苗純杰,胡志翔,任蘭蘭,郜子明,董敬余,李 琦,羅志剛,陳志文
(上海大學(xué)環(huán)境與化學(xué)工程學(xué)院,上海200444)
?
鎳摻雜SnO2納米微球鋰離子電池負極材料的制備及其性能
苗純杰,胡志翔,任蘭蘭,郜子明,董敬余,李琦,羅志剛,陳志文
(上海大學(xué)環(huán)境與化學(xué)工程學(xué)院,上海200444)
摘要:利用簡單的一步水熱法制備高性能的鎳摻雜SnO2納米微球鋰離子電池負極材料.利用掃描電鏡(scanning electron microscope,SEM)、高分辨率透射電鏡(high resolution transmission electron microscope,HRTEM)、拉曼分析儀、X射線衍射(X-ray diffraction,XRD)儀以及電化學(xué)性能測試儀器(如藍電測試系統(tǒng)、電化學(xué)工作站)分別研究了鎳摻雜對SnO2微觀形貌、組成、結(jié)晶行為及電化學(xué)性能的影響,并得到了最佳反應(yīng)時間.實驗結(jié)果表明:與純SnO2相比,鎳摻雜SnO2納米微球表現(xiàn)出了更好的倍率性能和優(yōu)異的循環(huán)性能.特別地,反應(yīng)時間為12 h的5%鎳摻雜SnO2在100 mA/g電流密度下的首次放電比容量為1 970.3 mA·h/g,遠高于SnO2的理論容量782 mA·h/g.這是因為鎳摻雜可適應(yīng)龐大的體積膨脹,避免了納米粒子的團聚,因此其電化學(xué)性能得到了顯著改善.
關(guān)鍵詞:鎳摻雜SnO2;鋰離子電池;負極材料
人類社會的發(fā)展與進步高度依賴著能源的供給.現(xiàn)今,由于能源危機、環(huán)境問題的日益凸顯,發(fā)展廉價、高效和環(huán)境友好的儲能裝置已成為科學(xué)界和工業(yè)界面臨的重要機遇和挑戰(zhàn).二次鋰離子電池相較于傳統(tǒng)的鉛酸、鎳氫電池,具有電壓平穩(wěn)、自放電率小、能量密度高、循環(huán)性能持久以及綠色環(huán)保等優(yōu)點,在日常所用的移動電子設(shè)備中發(fā)揮著重要的作用[1-6].目前,隨著鋰離子電池在電動汽車(能量消費)和綠色可再生能源利用(能量儲存)等方面的發(fā)展[7-13],人們對商業(yè)化的鋰離子電池也提出了更高的要求.高性能鋰離子電池的實現(xiàn)依賴于其中電極材料的結(jié)構(gòu)設(shè)計和性能提升,但目前商用的鋰離子電池負極材料石墨,其較低的比容量和較差的倍率性能已無法滿足要求.因此,開發(fā)高性能鋰離子電池負極材料迫在眉睫.
錫基材料具有安全性能好、理論比容量高、成本低等優(yōu)勢[14-16],已成為替代碳基材料的理想選擇之一,但其循環(huán)過程中存在的體積變化較大和電子電導(dǎo)率較差限制了其應(yīng)用.碳材料作為緩沖層包覆錫基材料可以改善其可逆比容量以及循環(huán)壽命[17].但不足之處是,碳材料的比重幾乎占據(jù)了復(fù)合材料總比重的一半,從而降低了整體的能量密度.大量的文獻調(diào)研結(jié)果發(fā)現(xiàn),將異質(zhì)元素引入碳基或錫基材料將會對其電化學(xué)性能的改善起到積極作用[18-20].
二氧化錫(SnO2)是一種透明寬帶隙半導(dǎo)體,主要以金紅石四方相錫石結(jié)構(gòu)穩(wěn)定存在,具有一系列優(yōu)異的物理和化學(xué)特性,在光電子器件、電池能源材料以及光熱轉(zhuǎn)換器等領(lǐng)域具有廣闊的應(yīng)用前景.本工作在Ye等[21]和Chen等[22-24]研究的基礎(chǔ)上,采用成本低廉、工藝簡單的水熱法研究了鎳摻雜SnO2在不同反應(yīng)時間下的微觀形貌、結(jié)晶行為的變化及其對電極材料充放電性能的影響.
為了獲得鎳摻雜SnO2鋰離子電池負極材料,本工作利用一步水熱法制備SnO2納米微球.制備工藝和步驟如下:首先,將1.2 g SnCl2·2H2O,5.02 g Na3C6H5O7·2H2O和5%(摩爾比)Ni(CH3COO)2·4H2O分散在30 mL去離子水中,攪拌幾分鐘后加入1.1 g葡萄糖,連續(xù)攪拌至溶液呈透明狀;然后,將溶液轉(zhuǎn)移至高壓反應(yīng)釜中,在180?C分別保持6,9,12,15 h;最后,將反應(yīng)液分別用去離子水和乙醇離心數(shù)次,所得產(chǎn)物于60?C干燥,并置于馬弗爐中,于700?C保持4 h.
將合成的電極活性物質(zhì)、導(dǎo)電炭黑、粘結(jié)劑(聚四氟乙烯,polytetrafluoroethylene,PTFE,濃度為20%)按照85∶10∶5(質(zhì)量比)的比例均勻混合,在對輥機上碾壓成薄膜,干燥后,銃成直徑為10 mm的圓片,稱重.然后將極片用20 MPa的壓力壓在直徑為14 mm的銅網(wǎng)上制得電極.以高純鋰片為電極,Celgard 2400聚丙烯多孔膜為隔膜,1 mol/L LiPF6的碳酸乙烯酯/碳酸二甲酯/碳酸二乙酯(質(zhì)量比為1∶1∶1)混合溶液為電解液,在充滿氬氣的手套箱中組裝CR 2032型扣式電池.
運用掃描電鏡(scanning electron microscope,SEM)、高分辨率透射電鏡(high resolution transmission electron microscope,HRTEM)、拉曼分析儀、X射線衍射(X-ray diffraction,XRD)儀分別探究了不同反應(yīng)時間下鎳摻雜對SnO2微觀形貌、組成、結(jié)晶行為的影響,并用藍電測試系統(tǒng)、電化學(xué)工作站研究了不同反應(yīng)時間下鎳摻雜對SnO2電化學(xué)性能的影響.
本工作通過一步水熱法合成了鎳摻雜SnO2納米微球,其結(jié)構(gòu)和物理化學(xué)性質(zhì)分別通過一系列的測試來表征和評價.圖1為6,9,12,15 h水熱法制備的5%鎳摻雜SnO2納米微球的XRD圖譜.可見,所得樣品的衍射峰對應(yīng)于SnO2四方相金紅石型晶體結(jié)構(gòu)(錫石,JCPDS No. 41-1445),無其他雜質(zhì)衍射峰(例如沒有檢測到NiO衍射峰).這一結(jié)果表明:鎳已摻雜到四方相SnO2晶體結(jié)構(gòu)中.隨著反應(yīng)時間的增加,圖1中的衍射峰并沒有明顯延長,說明鎳離子替代錫離子形成了穩(wěn)定的錫氧化物.衍射峰位于26.60?,33.92?,37.92?,51.84?,54.82?,57.92?,61.84?,分別與SnO2(110),(101),(200),(211),(220),(002),(310)晶面相一致,屬于四方相金紅石型晶體結(jié)構(gòu).
圖1反應(yīng)時間為6,9,12,15 h的鎳摻雜SnO2的XRD圖譜Fig.1 XRD patterns of the Ni-SnO2with reaction time at 6,9,12,15 h
運用拉曼光譜對所有樣品進行了表征,激發(fā)波長為633 nm,結(jié)果如圖2所示,其中A1g= 634 cm-1,B2g=778 cm-1,G帶屬于SnO2的拉曼特征峰,并且沒有檢測到NiO特征峰(約為570 cm-1)。這和之前的XRD表征結(jié)果相一致,并進一步證實了鎳已摻雜到四方相SnO2晶體結(jié)構(gòu)中.
圖2反應(yīng)時間為6,9,12,15 h的鎳摻雜SnO2的拉曼圖譜Fig.2 Raman spectra of the Ni-SnO2with reaction time at 6,9,12,15 h
圖3是反應(yīng)時間為12 h的鎳摻雜SnO2納米微球的SEM和HRTEM圖譜.圖3(a)為納米微球的SEM圖譜,可以看出納米微球呈現(xiàn)出均勻的尺寸和良好的分散性.圖3(b)~(e)為對納米微球的晶格結(jié)構(gòu)和邊緣進行測定的HRTEM圖譜.從圖中可觀察到清晰的晶格條紋像:一個大約為0.335 nm的面間距對應(yīng)SnO2的(110)面;另一個約為0.263 nm的面間距對應(yīng)SnO2的(101)面.這些數(shù)據(jù)與XRD表征結(jié)果一致,進一步證實了鎳已摻雜到四方相SnO2晶體結(jié)構(gòu)中.
圖3反應(yīng)時間為12 h的鎳摻雜SnO2納米微球的SEM和HRTEM圖譜Fig.3 SEM and HRTEM images of the Ni-SnO2nanospheres with reaction time at 12 h
圖4是反應(yīng)時間為6,9,12,15 h的鎳摻雜SnO2的倍率性能.可見,相比于6,9,15 h,反應(yīng)時間為12 h的納米微球在100,200,500,1 000 mA/g的電流密度下表現(xiàn)出了更好的倍率性能.特別地,12 h的納米微球在100 mA/g的電流密度下,放電比容量首次達到1 970.3 mA·h/g,遠高于SnO2的理論容量782 mA·h/g.從圖中還可以看到,當電流密度為500,1 000 mA/g時,反應(yīng)時間為6,9,12,15 h的納米微球的放電比容量都有較大的損失,但當電流密度返回100 mA/g時,12 h的納米微球的放電比容量恢復(fù)到了686.2 mA·h/g.這種優(yōu)異的容量保持率主要歸因于優(yōu)異的結(jié)構(gòu)穩(wěn)定性[25].因此可以認為,鎳摻雜可以在合金化和脫合金過程中起到降低晶格體積膨脹的效果.當二價鎳在晶體結(jié)構(gòu)中取代四價錫時,鎳作為晶格膨脹中的緩沖器,可以減輕因巨大體積變化而產(chǎn)生的機械應(yīng)力.
圖5是反應(yīng)時間為12 h的納米微球在100 mA/g電流密度,0.005~3.000 V電壓區(qū)間下的初始3次充放電曲線,其中電壓是正極電位相對Li/Li+的,相當于以Li/Li+電對的平衡電位作為參比電位.由圖可知,12 h納米微球的首次放電比容量為1 970.3 mA·h/g,首次充電比容量為913.2 mA·h/g,庫侖效率為46.3%;第二次放電比容量為956 mA·h/g,充電比容量為882.5 mA·h/g,庫侖效率為92.3%,較首次放電有了較大的提高.很明顯地,電極在隨后的充放電周期中表現(xiàn)出了比較大的容量損失.這是由于固體電解質(zhì)界面(solid electrolyte interface,SEI)層的形成,以及SnO2被還原至Sn的過程具有不可逆性.
圖4反應(yīng)時間為6,9,12,15 h的鎳摻雜SnO2的倍率性能Fig.4 Rate performances of the Ni-SnO2with reaction time at 6,9,12,15 h
圖5反應(yīng)時間為12 h的鎳摻雜SnO2的初始三次充放電曲線Fig.5 Initial three charge-discharge curves of the Ni-SnO2with reaction time at 12 h
本研究采用簡便的一步水熱方法,制備出了不同反應(yīng)時間的鎳摻雜SnO2納米微球,并探究了鎳摻雜對SnO2微觀形貌、組成、結(jié)晶行為的影響,確定了鎳摻雜SnO2表現(xiàn)出更好電化學(xué)性能的最佳反應(yīng)時間.特別地,反應(yīng)時間為12 h的5%鎳摻雜SnO2納米微球在100 mA/g電流密度下的放電比容量首次達到了1 970.3 mA·h/g,遠高于SnO2的理論容量782 mA·h/g.鎳摻雜可充當緩沖器,能適應(yīng)龐大的體積膨脹,避免納米粒子的團聚,進而達到減小體積膨脹的效果.另外,在合金化和脫合金過程中,鎳摻雜可減少錫聚合,從而降低電荷轉(zhuǎn)移阻力,進而提高整體離子的導(dǎo)電性.可以預(yù)料,鎳摻雜SnO2納米結(jié)構(gòu)可在SnO2基材料對鋰離子電池負極材料的改進中進一步發(fā)揮重要的作用.
參考文獻:
[1]JI L W,LIN Z,ALCOUTLAbI M,et al.Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J].Energy Environ Sci,2011,4:2682-2699.
[2]GOODENOUGH J B,KIM Y.Challenges for rechargeable Li batteries[J].Chem Mater,2010,22:587-603.
[3]TARAsCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
[4]SCROsATI B,HAssOUN J,SUN Y K.Lithium-ion batteries:a look into the future[J].Energy Environ Sci,2011,4:3287-3295.
[5]BRUCE P G,SCROsATI B,TARAsCON J M.Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed,2008,47:2930-2946.
[6]ARICO A S,BRUCE P,SCROsATI B,et al.Nanostructured materials for advanced energy conversion and storage devices[J].Nat Mater,2005,4:366-377.
[7]WINTER M,BEsENHARD J O,SpAHR M E,et al.Insertion electrode materials for rechargeable lithium batteries[J].Adv Mater,1998,10:725-763.
[8]KANG K S,MENG Y S,BREGER J,et al.Electrodes with high power and high capacity for rechargeable lithium batteries[J].Science,2006,311:977-980.
[9]SCOsATI B,GARCHE J.Lithium batteries:status,prospects and future[J].J Power Sources,2010,195:2419-2430.
[10]WAKIHARA M.Recent developments in lithium ion batteries[J].Mater Sci Eng,2001,R33:109-134.
[11]WHITTINGHAM M S.Lithium batteries and cathode materials[J].Chem Rev,2004,104(10):4271-4302.
[12]YANG Y C.Status and future of the electric vehicles and their relevant power source materials[J].Engineering Science,2003,5(12):1-11.
[13]DENG D,KIM M G,LEE J Y,et al.Green energy storage materials:nanostructured TiO2and Sn-based anodes for lithium-ion batteries[J].Energy Environ Sci,2009,2(8):818-837.
[14]CHEN Z W,PAN D Y,LI Z,et al.Recent advances in tin dioxide materials:some developments in thin films,nanowires,and nanorods[J].Chemical Reviews,2014,114(15):7442-7486.
[15]ZHANG X,JIANG B,GUO J X,et al.Large and stable reversible lithium-ion storages from mesoporous SnO2nanosheets with ultralong lifespan over 1 000 cycles[J].J Power Sources,2014,268:365-371.
[16]LIU X H,ZHANG J,SI W P,et al.High-rate amorphous SnO2nanomembrane anodes for Li-ion batteries with a long cycling life[J].Nanoscale,2015,7:282-288.
[17]LI X H,HE Y B,MIAO C,et al.Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties[J].Carbon,2015,81:739-747.
[18]WANG Y D,DJERDJ I,SMARsLY B,et al.Antimony-doped SnO2nanopowders with high crystallinity for lithium-ion battery electrode[J].Chem Mater,2009,21(14):3202-3209.
[19]WANG Y D,CHEN T.Nonaqueous and template-free synthesis of Sb doped SnO2microspheres and their application to lithium-ion battery anode[J].Electrochim Acta,2009,54(13):3510-3515.
[20]EL-SHINAwI H,B¨OHM M,LEICHTwEIss T,et al.A simple synthesis of nanostructured Cuincorporated SnO2phases with improved cycle performance for lithium ion batteries[J].Electrochem Commun,2013,36:33-37.
[21]YE X M,ZHANG W J,LIU Q J,et al.One-step synthesis of Ni-doped SnO2nanospheres with enhanced lithium ion storage performance[J].New J Chem,2015,39:130-135.
[22]CHEN Z W,JIAO Z,WU M H,et al.Microstructure evolution of oxides and semiconductor thin films[J].Progress in Materials Science,2011,56(7):901-1029.
[23]CHEN Z W,PAN D Y,ZHAO B,et al.Insight on fractal assessment strategies for tin dioxide thin films[J].ACS Nano,2010,4(2):1202-1208.
[24]CHEN Z W,WU M H,SHEK C H,et al.Multifunctional tin dioxide materials:advances in preparation strategies,microstructure,and performance[J].Chemical Communications,2015,51(7):1175-1184.
[25]WANG Z Y,ZHOU L,LOU X W.Metal oxide hollow nanostructures for lithium-ion batteries[J]. Adv Mater,2012,24:1903-1911.
本文彩色版可登陸本刊網(wǎng)站查詢:http://www.journal.shu.edu.cn
中圖分類號:O 614.43+2
文獻標志碼:A
文章編號:1007-2861(2016)02-0238-07
DOI:10.3969/j.issn.1007-2861.2015.05.020
收稿日期:2016-01-15
基金項目:國家自然科學(xué)基金資助項目(11375111,11428410);教育部博士點基金資助項目(20133108110021)
通信作者:陳志文(1962—),男,教授,博士生導(dǎo)師,研究方向為納米材料的合成與性質(zhì).E-mail:zwchen@shu.edu.cn
Preparation and properties of Ni-doped SnO2nanospheres for lithium-ion battery anode materials
MIAO Chunjie,HU Zhixiang,REN Lanlan,GAO Ziming,DONG Jingyu,LI Qi,LUO Zhigang,CHEN Zhiwen
(School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China)
Abstract:Ni-doped SnO2nanospheres were synthesized with a facile one-step hydrothermal method as a high-performance anode material for lithium-ion batteries.Scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM),Raman analyzer,X-ray diffraction(XRD)and electrochemical performance testing equipment such as blue electrical test systems and electrochemical workstation were used to investigate morphology,composition,crystallization behavior and electrochemical properties of Ni-doped SnO2and find the best doping reaction time.It has been found that the appropriate Ni-doped SnO2nanospheres showed much better rate capability and excellent cycling performance compared with the pristine SnO2.In particular,the sample of 5%Ni-doped SnO2whose reaction time was 12 h showed a high initial discharge capacity of 1 970.3 mA·h/g at a current density of 100 mA/g,far higher than the theoretical capacity of SnO2of 782 mA·h/g.This was because Ni-doping could accommodate huge volume expansion and avoid agglomeration of nanoparticles.Thus,the electrochemical performance of Ni-doped SnO2nanospheres was significantly improved.
Key words:Ni-doped SnO2;lithium-ion battery;anode material