, 2011, 29(10): 1560-1577.
[3]CHRISTODOULOPOULOS K, TOMKOS I, VARVARIGOS E A. Elastic bandwidth allocation in flexible OFDM-based optical networks[J]. Journal of Lightwave Technology, 2011, 29(9): 1354-1366.
[4]CVIJETIC N, HUANG M F, IP E, et al. 1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100km SSMF and 1∶64 passive split[J]. Optics Express, 2011, 19(24): 24540-24545.
[5]CVIJETIC N, HUANG M F, IP E, et al. Coherent 40Gb/s OFDMA-PON for long-reach (100+km) high-split ratio (>1∶64) optical access/metro networks[C]∥Optical Fiber Communication Conference OSA Technical Digest. Washington, DC: Optical Society of America, 2012.[6]YI X W, SHIEH W, MA Y R. Phase noise effects on high spectral efficiency coherent optical OFDM transmission[J]. Journal of Lightwave Technology, 2008, 26(10): 1309-1316.
[7]WU S P, BAR-NESS Y. OFDM systems in the presence of phase noise: consequences and solutions[J]. IEEE Transactions on Communications, 2004, 52(11): 1988-1996.[8]YI X W, SHIEH W, TANG Y. Phase estimation for coherent optical OFDM[J]. IEEE Photonics Technology Letters, 2007, 19(12): 919-921.
[9]RABIEI P, NAMGOONG W, AL-DHAHIR N. A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5945-5950.
[10]YI X W, CHEN X M, SHARMA D, et al. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation[J]. Optics Express, 2014, 22(11): 13454-13459.
[11]CHUNG W. A matched filtering approach for phase noise suppression in CO-OFDM systems[J]. Photonics Technology Letters, IEEE, 2010, 22(24): 1802-1804.
[12]HONG X J, HONG X Z, HE S L. Low-complexity optical phase noise suppression in CO-OFDM system using recursive principal components elimination[J]. Optics Express, 2015, 23(18): 24077-24087.
[13]HONG X Z, HONG X J, HE S L. Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system[J]. Optics Express, 2015, 23(4): 4691-4702.[14]LEE M K, LIM S C, YANG K. Blind compensation for phase noise in OFDM systems over constant modulus modulation[J]. IEEE Transactions on Communications, 2012, 60(3): 620-625.[15]CAO S J, KAM P Y, YU C Y. Time-domain blind ICI mitigation for non-constant modulus format in CO-OFDM[J].Photonics Technology Letters, IEEE, 2013, 25(24): 2490-2493.[16]LIU X, BUCHALI F. Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM[J]. Optics Express, 2008, 16(26):21944-21957.
【中文責(zé)編:莊曉瓊英文責(zé)編:肖菁】
A Linearly Interpolated Blind ICI Suppression Algorithm for CO-OFDM System
HONG Xiaojian, LIU Liu, HONG Xuezhi*
(South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China)
Abstract:A high-performance blind ICI suppression algorithm, LI-BL-ICI, based on linear interpolation is proposed for CO-OFDM systems. In the proposed algorithm, the difference of averaged optical phase noise between sub-symbols is estimated blindly and then linearly interpolated to get a more accurate estimation of the optical phase noise. The carrier phase is partially recovered with the linearly interpolated sub-symbol phase noise estimation, by which the inter-carrier-interference (ICI) is suppressed blindly. After ICI suppression, the common phase error of the residual optical phase noise is compensated with only a few pilot subcarriers. The theoretical derivation of the proposed algorithm is presented and the performance of the proposed algorithm in CO-OFDM systems for both back-to-back and 320 km fiber transmission scenarios is investigated through Monte-Carlo simulations. As demonstrated by numerical simulations, the impact of optical phase noise can effectively be mitigated with the linear interpolation based algorithm, and a laser linewidth tolerance larger than that of the BL-ICI algorithm is achieved. Compared with BL-ICI, an arbitrary number of sub-symbols are supported and angle-related operation is avoided when obtaining the observation-based matrix in the proposed algorithm. As shown in the simulation results, a moderate number of sub-symbols can be chosen in the proposed algorithm to balance the performance and complexity. The proposed algorithm is of great importance for the application of CO-OFDM in optical access/metro networks with low-cost laser sources and high-order modulation formats.
Key words:optical phase noise suppression; CO-OFDM; blind ICI suppression; sub-symbol
收稿日期:2016-01-10 《華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n
基金項(xiàng)目:中國(guó)博士后科學(xué)研究基金面上項(xiàng)目(2013M531868);華南師范大學(xué)青年教師科研培育基金項(xiàng)目(13KJ04)
*通訊作者:洪學(xué)智,講師,Email:xuezhi.hong@coer-scnu.org.
中圖分類(lèi)號(hào):TN929.1
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-5463(2016)01-0052-06
華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2016年1期