鐘杏好,李進(jìn)福,段沙沙,胡功政,苑 麗
?
不同CTX-M亞群雞大腸桿菌毒力基因的流行特征
鐘杏好,李進(jìn)福,段沙沙,胡功政,苑麗
河南農(nóng)業(yè)大學(xué)牧醫(yī)工程學(xué)院,鄭州450002
摘要:目的了解CTX-M-1亞群、CTX-M-9亞群與不產(chǎn)CTX-M3類雞源大腸桿菌毒力基因的流行特征。方法從河南省不同地區(qū)分離獲得CTX-M-1亞群雞大腸桿菌33株,CTX-M-9亞群雞大腸桿菌31株和不產(chǎn)CTX-M的雞大腸桿菌23株,以多重PCR技術(shù)檢測受試菌攜帶33種毒力基因的情況。結(jié)果3類受試菌毒力基因的攜帶種類趨于一致,其中feoB、fimH、traT和sitA在3類菌中檢出率均較高。CTX-M-1亞群雞大腸桿菌中traT和irp-2基因和CTX-M-9亞群雞大腸桿菌中iroN、iss和irp-2基因的攜帶著高于不產(chǎn)CTX-M菌株。CTX-M-1亞群雞大腸桿菌中cvaC和sfaS的攜帶率高于CTX-M-9亞群,而iroN和iss的攜帶率低于CTX-M-9亞群。結(jié)論結(jié)果表明CTX-M-1與CTX-M-9亞群大腸桿菌部分毒力基因的攜帶率明顯高于不產(chǎn)CTX-M的菌株,CTX-M-9和CTX-M-1亞群雞大腸桿菌攜帶的部分毒力基因差異明顯,推測產(chǎn)CTX-M雞大腸桿菌的致病力可能較強(qiáng),且菌株的致病力可能還與其攜帶的CTX-M基因亞型有關(guān)。
關(guān)鍵詞:雞源大腸桿菌;CTX-M-1亞群;CTX-M-9亞群;毒力基因
產(chǎn)超廣譜β-內(nèi)酰胺酶(extended-spectrum β-lactamases, ESBLs)是腸桿菌科細(xì)菌對β-內(nèi)酰胺類抗生素耐藥最主要機(jī)制,其中大腸桿菌是ESBLs最主要的產(chǎn)生菌。ESBLs基因型眾多,近十年來,CTX-M型已替代TEM型和SHV型成為散播最為廣泛的基因型[1]。CTX-M型ESBLs主要包括6個亞群,其中CTX-M-1亞群和CTX-M-9亞群是世界各地最為常見的兩個亞群[2]。
已經(jīng)證實,大腸桿菌的致病力與其自身攜帶的多種毒力因子密切相關(guān)。Claudie Bonnet 等[3]認(rèn)為ColV質(zhì)粒+iss+tsh是禽致病性大腸桿菌的標(biāo)志。Tetsuo Asai 等[4]證實與質(zhì)粒相關(guān)的iutA、hlyF、iss、iroN 和ompT 這5個毒力基因與禽致病性大腸桿菌中的高致病力與耐藥性顯著相關(guān)[5-10 ]。
人們對產(chǎn)CTX-M大腸桿菌毒力基因的攜帶情況了解甚少。本研究擬對目前國內(nèi)廣泛散播的CTX-M-1亞群和CTX-M-9亞群的雞大腸桿菌常見毒力基因進(jìn)行檢測,并與不產(chǎn)CTX-M雞大腸桿菌的毒力基因比較分析,以期了解產(chǎn)CTX-M型雞大腸桿菌的毒力基因流行特征及變化趨勢。
1材料與方法
1.1菌株87株雞大腸桿菌包括33株CTX-M-1亞群大腸桿菌,31株CTX-M-9亞群大腸桿菌和23株不產(chǎn)CTX-M大腸菌株,菌株為2013年1月至7月分離自河南省內(nèi)不同地區(qū)具有典型雞大腸桿菌病癥狀的患病雞肝臟。
1.2毒力基因檢測參考相關(guān)文獻(xiàn)[11-14]合成33對毒力基因引物。33個毒力基因包括12個黏附素相關(guān)基因(bmaE、fimH、focG、iha、papA、papC、papGalleleⅠ、papGalleleⅡ、papGalleleⅢ、sfaS、gafD、和afa等),8個鐵相關(guān)基因(feoB、fyuA、ireA、iroN、irp-2、iucC、iutA和sitA等),7個保護(hù)素基因(cvaC、iss、kpsMT(k1)、kpsMT Ⅱ、kpsMT Ⅲ、rfc和traT等),3個毒素基因(cdtB、hlyD和cnf-1),以及編碼外膜蛋白的毒力基因ompT ,編碼侵襲素的毒力基因ibeA和編碼高致病性毒力島的malX基因等。
1.3統(tǒng)計分析用SPSS 20.0 軟件對3類雞大腸桿菌攜帶的毒力基因進(jìn)行χ2檢驗,比較三者之間毒力基因的差異。
2結(jié)果與分析
2.13類雞大腸桿菌毒力基因的檢測結(jié)果3類受試菌攜帶的毒力基因見表1。其中3類菌均不含bmaE、focG、iha、papA、papGalleleⅠ、papGalleleⅢ、gafD、afa、kpsMT Ⅲ、rfc、cdtB、hlyD、cnf-1和malX等14種毒力基因。
表1 3類菌毒力基因檢測結(jié)果
Note: -, means not checked out
由表1可知,受試菌攜帶與鐵吸收和轉(zhuǎn)運(yùn)相關(guān)的毒力基因數(shù)量及種類最多,8個鐵相關(guān)基因均有檢出。在12種與菌株黏附素有關(guān)的毒力基因中,僅檢出4種,其中僅CTX-M-1亞群雞大腸桿菌檢出sfaS基因,同時除fimH基因檢出率較高外,其他黏附素相關(guān)基因的檢出率均較低,說明fimH基因在雞大腸桿菌黏附過程中可能發(fā)揮了主導(dǎo)作用。在7個保護(hù)素毒力基因中,traT基因檢出率最高,所有受試菌均未檢出kpsMT Ⅲ和rfc基因。此外,所有菌株均未檢出編碼細(xì)菌毒素的三種毒力基因。
同時由表還可以看出,3類受試菌毒力基因的攜帶種類趨于一致,其中feoB在3類菌中檢出率最高,均100%被檢出,在3類菌中檢出率較高的還有fimH、traT和sitA基因。
2.23類雞大腸桿菌毒力基因的差異分析3類受試菌毒力基因之間的χ2檢驗結(jié)果見表2。
表2 3類大腸桿菌毒力基因卡方檢驗分析結(jié)果
Note: *, significant difference; **, very significant difference; -, means no result
由表1和表2知,在CTX-M-1亞群雞大腸桿菌中,traT和irp-2基因的攜帶率均顯著高于不產(chǎn)CTX-M的雞大腸桿菌,且irp-2基因的攜帶率高于不產(chǎn)CTX-M的雞大腸桿菌;在CTX-M-9亞群雞大腸桿菌中,iroN、iss和irp-2基因的攜帶率也高于不產(chǎn)CTX-M的雞大腸桿菌,其中iss基因在兩者之間的差異有統(tǒng)計學(xué)意義。在33株CTX-M-1菌和31株CTX-M-9菌中,iroN、iss、cvaC和sfaS 4種毒力基因的攜帶率差異顯著,其中cvaC和sfaS基因在CTX-M-1菌中的攜帶率較高,而iroN和iss基因在CTX-M-1菌中攜帶率卻較低。
3討論
本試驗結(jié)果顯示CTX-M-1亞群菌株與CTX-M-9亞群菌株的irp-2基因攜帶率均高于不產(chǎn)CTX-M的菌株,而在CTX-M-9亞群雞大腸桿菌中,iroN和iss基因的攜帶率顯著高于CTX-M-1亞群和不產(chǎn)CTX-M的菌株。iroN基因和irp-2基因為參與細(xì)菌體內(nèi)鐵吸收和轉(zhuǎn)運(yùn)相關(guān)基因,參與細(xì)菌體內(nèi)鐵離子的吸收和轉(zhuǎn)運(yùn),而鐵離子是細(xì)菌在生長繁殖過程中必需的離子之一,如吸收或轉(zhuǎn)運(yùn)障礙,細(xì)菌就不能正常的生長繁殖。其中,irp-2可作為耶爾森氏菌強(qiáng)毒力島的檢測標(biāo)志,張艷英等研究發(fā)現(xiàn)在腹瀉病死貉臟器以及糞便中分離出的大腸桿菌致病力較強(qiáng)且均含有irp-2[15]。Luo等認(rèn)為鐵相關(guān)基因在導(dǎo)致泌尿系統(tǒng)反復(fù)感染過程中發(fā)揮了至關(guān)重要的作用[16]。iss基因參與編碼外膜蛋白,與細(xì)菌抗補(bǔ)體作用有關(guān),可增強(qiáng)大腸桿菌的血清抗性, 從而有助于菌株在宿主體內(nèi)進(jìn)行快速增殖[17]。
traT基因編碼與血清抵抗相關(guān)的外膜蛋白,是尿道致病性大腸桿菌中檢出率最高的毒力基因之一[18-19],與大腸桿菌導(dǎo)致的泌尿道感染密切相關(guān),F(xiàn)iroozeh等認(rèn)為traT基因可作為治療大腸桿菌病靶基因[19]。本試驗在3類不同的大腸桿菌中均檢出了traT基因,3類菌攜帶率介于56.5%~84.8%,其中CTX-M菌株的攜帶率均高于不產(chǎn)CTX-M菌株。至于traT基因在產(chǎn)CTX-M菌株中攜帶率升高能否確實導(dǎo)致該類菌致病力增強(qiáng)還尚須進(jìn)一步研究證實。
本試驗共設(shè)計了12種與菌株黏附素有關(guān)毒力基因的相關(guān)引物,但經(jīng)PCR檢測僅檢出fimH、sfaS、papC和papGalleleⅡ 4種基因。fimH基因在3類菌中的檢出率均較高,檢出率介于87.1%~91.3%,與文獻(xiàn)報道類似[20],且3類菌之間差異不顯著。已經(jīng)證實,I型菌毛是尿道致病性大腸桿菌重要的粘附毒力因子,它的表達(dá)與大腸桿菌在宿主體內(nèi)定植和致病性密切相關(guān)。I型菌毛由fim基因簇編碼,其中fimH基因編碼的fimH 粘附蛋白位于I型菌毛頂端,是介導(dǎo)大腸桿菌與易感宿主細(xì)胞發(fā)生特異性黏附的最主要的粘附分子。sfaS基因僅在CTX-M-1亞群菌株中檢出,sfaS基因編碼S纖毛,是另一個在細(xì)菌粘附過程中發(fā)揮重要作用的粘附因子,其能促進(jìn)菌株在宿主體內(nèi)擴(kuò)散并導(dǎo)致敗血癥、腦膜炎及泌尿系統(tǒng)感染等[21-22]。
參考文獻(xiàn):
[1]Zhao WD, Yan P, Guan HN, et al. Characterization of CTX-M-type extended-spectrum beta-lactamase in clinical clones ofEscherichiacoliin Southwest China[J]. J Basic Microbiol, 2014, 54(3): 247-252. DOI:10.1002/jobm.201200313
[2]Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe[J]. J Antimicrob Chemother, 2007, 59(2): 165-174. DOI: 10.1093/jac/dkl483
[3]Bonnet C, Diarrassouba F, Brousseau R, et al. Pathotype and antibiotic resistance gene distributions ofEscherichiacoliisolates from broiler chickens raised on antimicrobial-supplemented diets[J]. Appl Environ Microbiol, 2009, 75(22): 6955-6962. DOI: 10.1128/AEM.00375-09
[4]Asai T, Masani K, Sato C, et al. Phylogenetic groups and cephalosporin resistance genes ofEscherichiacolifrom diseased food-producing animals in Japan[J]. Acta Vet Scand, 2011, 53: 52. DOI: 10.1186/1751-0147-53-52
[5]Bristianou M, Panagou C, Adamis T, et al. The impact of multidrug resistance on the pathogenicity ofEscherichiacoli: an experimental study[J]. Int J Antimicrob Agents, 2008, 31: 216-223. DOI:10.1016/j.ijantimicag
[6]Piatti G, Mannini A, Balistreri M, et al. Virulence factors in urinaryEscherichiacolistrains: phylogenetic background and quinolone and fluoroquinolone resistance[J]. J Clin Microbiol, 2008, 46(2): 480-487. DOI:10.1128/JCM.01488-07
[7]Takahashi A, Muratani T, Yasuda M, et al. Genetic profiles of fluoroquinolone-resistantEscherichiacoliisolates obtained from patients with cystitis: phylogeny, virulence factors, PAIusp subtypes, and mutation patterns[J]. J Clin Microbiol, 2009, 47(3): 791-795. DOI: 10.1128/JCM.01740-08
[8]Khatib R, Jose J, Musta A, et al. Relevance of vancomycin-intermediate susceptibility and heteroresistance in methicillin- resistantStaphylococcusaureusbacteraemia[J]. J Antimicrob Chemother, 2011, 66(4): 1594-1599. DOI: 10.1093/jac/dkr169
[9]Jadhav S, Hussain A, Devi S, et al. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenicEscherichiacolifrom a semi urban locality in India[J]. PLoS One, 2011, 6(3): 1-7. DOI:10.1371/journal.pone.0018063
[10]Park KH, Kim ES, Kim HS, et al. Comparison of the clinical features, bacterial genotypes and outcomes of patients with bacteraemia due to heteroresistant vancomycin-intermediateStaphylococcusaureusand vancomycin-susceptibleS.aureus[J]. J Antimicrob Chemother, 2012, 67(4): 1843-1849. DOI:10.1093/jac/dks131
[11]Lavigne JP, Blanc-Potard AB, Bourg G, et al. Virulence genotype and nematode-killing properties of extra-intestinalEscherichiacoliproducing CTX-M β-lactamases[J]. Clin Microbiol Infect, 2006, 12(12): 1199-1206. DOI:10.1111/j.1469-0691.2006.01536.x
[12]Van der Bij AK, Peirano G, Pitondo-Silva A, et al. The presence of genes encoding for different virulence factors in clonally relatedEscherichiacolithat produce CTX-Ms[J]. Diagn Microbiol Infect Dis, 2012, 72(4): 297-302. DOI: 10.1016/j.diagmicrobio.2011.12.011
[13]Rodriguez-Siek KE, Giddings CW, Doetkott C, et al. Comparison ofEscherichiacoliisolates implicated in human urinary tract infection and avian colibacillosis[J]. Microbiology, 2005, 151: 2097-2110. DOI:10.1099/mic.0.27499-0
[14]Zhao LX, Chen X, Xu XJ, et al. Analysis of the AIDA-I gene sequence and prevalence inEscherichiacoliisolates from pigs with post-weaning diarrhoea and oedema disease[J]. Vet J, 2009, 180(1): 124-129. DOI: 10.1016/j.tvjl.2007.10.021
[15]Zhang YY, Shi QM, Fang H, et al. Detection on pathogenicity islands ofYersiniaenterocoliticaHPI fromEscherichiacolistrains in diarrheic young raccoon dogs[J]. Chin J Zoonoses, 2012, 28(2): 179-182. (in Chinese)
張艷英, 史秋梅, 房海,等. 腹瀉仔貉檢出攜帶耶爾森菌HPI毒力島的大腸桿菌[J]. 中國人獸共患病學(xué)報, 2012, 28(2): 179-182.
[16]Luo Y, Ma Y, Zhao Q, et al. Similarity and divergence of phylogenies, antimicrobial susceptibilities, and virulence factor profiles ofEscherichiacoliisolates causing recurrent urinary tract infections that persist or result from reinfection[J].J Clin Microbiol, 2012, 50(12): 4002-4007. DOI: 10.1128/JCM.02086-12
[17]Johnson TJ, Wannemuehler YM, Nolan LK, et al. Evolution of theissgene inEscherichiacoli[J]. Appl Environ Microbiol, 2008, 74(8): 2360-2369. DOI: 10.1128/AEM.02634-07
[18]Oliverira FA, Paludo KS, Arend LN, et al. Virulence characteristics and antimicrobial susceptibility of uropathogenicEscherichiacolistrains[J]. Genet Mol Res, 2011, 10: 4114-4125. DOI: 10.4238/2011.October.31.5
[19]Firoozeh F, Saffari M, Neamati F, et al. Detection of virulence genes inEscherichiacoliisolated from patients with cystitis and pyelonephritis[J]. Inter J Infect Dis, 2014, 29: 219-222. DOI: 10.1016/j.ijid.2014.03.1393
[20]Wang Y, Liu MD. Examination of fimH gene ofE.colistrains and the homology analysis ofE.colistrains for patients with urinary tract infections[J]. J Tian’jin Med Univ, 2014, 20(1): 45-47. (in Chinese)
王悅, 劉德夢. 泌尿系感染患者大腸埃希菌fimH基因檢測及尿便來源菌株同源性分析[J]. 天津醫(yī)科大學(xué)學(xué)報, 2014, 20(1): 45-47.
[21]Pobiega M, Wojkowska-Mach J, Chmielarczyk A, et al. Molecular characterization and drug resistance ofEscherichiacolistrains isolated from urine from long-term care facility residents in Cracow, Poland[J].Med Sci Monit, 2013, 19: 317-326. DOI: 10.12659/MSM.883898
[22]Bien J, Sokolova O, Bozko P. Role of uropathogenicEscherichiacolivirulence factors in development of urinary tract infection and kidney damage[J]. Int J Nephrol, 2012: 681473. DOI: 10.1155/2012/681473
DOI:10.3969/j.issn.1002-2694.2016.02.010
通訊作者:苑麗, Email:yuanli-hn@163.com
Corresponding author:Yuan li, Email: yuanli-hn@163.com
中圖分類號:R378
文獻(xiàn)標(biāo)識碼:A
文章編號:1002-2694(2016)02-0152-04
收稿日期:2015-08-16;修回日期:2015-11-20
Characteristic of virulence genes among CTX-M clusters Escherichia coli isolates from chicken
ZHONG Xing-hao,LI Jin-fu,DUAN Sha-sha,HU Gong-zheng,YUAN Li
(College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China)
Abstract:This research was conducted to explore the epidemiologies of the virulence genes in CTX-M-1 cluster Escherichia coli, CTX-M-9 cluster isolates and non-CTX-M ones by multiplex-PCR. The strains, including 33 CTX-M-1 Escherichia coli isolates, 31 CTX-M-9 isolates and 23 non-CTX-M ones, were isolated from chickens in Henan Province. The results showed that all of E. coli contained almost similar virulence genes and the detection rates of feoB, fimH, traT, and sitA were higher than the others. The CTX-M-1 cluster and the CTX-M-9 cluster E. coli harbored significantly more virulence factors than non-CTX-M isolates, with the traT and irp-2 in the CTX-M-1 cluster and the iron, iss and irp-2 in CTX-M-9 cluster. Moreover, the partial virulence factors showed significantly difference between the CTX-M-1 cluster and the CTX-M-9 cluster. The cvaC and sfaS genes in the former were significantly more than those in the latter, but the iroN and iss genes were significantly fewer. In conclusion, the pathogenicities of CTX-M-producing E. coli maybe more powerful, and the CTX-M genotypes maybe had close relationship with their pathogenicity.
Keywords:E. coli isolates from chickens; CTX-M-1 cluster; CTX-M-9 cluster; virulence genes
國家自然科學(xué)基金項目(No.31201965)資助
Supported by the National Natural Science Foundation of China (No. 31201965)