李雪娜,尹雅芙,杜補(bǔ)林,李亞明中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院核醫(yī)學(xué)科,遼寧 沈陽(yáng) 110001
?
18F-FDG PET/CT顯像偶發(fā)甲狀腺癌的葡萄糖代謝與臨床病理學(xué)的相關(guān)性研究
李雪娜,尹雅芙,杜補(bǔ)林,李亞明
中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院核醫(yī)學(xué)科,遼寧 沈陽(yáng) 110001
[摘要]背景與目的:18F-FDG PET/CT的廣泛應(yīng)用導(dǎo)致偶發(fā)甲狀腺癌的比例明顯增加,偶發(fā)甲狀腺癌灶的糖代謝與甲狀腺癌病理學(xué)的相關(guān)性尚不清楚。研究因非甲狀腺疾病行18F-FDG PET/CT顯像、偶發(fā)甲狀腺癌的患者,分析甲狀腺癌灶的糖代謝與腫瘤的分化程度、淋巴結(jié)轉(zhuǎn)移的相關(guān)性。方法:回顧性分析18F-FDG PET/ CT顯像偶發(fā)甲狀腺瘤患者195例,53例患者手術(shù)病理診斷為甲狀腺癌。分別測(cè)量甲狀腺癌灶的最大標(biāo)準(zhǔn)攝取值(SUVmax)、病變大小、病變個(gè)數(shù),同時(shí)測(cè)量患者正常甲狀腺組織的SUVmax。通過(guò)病理分析病理學(xué)分型、淋巴結(jié)轉(zhuǎn)移,患者分為G1組(分化型甲狀腺癌)、G2組(非分化型甲狀腺癌)、G3組(甲狀腺癌無(wú)淋巴結(jié)轉(zhuǎn)移)和G4組(甲狀腺癌有淋巴結(jié)轉(zhuǎn)移)。分析G1組與G2組、G3組與G4組間甲狀腺癌灶的糖代謝的差異。結(jié)果:53例患者中,PET顯像發(fā)現(xiàn)甲狀腺癌灶53個(gè)。病理學(xué)發(fā)現(xiàn)甲狀腺癌灶62個(gè),乳頭狀甲狀腺癌37例,濾泡狀甲狀腺癌4例,髓樣癌9例,低分化癌3例。正常甲狀腺組織的SUVmax為1.51±0.30,G1組(41例)SUVmax為4.25±1.70,G2組(12例)SUVmax為6.34±2.45,G1組和G2組的SUVmax均顯著高于正常甲狀腺組織(t=11.0,t=7.10,P<0.01),但G1組與G2組的SUVmax差異無(wú)統(tǒng)計(jì)學(xué)意義(t=3.61,P>0.05)。G3組(29例)的SUVmax為4.77±2.15,G4組(24例)的SUVmax為4.67±2.02,差異無(wú)統(tǒng)計(jì)學(xué)意義(t=0.33,P=0.56)。結(jié)論:18F-FDG PET/CT顯像偶發(fā)癌分化型甲狀腺癌、非分化型甲狀腺癌均具有高糖代謝改變;不同分化程度、淋巴結(jié)轉(zhuǎn)移能力的甲狀腺癌灶的糖代謝水平差異無(wú)統(tǒng)計(jì)學(xué)意義。
[關(guān)鍵詞]甲狀腺偶發(fā)瘤;甲狀腺癌;18F-FDG;PET/CT;分化型甲狀腺癌;轉(zhuǎn)移
18F-FDG PET/CT是目前臨床常用的顯像方法,在腫瘤的診斷和分期中發(fā)揮重要的作用。18F-FDG PET/CT顯像的廣泛應(yīng)用導(dǎo)致偶發(fā)甲狀腺瘤的比例明顯增加[1-2]。有研究報(bào)道,在18F-FDG PET/CT顯像發(fā)現(xiàn)的甲狀腺偶發(fā)瘤中,大約1/3為甲狀腺惡性腫瘤[3-5]。美國(guó)甲狀腺學(xué)會(huì)(America Thyroid Association,ATA)指南推薦進(jìn)一步行細(xì)胞學(xué)或組織學(xué)診斷[6]。偶發(fā)甲狀腺癌灶的糖代謝與甲狀腺癌病理學(xué)的相關(guān)性還不清楚。本研究分析了18F-FDG PET/CT顯像偶發(fā)甲狀腺癌的患者,甲狀腺癌灶的糖代謝與病理類(lèi)型、腫瘤分期的相關(guān)性,以探討偶發(fā)甲狀腺癌糖代謝水平的臨床意義。
1.1研究對(duì)象
回顧性分析中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院2004年11月—2013年12月因非甲狀腺疾病原因行18F-FDG PET/CT顯像的患者14 758例,其中195例顯像發(fā)現(xiàn)甲狀腺局灶性異常代謝增高灶,經(jīng)手術(shù)病理證實(shí)為甲狀腺癌的患者53例。其中男性22例,女性31例,年齡(51.0±12.4)歲。53例患者中,PET/CT顯像發(fā)現(xiàn)甲狀腺癌灶53個(gè),病理學(xué)發(fā)現(xiàn)甲狀腺癌灶62個(gè),淋巴結(jié)轉(zhuǎn)移灶73個(gè)。乳頭狀甲狀腺癌37例,濾泡狀甲狀腺癌4例,髓樣癌 9例,低分化癌3例。
1.2檢查方法與參數(shù)設(shè)置
PET/CT采用GE Discovery LS PET/CT儀。CT為L(zhǎng)ightspeed 4排螺旋CT。18F-FDG由GE Minitrace回旋加速器生產(chǎn),通過(guò)合成模塊自動(dòng)合成,放化純>95%?;颊呖崭? h以上,空腹血糖小于10 mmol/L。平靜狀態(tài)下按5.55 MBq/kg通過(guò)靜脈三通管注射18F-FDG。在暗室平臥50~60 min后行體部PET/CT顯像,每個(gè)床位采集3 min,層厚5 mm。圖像重建采用有序子集最大期望值迭代法,得到三維圖像及橫斷、冠狀和矢狀斷層圖像。
1.318F-FDG PET/CT圖像處理、分析
所有患者的圖像均在GE XELERIS圖像處理工作站進(jìn)行分析處理,經(jīng)2位有PET/CT診斷經(jīng)驗(yàn)的醫(yī)師逐層閱讀PET/CT影像,通過(guò)視覺(jué)分析甲狀腺部位18F-FDG分布高于周?chē)<谞钕俳M織,即為甲狀腺局限性代謝增高灶。對(duì)于選擇甲狀腺病灶攝取最顯著的層面,應(yīng)用感興趣區(qū)(region of interest,ROI,直徑為1.0 cm)技術(shù)測(cè)定病灶、區(qū)域淋巴結(jié)測(cè)量病灶的最大標(biāo)準(zhǔn)攝取值(SUVmax),并同時(shí)測(cè)量正常部位甲狀腺組織的SUVmax。通過(guò)CT圖像測(cè)量甲狀腺病灶的直徑。
1.4病理學(xué)分析
手術(shù)標(biāo)本和區(qū)域淋巴結(jié)標(biāo)本由病理科醫(yī)師作病理分析。收集甲狀腺癌的個(gè)數(shù)、病理分型和淋巴結(jié)轉(zhuǎn)移數(shù)據(jù)。
1.5統(tǒng)計(jì)學(xué)處理
18F-FDG PET/CT顯像偶發(fā)甲狀腺癌灶53個(gè)。病理學(xué)發(fā)現(xiàn)甲狀腺癌灶62個(gè),其中8例患者病理見(jiàn)多灶性微小甲狀腺癌,PET/CT顯像未檢出。乳頭狀甲狀腺癌37例,濾泡狀甲狀腺癌4例,髓樣癌9例,低分化癌3例。分化型甲狀腺癌組(G1組)41例,非分化型甲狀腺癌組(G2組)12例。甲狀腺癌無(wú)淋巴結(jié)轉(zhuǎn)移組(G3組)29例,甲狀腺癌有淋巴結(jié)轉(zhuǎn)移組(G4組)24例(表1、2)。
正常甲狀腺組織的SUVmax為1.51±0.30,G1組SUVmax為4.25±1.70(圖1)。G2組SUVmax為6.34±2.45(圖2),G1組和G2組的SUVmax均顯著高于正常甲狀腺組織(t=11.0,t=7.10,P<0.01),但G1組與G2組的SUVmax差異無(wú)統(tǒng)計(jì)學(xué)意義(t=3.61,P=0.06)。G1組的癌灶大小為(1.40±0.63) cm,G2組的癌灶大小為(1.74±0.41) cm,差異無(wú)統(tǒng)計(jì)學(xué)意義(t=0.06, P=0.80)。
G3組的SUVmax為4.77±2.15,G4組的SUVmax為4.67±2.02,差異無(wú)統(tǒng)計(jì)學(xué)意義(t=0.33,P=0.56)。G3組的癌灶大小為(1.41±0.50) cm,G4組的癌灶大小為(1.56±0.70) cm,差異無(wú)統(tǒng)計(jì)學(xué)意義(t=0.12,P=0.73)。所有甲狀腺癌灶SUVmax與腫瘤大小之間呈正相關(guān)(r=0.38,P<0.01)。
17例G1組患者發(fā)生淋巴結(jié)轉(zhuǎn)移,7例G2組患者發(fā)生淋巴結(jié)轉(zhuǎn)移,兩者發(fā)生淋巴結(jié)轉(zhuǎn)移的比例差異無(wú)統(tǒng)計(jì)學(xué)意義(χ2=1.06,P=0.3)。
表1 G1組和G2組的臨床特征Tab.1 Clinical characteristics of G1group and G2group
表2 G3組和G4組臨床特征Tab.2 Clinical characteristics of G3group and G4group
圖1 18F-FDG PET/CT顯像和病理圖片F(xiàn)ig.118F-FDG PET/CT image and pathological image
圖2 18F-FDG PET/CT 顯像和病理圖片F(xiàn)ig.218F-FDG PET/CT image and pathological image
一項(xiàng)多中心研究結(jié)果顯示,PET顯像發(fā)現(xiàn)的甲狀腺偶發(fā)瘤的比例為1.6%[5]。本研究中,18F-FDG PET/CT顯像發(fā)現(xiàn)的甲狀腺偶發(fā)瘤的比例為1.3%。在多個(gè)單中心的研究中,18F-FDG PET/CT偶發(fā)甲狀腺瘤的惡性率是不一致的[2,7-8]。多中心的研究結(jié)果顯示,惡性率約為34%[3,5,9]。本研究中,甲狀腺偶發(fā)瘤的惡性率為27.1%。因此,這樣的惡性率在臨床工作中不應(yīng)該被忽視。
SUV值是18F-FDG PET/CT顯像評(píng)價(jià)病變葡萄糖代謝的重要參數(shù),惡性腫瘤組織的SUV值會(huì)升高[10],正常的甲狀腺組織的SUV值不會(huì)升高[11]。本研究中,偶發(fā)瘤的甲狀腺癌灶的SUV值明顯高于正常的甲狀腺組織。偶發(fā)甲狀腺癌的糖代謝水平升高的臨床意義還不清楚。18F-FDG PET/CT通常被應(yīng)用于分化型甲狀腺癌Tg升高、全身碘顯像陰性懷疑甲狀腺癌發(fā)生了失分化的患者中[12-13]。有研究顯示,甲狀腺癌失分化后,碘的攝取能力喪失,而糖代謝被激活,葡萄糖轉(zhuǎn)運(yùn)體1的表達(dá)增加[14]。而分化好的甲狀腺癌葡萄糖轉(zhuǎn)運(yùn)體1表達(dá)較低[15],分化型甲狀腺癌是預(yù)后相對(duì)好的腫瘤,因此分化型甲狀腺癌常被認(rèn)為是低糖代謝的改變[16-17]。而在本研究中,分化型甲狀腺癌41例,乳頭狀甲狀腺癌37例,濾泡狀甲狀腺癌4例,均具有高糖代謝的影像表現(xiàn)。既往的多中心的研究也顯示,18F-FDG PET/CT顯像偶發(fā)甲狀腺癌的大部分病理分型為乳頭狀癌[5],與我們的研究結(jié)果一致。這一現(xiàn)象與我們既往對(duì)分化型甲狀腺糖代謝認(rèn)知不同。有研究報(bào)道,在分化型甲狀腺癌中,葡萄糖轉(zhuǎn)運(yùn)體3高表達(dá)[18],因此,分化型甲狀腺癌可能也具有攝取18F-FDG的分子基礎(chǔ),具體的機(jī)制還需要進(jìn)一步研究。本研究中,分化型甲狀腺癌與髓樣癌、低分化癌的SUVmax值分別為4.25±1.70 和6.34±2.45,髓樣癌、低分化癌的SUV值略高于分化型甲狀腺癌,但差異無(wú)統(tǒng)計(jì)學(xué)意義(P=0.06)。本研究的髓樣癌與低分化癌的樣本量較少,因此可能會(huì)影響統(tǒng)計(jì)結(jié)果,有待于進(jìn)一步擴(kuò)大樣本量,分析兩者的SUV值的差別。一項(xiàng)對(duì)18F-FDG PET/CT偶發(fā)甲狀腺癌進(jìn)行了預(yù)后的隨訪(fǎng)研究顯示,葡萄糖代謝增高的甲狀腺癌,預(yù)后不良[19]。因此,我們推測(cè)葡萄糖代謝增高的分化型甲狀腺癌有可能是一種病理亞型,可能與分化型甲狀腺癌的不良預(yù)后相關(guān)。
有研究顯示,偶發(fā)甲狀腺癌灶的葡萄糖代謝體積和總糖酵解與腫瘤淋巴結(jié)轉(zhuǎn)移密切相關(guān),高的代謝體積和總糖酵解的分化型甲狀腺癌更易發(fā)生淋巴結(jié)轉(zhuǎn)移[20]。但本研究結(jié)果顯示,甲狀腺癌原發(fā)灶的SUVmax在轉(zhuǎn)移組和非轉(zhuǎn)移組中差異無(wú)統(tǒng)計(jì)學(xué)意義,我們應(yīng)用的評(píng)價(jià)代謝參數(shù)與他們不同,可能會(huì)導(dǎo)致研究結(jié)果的不同。因此,還需要擴(kuò)大樣本量和采用多種評(píng)價(jià)糖代謝的參數(shù)進(jìn)行這方面的研究。本研究顯示,甲狀腺癌的SUVmax與病灶大小呈正相關(guān)。有研究報(bào)道,病灶大小是影響SUV值的重要因素之一[21]。在本研究中,8例甲狀腺微小癌灶在18F-FDG PET/CT顯像中未顯影,是因?yàn)樾〔≡钍茱@像的分辨率限制或部分容積效應(yīng)的影響。
本研究樣本量較少,有一定局限性,且本研究是回顧性分析,顯像方法中的影響圖像質(zhì)量的因素不是標(biāo)準(zhǔn)化的。因此,需要擴(kuò)大樣本量,并進(jìn)行前瞻性的研究,探討18F-FDG PET/ CT顯像偶發(fā)癌的葡萄糖代謝的臨床意義及與腫瘤侵襲轉(zhuǎn)移的相關(guān)性。
本研究顯示,偶發(fā)癌中分化型甲狀腺癌和非分化型甲狀腺癌均具有高糖代謝改變;不同分化程度、侵襲轉(zhuǎn)移能力的甲狀腺癌,癌灶糖代謝水平差異無(wú)統(tǒng)計(jì)學(xué)意義。
[參考文獻(xiàn)]
[1] NISHIMORI H, TABAH R, HICKESON M, et al. Incidental thyroid “PETomas“: clinical significance and novel description of the self-resolving variant of focal FDG-PET thyroid uptake [J]. Can J Surg, 2011, 54(2): 83-88.
[2] BRINDLE R, MULLIAN D, YAP B K, et al. Thyroid incidentalomas discovered on positron emission tomography CT scanning-malignancy rate and significance of standardized uptake values [J]. Eur J Surg Oncol, 2014, 40(11): 1528-1532.
[3] SOELBERG K K, BONNEMA S J, BRIX T H, et al. Risk of malignancy in thyroid incidentalomas detected by18F-fluorodeoxyglucose positron emission tomography: a systematic review [J]. Thyroid, 2012, 22(9): 918-925.
[4] TREGLIA G, BERTAGNA F, SADEGHI R, et al. Focal thyroid incidental uptake detected by18F-fluorodeoxyglucose positron emission tomography. Meta-analysis on prevalence and malignancy risk [J]. Nuklearmedizin, 2013, 52(4):130-136.
[5] BERTAGNA F, TREGLIA G, PICCARDO A, et al. Diagnostic and clinical significance of18F-FDG-PET/CT thyroid incidentalomas [J]. J Clin Endocrinol MeTab.2012, 97(11):3866-3875.
[6] American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, COOPER D S, DOHERTY G M, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer [J]. Thyroid,2009, 19(11): 1167-1214.
[7] ELZEIN S, AHMED A, LORENZ E, et al. Thyroid incidentalomas on PET imaging-evaluation of management and clinical outcomes [J]. Surgeon, 2015, 13(2): 116-120. [8] BAE J S, CHAE B J, PARK W C, et al. Incidental thyroid lesions detected by FDG-PET/CT: prevalence and risk of thyroid cancer [J]. World J Surg Oncol, 2009, 10(7): 63. [9] BERTAGNA F, TREGLIA G, PICCARDO A, et al.18F-FDGPET/CT thyroid incidentalomas: a wide retrospective analysis in three Italian centers on the significance of focal uptake and SUV value [J]. Endocrine, 2013, 43(3): 678-685.
[10] KUMAR V, NATH K, BERMAN C G, et al. Variance of SUVs for FDG-PET/CT is greater in clinical practice than under ideal study settings [J]. Clin Nucl Med, 2013, 38(3): 175-182.
[11] SCHODER H, YEUNG H W. Positron emission imaging of head and neck cancer, including thyroid carcinoma [J]. Semin Nucl Med, 2004, 34(3): 180-197.
[12] DONG M J, LIU Z F, ZHAO K, et al. Value of18F-FDG-PET/ PET-CT in differentiated thyroid carcinoma with radioiodinenegative whole-body scan: a metaanalysis [J]. Nucl Med Commun, 2013, 30(8): 639-650.
[13] 林巖松,張 彬,梁智勇,等. 復(fù)發(fā)轉(zhuǎn)移性分化型甲狀腺癌診治共識(shí) [J]. 中國(guó)癌癥雜志, 2015, 25(7): 481-496.
[14] FEINE U, LIETZENMAYER R, HANKE J P, et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer [J]. J Nucl Med, 1996, 37(9): 1468-1472.
[15] CHANDAN V S, FAQUIN W C, WILBUR D C, et al. The role of immunolocalization of CD57 and GLUT-1 in cell blocks in fine-needle aspiration diagnosis of papillary thyroid carcinoma [J]. Cancer, 2006, 108(5): 331-336.
[16] TREGLIA G, BERTAGNA F, PICCARDO A, et al.131I wholebody scan or18F-FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound? [J]. Clin Transl Imaging, 2013, 16(9): 770-775.
[17] MAZZAFERRI E L, KLOOS R T. Current approaches to primary therapy for papillary and follicular thyroid cancer [J]. J Clin Endocrinol MeTab.2001, 86(4): 1447-1463.
[18] CIAMPI R, VIVALDI A, ROMEI C, et al. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors [J]. Mol Cell Endocrinol, 2008, 291(1-2): 57-62.
[19] PICCARDO A, PUNTONI M, BERTAGNA F, et al.18F-FDG uptake as prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicenter study [J]. Eur J Nucl Med Mol Imaging, 2014, 41(8): 1482-1491.
[20] KIM B H, KIM S J, KIM K, et al. High metabolic tumor volume and total lesion glycolysis are associated with lateral lymph node metastasis in patients with incidentally detected thyroid carcinoma [J]. Ann Nucl Med, 2015, 29(8): 721-729.
[21] STANGIERSKI A, WOLI?SKI K, CZEPCZY?SKI R, et al. The usefulness of standardized uptake value in differentiation between benign and malignant thyroid lesions detected incidentally in18F-FDG-PET/CT examination [J]. PLoS One, 2014, 9(10): e109612.
DOI:10.19401/j.cnki.1007-3639.2016.06.008
中圖分類(lèi)號(hào):R736.1
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-3639(2016)06-0527-06
收稿日期:(2015-11-30 修回日期:2016-01-17)
基金項(xiàng)目:遼寧省科學(xué)技術(shù)計(jì)劃項(xiàng)目(2012225013)。通信作者:李亞明 E-mail: ymli2001@163.com
The correlation study between the glucose metabolism of 18F-FDG PET/CT incidental thyroid cancer and clinicopathologic characteristics
LI Xuena, YIN Yafu, DU Bulin, LI Yaming (Department of Nuclear Medicine, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China)Correspondence to: LI Yaming E-mail: ymli2001@163.com
[Abstract]Background and purpose: The proportion of incidental thyroid cancer in PET imaging was signifcantly increased with the wide application of18F-FDG PET/CT. The correlation between the glucose metabolism of thyroid incidental thyroid cancer and pathological changes is unclear. The objective of this study is to analyze the relationship between the glucose metabolism by18F-FDG PET/CT and tumor diferentiation or lymph node metastasis in patients with incidental thyroid cancer. Methods: A total of 195 patients with focal FDG-avid thyroid incidentaloma during cancer evaluation were enrolled. Fifty-three patients were diagnosed as having thyroid cancer by the pathology. The SUVmaxof thyroid cancer foci, lesion size, lesion number, and SUVmaxof normal thyroid tissue were quantifed. The tumor pathological grades and lymph node metastasis were analyzed by the pathology. The patients were broken down into 4 groups (G1, G2, G3and G4) according to the tumor pathological grades and lymph node metastasis (diferentiated thyroid cancer, non-diferentiated thyroid cancer, without lymph node metastasis and with lymph node metastasis). The diferences of glucose metabolism between G1and G2groups, G3and G4groups were analyzed. Results: Fifty-three foci were found by PET imaging. Sixty-two foci were found by the pathology (37 papillary thyroid carcinoma, 4 follicular thyroid carcinoma, 9 medullary thyroid carcinoma, 3 poorly diferentiated thyroid cancer). The SUVmaxin the normal thyroid tissue, G1and G2were 1.51±0.30, 4.25±1.70 and 6.34±2.45, respectively. The SUVmaxin the G1and G2weresignifcantly higher than in the normal thyroid tissue (t=11.0,t=7.10,P<0.01). The SUVmaxof G3was 4.77±2.15, and the SUVmaxof G4group was 4.67±2.02. The diferences between G1and G2groups, G3and G4groups were not statistically signifcant (t=3.61, P>0.05; t=0.33, P=0.56). Conclusion: The diferentiated incidental thyroid carcinoma and non-diferentiated incidental thyroid carcinoma had high glucose metabolism, and there was no signifcant diference in the levels of glucose metabolism in diferent diferentiation degree and metastasis ability cancer.
[Key words]Thyroid incidentalomas; Thyroid cancer;18F-FDG; PET/CT; Diferentiated thyroid cancer; Metastasis