明雅南 李春敏 張靜怡 劉曉琳 茅益民
?
·論著·
對乙酰氨基酚誘導(dǎo)急性肝衰竭小鼠動物模型的建立
明雅南李春敏張靜怡劉曉琳茅益民
200001上海交通大學(xué)醫(yī)學(xué)院附屬仁濟醫(yī)院消化內(nèi)科,上海市消化疾病研究所
【摘要】目的通過腹腔注射高劑量對乙酰氨基酚(APAP)構(gòu)建穩(wěn)定的用于研究藥物導(dǎo)致急性肝衰竭的動物模型。方法本研究首先進行生存率實驗,取60只C57BL/6小鼠隨機分為4組,每組15只,分別腹腔注射0.9%氯化鈉溶液及不同劑量(300 mg/kg、500 mg/kg 、750 mg/kg)APAP后,觀察不同組別72 h內(nèi)小鼠的精神、活動狀態(tài)和生存率。根據(jù)生存率分析結(jié)果,另選取180只C57BL/6小鼠,隨機分為3組,分別腹腔注射0.9%氯化鈉溶液、低劑量(300 mg/kg)和高劑量(750 mg/kg)APAP,每組分別在 0、1、3、6、12 h等時間點隨機選取12只小鼠,留取血清和肝組織,驗證小鼠的生化和組織學(xué)是否符合急性肝衰竭的表現(xiàn)。結(jié)果生存率實驗結(jié)果顯示,0.9%氯化鈉溶液組、300 mg/kg以及500 mg/kg組72 h內(nèi)無小鼠死亡;750 mg/kg組72 h死亡率為100%,推測750 mg/kg組可能為急性肝衰竭導(dǎo)致的死亡。生化和組織學(xué)驗證實驗結(jié)果發(fā)現(xiàn),對照組各時間點轉(zhuǎn)氨酶均無明顯升高;APAP處理的兩組動物模型ALT 3 h時開始升高,6 h時低劑量組ALT升高達到峰值[(6766.5±2001.27) IU/L],而高劑量組ALT于12 h達到(11707.58±1882.45) U/L(P<0.01)。從HE病理染色來看,0.9%氯化鈉溶液組各時間點肝臟形態(tài)結(jié)構(gòu)正常。APAP處理的兩組動物模型的肝組織學(xué),主要表現(xiàn)為以中央靜脈為中心的肝細胞變性壞死,并隨時間延長,損傷范圍逐漸擴大。低劑量組壞死周圍界限清楚,匯管區(qū)肝細胞結(jié)構(gòu)形態(tài)正常,12 h可見壞死區(qū)周圍肝細胞增生表現(xiàn)。高劑量組表現(xiàn)為典型的急性大片狀壞死特點,僅匯管區(qū)殘存少量變性的肝細胞,細胞快速壞死后,留下空的網(wǎng)狀纖維支架,肝竇淤積大量紅細胞,未見肝細胞增生。HAI評分結(jié)果顯示,高劑量組的HAI得分(7.33±1.5)顯著高于低劑量組(5.25±2.26,P<0.05)。結(jié)論C57BL/6小鼠腹腔注射高劑量APAP(750 mg/kg)后,生化和組織學(xué)改變與急性肝衰竭相似,本研究構(gòu)建的動物模型對于探索APAP導(dǎo)致的AHF的發(fā)病及進展機制研究具有潛在的應(yīng)用價值。
【關(guān)鍵詞】對乙酰氨基酚;肝衰竭;動物模型
藥物因素是臨床上引起急性肝衰竭(AHF)的重要原因之一,其中,對乙酰氨基酚(APAP)已成為歐美國家AHF的最主要病因,也是導(dǎo)致患者接受肝移植的第二大原因[1]。但目前對藥物導(dǎo)致AHF發(fā)病機制的認知仍非常有限,缺乏合適的動物模型是主要原因。APAP誘導(dǎo)的肝損傷模型穩(wěn)定且重復(fù)性好,盡管尚存在劑量和時間依賴性,曾有研究報道應(yīng)用過量APAP誘導(dǎo)AHF,但是否真正建模成功卻并不明確。有研究者利用兔[2]、狗[3, 4]、貓[5]以及大鼠等進行過量APAP誘導(dǎo)AHF,但上述動物模型體型大,成本高,且重復(fù)性差,因此應(yīng)用較局限。而且,大鼠對于過量APAP反應(yīng)敏感性較差,無法較好模擬人體的情況[6, 7]。
本研究旨在通過近親系C57BL/6小鼠腹腔注射高劑量APAP,探索既能夠區(qū)別于APAP誘導(dǎo)的肝損傷動物模型,又能構(gòu)建穩(wěn)定模擬APAP導(dǎo)致AHF病變過程的動物模型,以期能夠為APAP導(dǎo)致AHF的臨床轉(zhuǎn)化研究提供較為可靠、有效、穩(wěn)定的動物模型。
材料和方法
一、 實驗材料
240只C57BL/6小鼠購于上海斯萊克動物實驗中心;新鮮APAP以及用于麻醉的戊巴比妥鈉購于美國Sigma公司;全自動生化分析儀(SIEMEN SADVIA 1800,美國);全自動脫水機(ASP300)、石蠟包埋機(EG1150C)、脫蠟機(Auto taainer XL)等均為德國Leica公司產(chǎn)品。
二、生存率觀察
先取小鼠60只,隨機分為4組,每組15只。各組腹腔分別注射體積相近的0.9%氯化鈉溶液和300 mg/kg、500 mg/kg、750 mg/kg APAP[8, 9]。觀察各組小鼠72 h內(nèi)的精神、活動狀態(tài)和生存率。
三、 構(gòu)建穩(wěn)定的AHF動物模型
根據(jù)生存率實驗結(jié)果,確定用于AHF造模劑量。驗證實驗采用0.9%氯化鈉溶液以及300 mg/kg APAP作為對照組。驗證實驗時另外選取180只小鼠,隨機分為3組,每組60只;分別腔注射體積相似的0.9%氯化鈉溶液、低劑量APAP(300 mg/kg)、高劑量APAP(750 mg/kg),在0、1、3、6、12 h等時間點,每組隨機抽出12只小鼠,處死、留取血漿和肝組織,驗證小鼠的生化和組織學(xué)是否符合AHF的表現(xiàn)。
四、轉(zhuǎn)氨酶檢測
戊巴比妥鈉麻醉小鼠,抗凝管眼球取血,立即3000×g,4 ℃離心,取上清液,稀釋后,應(yīng)用全自動生化儀檢測ALT和AST。
五、肝組織HE染色和病理評分
處死小鼠后,打開腹腔,肉眼觀察不同組別動物腹腔、肝臟。剪取動物模型同一部位肝臟,4%多聚甲醛固定48 h,修剪脫水、石蠟包埋,HE染色。HE切片分別由兩位病理專家進行盲法HAI打分。
六、 統(tǒng)計學(xué)處理
統(tǒng)計分析應(yīng)用SPSS 19.0,作圖應(yīng)用GraphPad Prime 6.01。計量資料采用均數(shù)±標(biāo)準(zhǔn)差表示,組間比較采用t檢驗,生存率分析采用Log-rank (Mantel-Cox)。P<0.05為差異有統(tǒng)計學(xué)意義。
結(jié)果
一、 生存率實驗結(jié)果
72 h內(nèi)0.9%氯化鈉溶液組、APAP 300 mg/kg以及500 mg/kg組無小鼠死亡,750 mg/kg組小鼠全部死亡,與其他各組相比,差異有統(tǒng)計學(xué)意義(P=0.0082)。4組小鼠分別處理后,0.9%氯化鈉溶液組、300 mg/kg組小鼠精神、活動狀態(tài)正常;500 mg/kg組小鼠精神狀態(tài)較以上兩組差,活動度減少; 750 mg/kg組小鼠精神不振,活動量極度降低。 6 h后750 mg/kg組小鼠出現(xiàn)尿液變黃, 12 h可見腹腔內(nèi)透明積液;500 mg/kg組小鼠偶見尿液變黃,無腹腔積液;其他兩組小鼠未見尿液變黃和腹腔積液。因此,根據(jù)生存率實驗,推測750 mg/kg組小鼠死亡的原因可能為AHF,750 mg/kg劑量將作為APAP誘導(dǎo)AHF建模的目標(biāo)劑量,待后續(xù)的生化和組織學(xué)驗證。
二、 生化和組織學(xué)驗證實驗結(jié)果
(一)血漿轉(zhuǎn)氨酶變化與0.9%氯化鈉溶液組相比,APAP處理后1 h,高劑量組和低劑量組均可見AST明顯升高;兩組ALT/AST水平隨時間延長,逐漸升高。低劑量組在6 h時,ALT/AST水平達到峰值;高劑量組12 h時,轉(zhuǎn)氨酶仍繼續(xù)升高。低劑量組和高劑量組ALT/AST在12 h之前變化趨勢相似,12 h時兩組之間差異有統(tǒng)計學(xué)意義(P<0.01),見圖1。
圖1 各組不同時間點ALT、AST變化折線圖
(二)各組動物模型的組織學(xué)改變?nèi)庋塾^察,0.9%氯化鈉溶液組各時間點小鼠肝臟形態(tài)正常,紅色,質(zhì)地軟;低劑量組肝臟早期肉眼觀察無明顯改變,隨著APAP作用時間延長,肉眼觀察紅色變淺,質(zhì)地變硬;高劑量組肝臟早期也無顯著改變,但6 h及12 h時肉眼可見顯著的肝臟淤血,肝臟暗紅色,質(zhì)地顯著變硬。
顯微鏡下可見0.9%氯化鈉溶液組肝組織結(jié)構(gòu)完整,肝板排列整齊,肝細胞形態(tài)結(jié)構(gòu)正常。1 h時,低劑量組和高劑量組鏡下均可見圍繞中央靜脈周圍肝細胞微泡性改變。低劑量組隨時間延長,在6 h和12 h時可見典型的3區(qū)肝細胞變性壞死,匯管區(qū)周圍肝細胞形態(tài)結(jié)構(gòu)正常,壞死區(qū)和正常肝細胞界限清晰,12 h時交界處可見肝細胞增生。高劑量組6 h時3區(qū)肝細胞壞死嚴(yán)重,肝竇擴張,紅細胞淤積,壞死區(qū)邊界不清晰;12 h時,高劑量組可見大片壞死,僅匯管區(qū)殘存少量變性肝細胞,肝細胞快速壞死后,留下空的網(wǎng)狀纖維支架,肝竇顯著擴張,填充大量紅細胞,高劑量組未見明顯的肝細胞增生(見圖2)。上述表現(xiàn)提示高劑量組的組織學(xué)表現(xiàn)符合急性肝衰竭時典型的急性大塊性肝細胞壞死[10]。
對兩組動物模型的肝損傷情況進行HAI評分,結(jié)果顯示,隨時間延長,HAI評分逐漸增高,12 h時AILI組和AILF組之間差異顯著,高劑量組HAI評分(7.33±1.5)顯著高于低劑量組(5.25±2.26,P<0.05),見表1,提示高劑量組肝損傷嚴(yán)重。
表1 低劑量組和高劑量組HAI評分
注:*P<0.05
討論
本研究采用高劑量APAP(750 mg/kg)誘導(dǎo)AHF動物模型,與其他AHF模型相似:死亡率高,進展快,轉(zhuǎn)氨酶明顯升高,肝臟組織學(xué)可見大塊和亞大塊壞死;且根據(jù)生存率、生化以及組織學(xué)結(jié)果,能夠與經(jīng)典的DILI動物模型[10-12]相區(qū)別。
圖2 低劑量組和高劑量組病理變化(HE×200)
APAP致小鼠肝損傷的主要機制是肝臟P450酶代謝APAP產(chǎn)生NAPQI[13],其病變過程與人體相近,因此,APAP小鼠DILI模型[14-16]成為目前應(yīng)用較多的用于研究固有型DILI發(fā)病機制的動物模型[17]。而對于APAP誘導(dǎo)AHF的動物模型,很多研究也曾嘗試?yán)?,但研究中采用的動物多為狗、貓等體型較大的動物,其應(yīng)用受到限制;除此之外,由于不同種類動物對APAP的敏感性存在差異,如過量APAP僅能導(dǎo)致大鼠產(chǎn)生輕微的肝損傷,且模型的重復(fù)性也差,因此,APAP誘導(dǎo)AHF尚缺乏合適的動物模型供研究。本研究采用的是近親系的C57BL/6,組內(nèi)不同動物之間的相似性高達90%,從研究的生存率、生化和組織學(xué)改變情況來看,可以成功制備APAP誘導(dǎo)AHF動物模型,且重復(fù)性和一致性均較好。
目前研究用于ALF動物模型有很多種,如研究肝臟再生以及評估人工肝灌注療效的外科手術(shù)肝衰竭模型;藥物誘導(dǎo)AHF動物模型如D-氨基半乳糖、四氯化碳、硫代乙醇胺、脂多糖以及刀豆蛋白A等,D-氨基半乳糖能夠干擾RNA的代謝,脂多糖是經(jīng)典的內(nèi)毒素休克模型,刀豆蛋白A主要用于研究AHF的免疫反應(yīng)以及自身免疫反應(yīng)導(dǎo)致的AHF的病變過程。盡管如此,但無論從機制還是病變過程來看,與APAP導(dǎo)致ALF均存在較大差別[18],上述模型用于APAP導(dǎo)致的AHF發(fā)病機制的研究并不合適。
盡管毒性產(chǎn)物NAPQI引起線粒體功能損傷機制[19]、肝細胞壞死[20]是APAP導(dǎo)致DILI的重要發(fā)病機制,但仍有很多問題尚未完全闡明,尤其是APAP誘導(dǎo)的AHF。本研究構(gòu)建的穩(wěn)定的AHF模型,對于研究APAP導(dǎo)致AHF的發(fā)病機制,具有潛在的應(yīng)用價值。
DILI發(fā)病機制復(fù)雜,涉及肝損傷的藥物可能是單一藥物,也可能是多種藥物,臨床表型也幾乎包括所有肝損傷類型,因此DILI研究困難重重。本研究提供的動物模型只涉及APAP一種單一藥物,僅適用于APAP導(dǎo)致AHF的研究,而對于其他藥物引起,尤其是特異質(zhì)型肝損傷,其應(yīng)用可能有限。因此構(gòu)建穩(wěn)定且應(yīng)用范圍廣的藥物誘導(dǎo)AHF的動物模型仍面臨巨大的挑戰(zhàn)。
參考文獻
[ 1 ]Larsen FS, Wendon J. Understanding paracetamol-induced liver failure. Intensive Care Med, 2014, 40:888-890.
[ 2 ]Rahman TM, Selden AC, Hodgson HJ. A novel model of acetaminophen-induced acute hepatic failure in rabbits. J Surg Res, 2002, 106:264-272.
[ 3 ]Kelly JH, Koussayer T, He DE, et al. An improved model of acetaminophen-induced fulminant hepatic failure in dogs. Hepatology, 1992, 15:329-335.
[ 4 ]Francavilla A, Makowka L, Polimeno L, et al. A dog model for acetaminophen-induced fulminant hepatic failure. Gastroenterology, 1989, 96:470-478.
[ 5 ]Rumbeiha WK, Lin YS, Oehme FW. Comparison of N-acetylcysteine and methylene blue, alone or in combination, for treatment of acetaminophen toxicosis in cats. Am J Vet Res, 1995, 56:1529-1533.
[ 6 ]Liu P, McGuire GM, Fisher MA, et al. Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock, 1995, 3:56-62.
[ 7 ]Laskin DL, Gardner CR, Price VF, et al. Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology, 1995, 21:1045-1050.
[ 8 ]Kofman AV, Morgan G, Kirschenbaum A, et al. Dose- and time-dependent oval cell reaction in acetaminophen-induced murine liver injury. Hepatology, 2005, 41:1252-1261.
[ 9 ]Ramachandran A, McGill MR, Xie Y, et al. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology, 2013, 58:2099-2108.
[10]李繼強. 急性肝衰竭的病理表現(xiàn). 肝臟, 1997, 2:93-94.
[11]Numata K, Kubo M, Watanabe H, et al. Overexpression of suppressor of cytokine signaling-3 in T cells exacerbates acetaminophen-induced hepatotoxicity. J Immunol, 2007, 178:3777-3785.
[12]Yang R, Zhang S, Cotoia A, et al. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity. BMC Gastroenterol, 2012, 12:45.
[13]Zaher H, Buters JT, Ward JM, et al. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol, 1998, 152:193-199.
[14]Mitchell JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther, 1973, 187:211-217.
[15]Davis DC, Potter WZ, Jollow DJ, et al. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci, 1974, 14:2099-2109.
[16]McGill MR, Williams CD, Xie Y, et al. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol, 2012, 264:387-394.
[17]McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res, 2013, 30:2174-2187.
[18]Saracyn M, Zdanowski R, Brytan M, et al. D-Galactosamine Intoxication in Experimental Animals: Is it Only an Experimental Model of Acute Liver Failure? Med Sci Monit, 2015, 21:1469-1477.
[19]Hanawa N, Shinohara M, Saberi B, et al. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem, 2008, 283:13565-13577.
[20]Kon K, Kim JS, Jaeschke H, et al. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology, 2004, 40:1170-1179.
(本文編輯:錢燕)
基金項目:十二五科技重大專項(2012ZX09303-001,2012ZX09401004)
通信作者:茅益民,Emai: maoym11968@163.com
Corresponding author:MAO Yi-min, Email: maoym11968@163.com
(收稿日期:2016-04-13)
Establishment of acetaminophen-induced acute hepatic failure model in mice
MINGYa-nan,LIChun-min,ZHANGJing-yi,LIUXiao-lin,MAOYi-min.
DivisionofGastroenterologyandHepatology.RenjiHospital.SchoolofMedicine,ShanghaiJiaoTongUniversity,ShanghaiInstituteofDigestiveDisease,Shanghai200001,China
【Abstract】ObjectiveTo establish a stable animal model of drug-induced acute hepatic failure (AHF) with different doses of acetaminophen (APAP) by intraperitoneal injection. MethodsSixty mice, which were randomly divided into four groups (n=15), were intraperitoneally injected with saline and different doses of APAP (300 mg/kg, 500 mg/kg and 750 mg/kg), respectively. Mental status, activity and survival rates in different groups were observed within 72 hours. According to the analysis of survival rates, another 180 mice were divided into three groups randomly (n=60) with injection of saline, low (300 mg/kg) and high dose (750 mg/kg) of APAP, respectively. To detect the biochemical and pathological changes of AHF, 12 mice randomly selected from each group were sacrificed for serum and liver tissues collection at 0 h, 1 h, 3 h, 6 h and 12 h after injection, respectively. ResultsNo mice died within 72 h in the control group, APAP (300 mg/kg and 500 mg/kg group) , while the mortality of APAP 750 mg/kg group was 100%. In control group, aminotransferase (ALT) level showed no significant increase at all time points. However, ALT levels in two APAP groups (300 mg/kg and 750 mg/kg) began to increase at 3 h, and reached to peak at 6 h (6766.5±2001.27 IU/L) or 12 h (11707.58±1882.45 IU/L) in low-dose or high-dose APAP group, respectively. Additionally, ALT level in high-dose APAP group was significantly higher than that in low-dose APAP group at 12 h (P<0.01). In view of haematoxylin-eosin (HE) staining, control group displayed normal liver structure. In APAP group, degeneration and necrosis of hepatocytes mainly occurred around central vein, and damage extent gradually expanded over time. In low-dose group, boundaries of necrotic zones were clear with normal liver cell morphology in portal areas, and visible hepatocytes proliferation around the boundaries was observed at 12 h. In high-dose group, typical acute massive hepatic necrosis was found and few of degenerated hepatocytes stayed alive at portal areas. After rapid necrosis of hepatocytes, empty fiber mesh stent remained with large red blood cells deposited in sinusoids and no proliferation of hepatocytes. At 12 h, histological activity index (HAI) score of high-dose group (7.33±1.5) was higher than that of low-dose group (5.25±2.26), which showed statistically significant differences (P<0.05). ConclusionC57BL/6 mice injected with high dose of APAP (750 mg/kg) have similar biochemical and pathological changes with AHF, which might be a reliable AHF model for investigating the role of APAP in pathogenesis and development of liver failure.
【Key words】Acetaminophen; Liver failure; Animal model