周在征, 裴軍令, 李建鋒, 劉鋒, 盛美,2, 趙越
1 中國地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所, 北京 100081 2 國土資源部古地磁與古構(gòu)造重建重點(diǎn)實(shí)驗(yàn)室, 北京 100081 3 中國地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院, 北京 100083
?
帕米爾東北緣晚新生代旋轉(zhuǎn)運(yùn)動新證據(jù)
周在征1,2,3, 裴軍令1,2*, 李建鋒1, 劉鋒1, 盛美1,2, 趙越1
1 中國地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所, 北京100081 2 國土資源部古地磁與古構(gòu)造重建重點(diǎn)實(shí)驗(yàn)室, 北京100081 3 中國地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院, 北京100083
摘要為進(jìn)一步研究帕米爾東北緣晚新生代演化特征,在塔里木盆地西部英吉沙背斜上新世地層中采集了11個(gè)采點(diǎn)共111塊古地磁樣品.對樣品進(jìn)行系統(tǒng)熱退磁測定,揭示了一組高溫特征剩磁分量,獲得了采樣剖面的上新世古地磁極.特征剩磁方向?yàn)? Dg=342.4°,Ig= 59.2°,κg=32.3,α95=8.6°; Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相對應(yīng)的古地磁極位置為: 79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.這一高溫分量通過了倒轉(zhuǎn)檢驗(yàn),代表了研究區(qū)上新世時(shí)期的原生特征剩磁.通過對英吉沙背斜周緣斷裂及形成的大地構(gòu)造背景分析,結(jié)合其地貌特征、GPS數(shù)據(jù),認(rèn)為英吉沙背斜在開始形成至今經(jīng)歷了明顯的逆時(shí)針構(gòu)造旋轉(zhuǎn),該旋轉(zhuǎn)同晚新生代以來帕米爾東北緣喀什凹陷發(fā)生剛性構(gòu)造旋轉(zhuǎn)運(yùn)動有著密切的關(guān)系.
關(guān)鍵詞帕米爾; 晚新生代; 古地磁; 構(gòu)造旋轉(zhuǎn); 喀什凹陷
The paleomagnetic study on sedimentary rock developed in the Tarim basin offers a useful method for researching tectonic evolution. Combining with geomorphology and GPS data, our results suggest that the Yengisar anticline has undergone significant counterclockwise rotation since Pliocene. Comparisons of this paleomagnetic pole with adjacent regions imply the tectonic rotation in Kashi depression is associated with Northeastern Pamir evolution during the late Cenozoic.KeywordsPamir; Late Cenozoic; Paleomagnetism; Tectonic rotation; Kashi depression
1引言
帕米爾弧形構(gòu)造帶,即青藏高原西構(gòu)造結(jié),位于青藏高原西北部,北接南天山,西為塔吉克盆地,東臨塔里木盆地.帕米爾弧形構(gòu)造帶是新生代構(gòu)造變形最強(qiáng)烈的地區(qū)之一,其形成時(shí)間、運(yùn)動過程及動力學(xué)機(jī)制是近年來國內(nèi)外地質(zhì)學(xué)家研究的熱點(diǎn)(Zheng et al.,2000;陳杰 等,2000;裴軍令等,2008;Cowgill,2010;Fu et al.,2010;Sobel et al.,2011, 2013;陳漢林等,2014).
多年來帕米爾弧形構(gòu)造帶東北緣新生代的研究在構(gòu)造變形(胡建中等,2008;陳漢林等,2010;陳杰等,2011)、地層時(shí)代(Zheng et al.,2000;陳杰等,2000;Chen et al.,2002;鄭洪波等,2002;Yang et al.,2015)、地殼數(shù)值模擬(雷建設(shè)等,2002;張先康等,2002;He et al.,2013)、深部地球物理(胥頤等,2006;唐明帥等,2014)、構(gòu)造旋轉(zhuǎn)(Chen et al.,1992;Gilder et al.,1996;Rumelhart et al.,1999;Dupont-Nivet et al.,2002;Huang et al.,2009;Li et al.,2013;孫知明等,2013;Bosboom et al.,2014)等方面取得了不同程度的進(jìn)展.在帕米爾弧形構(gòu)造帶形成模式上存在著非旋轉(zhuǎn)的走滑模型(Peltzer and Tapponnier,1988)、旋轉(zhuǎn)的放射狀逆沖模型(Thomas et al.,1994)和馬蹄形地殼彎曲模型(Yin et al.,2001)的爭論.帕米爾弧形構(gòu)造帶西側(cè)研究結(jié)果顯示一致的旋轉(zhuǎn)方向,而東側(cè)至今新生代以來旋轉(zhuǎn)變形研究尚存爭論,并且東西兩側(cè)旋轉(zhuǎn)變形不對稱的啟動時(shí)間與機(jī)制也存在分歧(Cowgill,2010;Bosboom et al.,2014).喀什凹陷是帕米爾弧形構(gòu)造帶北向擴(kuò)展導(dǎo)致的撓曲沉降,沉積了巨厚的新生代地層,記錄的運(yùn)動過程是帕米爾弧形構(gòu)造帶形成模式重建的關(guān)鍵所在.
古地磁方法能夠定量分析塊體不同時(shí)間段內(nèi)運(yùn)動的性質(zhì)及規(guī)模,并能夠有效地獲得大型斷裂運(yùn)動的時(shí)限與過程.不同學(xué)者在帕米爾弧形構(gòu)造帶及鄰近區(qū)域開展了大量古地磁相關(guān)研究(Chen et al.,1992;Gilder et al.,1996;Rumelhart et al.,1999;Dupont-Nivet et al.,2002;Huang et al.,2009;Li et al.,2013;孫知明等,2013;Bosboom et al.,2014),主要對新生代以來帕米爾弧形構(gòu)造帶北向擴(kuò)展過程中是否存在整體旋轉(zhuǎn)運(yùn)動、旋轉(zhuǎn)運(yùn)動的方向與幅度(Chen et al.,1992;Gilder et al.,1996;Rumelhart et al.,1999),以及對帕米爾高原的演化模式進(jìn)行探討(Li et al.,2013;Bosboom et al.,2014).已有研究由于研究對象時(shí)代、位置等不同的原因造成較大分歧.喀什凹陷北端的結(jié)果顯示其相對于歐亞大陸以及華北板塊發(fā)生了顯著的逆時(shí)針旋轉(zhuǎn)(Huang et al.,2009;孫知明等,2013),認(rèn)為是由于喀什凹陷與塔里木地塊之間解耦造成的結(jié)果(Huang et al.,2009).
帕米爾弧形構(gòu)造帶東北緣的喀什凹陷是否存在晚新生代以來整體逆時(shí)針旋轉(zhuǎn)直接影響西構(gòu)造結(jié)構(gòu)造模式重建.本文以古地磁方法為主要手段,選擇喀什凹陷南緣構(gòu)造相對簡單的英吉沙背斜上新世沉積地層為研究對象,避免了受多期構(gòu)造的疊加影響.根據(jù)獲得的可靠古地磁極,結(jié)合已有科學(xué)數(shù)據(jù)和研究成果,分析帕米爾弧形構(gòu)造帶東北緣晚新生代以來旋轉(zhuǎn)運(yùn)動方式與幅度,以討論帕米爾弧形構(gòu)造帶東北緣晚新生代以來運(yùn)動過程.
2地質(zhì)背景與樣品采集
帕米爾弧形構(gòu)造帶位于印-亞碰撞帶的西端,北以南傾的主帕米爾逆沖斷裂帶為界(Sobel et al.,2013).在早新生代,主帕米爾逆沖斷裂北向位移近300 km,調(diào)節(jié)了塔里木—塔吉克斯坦盆地基底的南向俯沖(胡建中等,2008).至中新世早期,受持續(xù)的北向擠壓,主帕米爾斷裂逆沖帶抵達(dá)天山,與天山發(fā)生碰撞(Yang et al.,2015),此時(shí)塔里木盆地由內(nèi)海逐漸演化為獨(dú)立的盆地(Wei et al.,2013).上新世時(shí),帕米爾周緣斷裂逆沖帶發(fā)生強(qiáng)烈的逆沖,對已形成的盆地結(jié)構(gòu)產(chǎn)生了重要的改造(Wei et al.,2013),形成了許多斷裂帶、褶皺帶以及由它們分割而形成的地塊等復(fù)雜的地質(zhì)構(gòu)造.
帕米爾東北緣是塔里木盆地西部兩大沉積中心之一——喀什凹陷,該凹陷西南以北帕米爾逆沖斷裂為界,北部以南天山逆沖斷裂為界,向東通常被認(rèn)
圖1 研究區(qū)域遙感影像及構(gòu)造簡圖TFF,塔拉斯—費(fèi)爾干納斷裂; STSTF,南天山南緣逆沖斷裂帶; NPTF,帕米爾北緣主斷裂; KYTS,喀什—葉城右旋走滑斷裂系統(tǒng); YDMF,羊大曼斷裂; SLBYF,色力布亞斷裂; KRKMF,喀喇昆侖斷裂; TKLKF,鐵克里克逆沖斷裂; KXWF,康西瓦斷裂.①孫知明等,2013;②Huang et al.,2009;③本文數(shù)據(jù);④Li et al.,2013;⑤Dupont-Nivet et al.,2002.Fig.1 Topographic and simplified tectonic map of study area and surrounding regionTFF,Talas Fergana Fault; STSTF,South Tian Shan Thrust Fault; NPTF,North Pamir Thrust Fault; KYTS,Kashi-Yecheng Transfer System; YDMF,Yangdaman Fault; SLBYF,Serikbuya Fault; KRKMF,Karakorum Fault; TKLKF,Tiklik Fault; KXWF,Kengxiwar Fault. ①Sun et al.,2013;②Huang et al.,2009;③this paper;④Li et al.,2013;⑤Dupont-Nivet et al.,2002.
為以羊大曼斷裂為界同麥蓋提斜坡相拆離(Huang et al.,2009;Wei et al.,2013)(圖1).喀什凹陷南部和北部分別發(fā)育西昆侖北緣褶皺沖斷帶和南天山南緣褶皺沖斷帶,它們具有不同的構(gòu)造特征.南天山南緣褶皺沖斷帶南北分帶,東西分段,東段變形一般強(qiáng)于西段,同時(shí)還受到塔拉斯—費(fèi)爾干納斷裂的影響(羅金海等,2004;李江海等,2007).受帕米爾構(gòu)造結(jié)大幅度北向推移、旋轉(zhuǎn)的影響,西昆侖北緣褶斷帶及其周緣呈弧形展布,造山帶的持續(xù)擠壓使前陸沖斷帶在前陸盆地的基底隆起與凹陷區(qū)深淺部構(gòu)造的變形樣式、格局和位移量等方面產(chǎn)生差異(曲國勝等,2005),造成此地區(qū)呈現(xiàn)出明顯的構(gòu)造分段性(曲國勝等,2005;胡建中等,2008;程曉敢等,2012).不同學(xué)者對其構(gòu)造分段的劃分略有不同,根據(jù)構(gòu)造變形特點(diǎn)、構(gòu)造樣式差異,可將塔西南山前沖斷帶分為蘇蓋特—英吉沙—阿克陶構(gòu)造單元等多個(gè)構(gòu)造帶(李康,2014).
本文選擇在英吉沙背斜(圖2)進(jìn)行古地磁的樣品采集.背斜位于喀什凹陷的南部,屬西昆侖山前沖斷帶蘇蓋特—英吉沙—阿克陶構(gòu)造帶(胡建中等,2008;程曉敢等,2012;李康,2014).其背斜寬緩,東西長約60~70 km,南北寬約5~8 km,呈NWW—SEE走向.背斜核部出露阿圖什組,雖然具體頂?shù)啄挲g不同剖面存在不一致,但整體屬于上新統(tǒng)(陳杰等,2000;Chen et al.,2002;鄭洪波等,2002),在背斜南北兩翼,阿圖什組地層與第四系之間呈不整合接觸.采樣剖面為阿圖什組(圖3a),露頭出露良好,巖性多為紅褐色、灰色、灰褐色粉砂巖(圖3b、3c)并夾有中厚層砂礫巖(圖3d).用便攜式手提鉆機(jī)共采集11個(gè)采點(diǎn)111塊樣品,然后在室內(nèi)加工成標(biāo)準(zhǔn)古地磁樣品.
圖2 英吉沙背斜地質(zhì)簡圖(據(jù)Fu et al.,2010)Fig.2 Simplified geologic map of Yengisar anticline (modified after Fu et al.,2010)
圖3 野外采樣照片(a) 遠(yuǎn)觀英吉沙背斜出露的上新世阿圖什組; (b)(c) 采樣剖面,巖性為灰色、灰褐色泥巖、粉砂巖; (d) 阿圖什組中夾有的中厚層砂礫巖.Fig.3 Photos in study area (a) Artux Formation in Yengisar anticline; (b)(c) Sections of sampling sites, gray-brown, gray mudstone/siltstone; (d) Thin- to medium-bedded sandstone interlayered with mudstone/siltstone, Artux Formation.
3測試與分析
古地磁樣品的系統(tǒng)剩磁測試均在國土資源部古地磁與古構(gòu)造重建重點(diǎn)實(shí)驗(yàn)室2G-755R超導(dǎo)磁力儀上進(jìn)行,樣品的系統(tǒng)熱退磁處理是利用美制TD-48大型熱退磁爐完成,控溫精度達(dá)到±1 ℃.樣品的熱退磁處理和剩磁測試均在磁屏蔽空間中進(jìn)行,以避免地磁場及外界環(huán)境磁場(例如附近大型電力等設(shè)備、管道等)對樣品測試數(shù)據(jù)的影響.所有的樣品均經(jīng)過了系統(tǒng)熱退磁處理,從室溫至680 ℃經(jīng)過12~16步,低溫間隔為60 ℃或80 ℃,高溫間隔為15 ℃.樣品的剩磁分量首先利用主向量法(Kirschvink, 1980)求得每個(gè)樣品的特征剩磁分量,然后以采樣點(diǎn)為單位進(jìn)行Fisher統(tǒng)計(jì)分析(Fisher,1953),數(shù)據(jù)處理采用Enkin(1994)提供的古地磁分析軟件,相關(guān)古地磁數(shù)據(jù)分析與成圖利用了PaleoMac6.2軟件(Cogné,2003).
退磁結(jié)果表明,大部分樣品具有單一分量的特征.圖4給出了代表樣品的系統(tǒng)熱退磁矢量正交投影圖、衰減曲線及相應(yīng)的等面積投影圖.由圖可以看出樣品的解阻溫度在680 ℃左右,表明其載磁礦物均為赤鐵礦.
最后,獲得了10個(gè)采點(diǎn)的較可靠的古地磁特征方向(圖5、表1),其中8個(gè)負(fù)極性2個(gè)正極性方向,并通過了C級倒轉(zhuǎn)檢驗(yàn).采點(diǎn)YJ5由于樣品加工過程出現(xiàn)問題導(dǎo)致樣品不夠規(guī)則放棄測試.采樣點(diǎn)雖然分布于褶皺兩翼,由于地層產(chǎn)狀較緩,不能滿足開展褶皺檢驗(yàn)的條件.這一特征剩磁分量很可能代表了英吉沙地區(qū)上新世沉積巖原生特征剩磁方向.其結(jié)果為Dg=342.4°,Ig=59.2°,κg=32.3,α95=8.6°;Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相對應(yīng)的古地磁極位置為:79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.
圖4 代表樣品系統(tǒng)熱退磁的天然剩磁強(qiáng)度Z 矢量圖(a)、衰減曲線(b)及等面積投影圖(c)Fig.4 Zijderveld vector diagrams (a), decay curve (b) and Equal-area plots (c) for representative specimens of thermal demagnetizations of NRM
采點(diǎn)號坐標(biāo)緯度經(jīng)度地層產(chǎn)狀n/NDg(°)Ig(°)Ds(°)Is(°)κg/κsα95g/α95s(°)YJ138°52'59.80″N76°18'3.10″E166°∠9°10/10168.0-47.7160.0-55.518.611.5YJ238°53'0.70″N76°18'2.60″E177°∠11°7/10179.7-50.8173.2-59.849.68.7YJ338°53'1.90″N76°18'2.60″E177°∠11°8/8175.9-43.8170.3-52.518.713.1YJ438°53'4.20″N76°17'59.60″E203°∠10°9/10171.9-48.1164.5-56.324.210.7YJ538°50'36.40″N76°24'52.10″E25°∠17°0/0YJ638°50'32.90″N76°25'6.80″E30°∠16°7/10142.5-54.6159.3-46.319.014.2YJ738°50'49.70″N76°25'9.60″E18°∠23°8/9338.672.0359.651.4402.82.8YJ838°50'49.70″N76°25'9.60″E25°∠24°9/11332.564.1355.345.544.07.8YJ938°51'8.80″N76°25'5.20″E24°∠31°9/10154.5-69.5182.5-43.344.87.8YJ1038°51'8.80″N76°25'5.20″E24°∠31°8/10110.4-75.7177.1-57.017.113.9YJ1138°53'48.60″N76°21'52.00″E25°∠33°8/9159.9-56.1178.2-28.827.710.7平均342.459.2352.449.932.38.659.16.3
注:表中n為可獲得穩(wěn)定剩磁的樣品數(shù),N為測量樣品數(shù);Dg/Ds為地層校正前/后的磁偏角;Ig/Is為地層校正前/后的磁傾角;κg/κs為地層校正前/后的平均方向的精度參數(shù);α95g/α95s為地層校正前/后平均方向的95%置信圓錐半頂角.
圖5 英吉沙地區(qū)上新世沉積巖特征剩磁分量赤平投影圖(五角星代表樣品平均方向的位置;實(shí)心圓、空心圓分別代表上、下球面投影)Fig.5 Equal-area stereographic projection of high temperature component from the Yengisar in geographic (left) and stratigraphic (right) coordinates. Lower (upper) hemisphere directions are marked with closed (open) symbols
4討論與結(jié)論
4.1帕米爾東北緣構(gòu)造旋轉(zhuǎn)分析
本文獲得了英吉沙地區(qū)上新世可靠的古地磁結(jié)果,為進(jìn)一步研究帕米爾東北緣運(yùn)動形式與過程,根據(jù)研究區(qū)域及鄰區(qū)晚新生代已有古地磁結(jié)果(表2),分析各個(gè)剖面結(jié)果代表的構(gòu)造旋轉(zhuǎn)特征(圖6).顯然,本文的結(jié)果同前人(Huang et al.,2009;孫知明等,2013)在喀什凹陷的北部(烏恰、喀什、阿圖什等地)所獲得的新近紀(jì)古地磁結(jié)果比較一致,相對于歐亞大陸皆表現(xiàn)為明顯的逆時(shí)針旋轉(zhuǎn),說明帕米爾東北緣存在顯著的逆時(shí)針旋轉(zhuǎn)運(yùn)動.
這種旋轉(zhuǎn)是局部的構(gòu)造旋轉(zhuǎn)還是盆地規(guī)模的區(qū)域性系統(tǒng)的旋轉(zhuǎn)?為此,我們參照了來自新生代帕米爾和塔里木盆地內(nèi)部相對較老一些地層的古地磁結(jié)果.結(jié)果顯示該地區(qū)齊姆根剖面時(shí)代較為老的古地磁極未發(fā)生明顯的旋轉(zhuǎn)(Li et al.,2013),齊姆根剖面位于葉城凹陷和喀什凹陷之間的齊姆根構(gòu)造結(jié),晚新生代以來構(gòu)造活動強(qiáng)烈(李康,2014),即使沒有受到重磁化的影響(Bosboom et al.,2014),也難以將其數(shù)據(jù)作為整個(gè)盆地運(yùn)動模式的有力證據(jù).再同塔里木盆地內(nèi)部的數(shù)據(jù)相比較,Dupont-Nivet等(2002)在麻扎塔格地區(qū)得到了明顯的順時(shí)針旋轉(zhuǎn)的結(jié)果,并將其歸因于局部的旋轉(zhuǎn)(Dupont-Nivet et al.,2002).本文認(rèn)為,喀什凹陷的逆時(shí)針旋轉(zhuǎn)沒有延伸到塔里木盆地內(nèi)部,只在帕米爾東北緣存在.
4.2構(gòu)造意義
4.2.1帕米爾東北緣運(yùn)動特征
作為塔里木盆地的二級構(gòu)造單元(王步清等,2009),喀什凹陷北緣屬于南天山南緣逆沖斷裂帶,西南緣為喀什葉城走滑斷裂系統(tǒng).其東緣以大型隱伏右旋走滑羊大曼斷裂為界,并同麥蓋提斜坡相拆離(Huang et al.,2009;Wei et al.,2013).前人的古地磁結(jié)果認(rèn)為喀什凹陷北緣經(jīng)歷了明顯的逆時(shí)針旋轉(zhuǎn)運(yùn)動(Huang et al.,2009;孫知明等,2013),孫知明等(2013)認(rèn)為可能與塔拉斯—費(fèi)爾干納斷裂新生代以來的右旋走滑作用有關(guān),Huang等(2009)則強(qiáng)調(diào)這種現(xiàn)象是整個(gè)凹陷自晚上新世以來發(fā)生了剛性的逆時(shí)針旋轉(zhuǎn)的結(jié)果.
本文研究區(qū)域位于喀什凹陷的南部,而一般認(rèn)為塔拉斯—費(fèi)爾干納斷裂南向延伸終止于南天山南緣褶皺沖斷帶(羅金海等,2004;李江海等,2007),并未對凹陷南部屬于西昆侖北緣褶皺斷裂帶的英吉沙地區(qū)產(chǎn)生影響,故英吉沙地區(qū)的逆時(shí)針旋轉(zhuǎn)用喀什凹陷整體旋轉(zhuǎn)的模型解釋更為合理.現(xiàn)代GPS觀測結(jié)果也顯示(Gan et al.,2007;Zubovich et al.,2010),整個(gè)塔里木盆地的西緣表現(xiàn)出比較一致的北北西向的物質(zhì)運(yùn)移,從現(xiàn)代地殼變形的角度支持發(fā)生逆時(shí)針旋轉(zhuǎn)的趨勢,這與本文認(rèn)為的上新世以來該區(qū)經(jīng)歷逆時(shí)針旋轉(zhuǎn)運(yùn)動是一致的.
表2 英吉沙及鄰區(qū)古地磁結(jié)果
圖6 塔里木盆地晚新生代古地磁極等面積投影圖Fig.6 Equal-area stereographic projections of the Late Cenozoic paleomagnetic pole in Tarim Basin
4.2.2羊大曼斷裂的右旋走滑
喀什凹陷東緣以羊大曼斷裂為界,同麥蓋提斜坡相拆離(Huang et al.,2009;Wei et al.,2013).因?yàn)檠虼舐鼣嗔褳橐浑[伏大型右旋走滑斷裂,對其斷裂特征的研究主要局限于地震剖面的解譯,其規(guī)模、性質(zhì)、活動時(shí)間等特征爭議較大(肖安成等,1995;胡望水等,1997;Wei et al.,2013;李康,2014).肖安成等(1995)認(rèn)為羊大曼斷裂北起喀什羊大曼鄉(xiāng),呈SSE走向延伸大約40~50 km,具有兩期活動特征,早期為壓扭性,代表著印支期和喜馬拉雅早期的變形特征,形成正花狀構(gòu)造;晚期為張扭性,為喜馬拉雅晚期的變形特征,形成負(fù)花狀構(gòu)造.胡望水等(1997)認(rèn)為羊大曼斷裂是喜馬拉雅運(yùn)動末期張扭性應(yīng)力場的產(chǎn)物.Wei等(2013)研究表明羊大曼斷裂向南延伸至莎車境內(nèi),故又被稱為莎車—羊大曼斷裂,根據(jù)斷裂兩側(cè)的阿圖什組地層沒有表現(xiàn)出明顯的厚度變化,認(rèn)為在上新世時(shí)可能已經(jīng)停止走滑活動.
在該研究區(qū)域,5 Ma左右北帕米爾同南天山實(shí)現(xiàn)了硬對接和完全碰撞(李康,2014),使得喀什葉城右旋走滑系統(tǒng)(KYTS)北端受限制,沿著盆山邊界的走滑作用減弱(Sobel et al.,2011),變形開始楔入現(xiàn)今盆地的內(nèi)部并表現(xiàn)出強(qiáng)烈的壓扭性特點(diǎn),致使帕米爾東北緣喀什凹陷物質(zhì)北北西向運(yùn)動,同時(shí)英吉沙背斜逐漸形成.
本文所得古地磁數(shù)據(jù)結(jié)合前人結(jié)果表明羊大曼斷裂伴隨著喀什凹陷的整體北北西向運(yùn)動,在上新世之后經(jīng)歷了右行走滑活動.此結(jié)果同最近野外地質(zhì)地貌調(diào)查(Fu et al.,2010;李康,2014)、DEM影像分析、地震剖面的解譯(李康,2014)所得結(jié)論較為一致.根據(jù)生長地層(劉勝等,2004;李康,2014)、磁性地層(陳杰等,2000;Chen et al.,2002;鄭洪波等,2002)的年齡以及背斜帶同斷裂帶斜交的地貌特征進(jìn)行判斷,英吉沙背斜的形成與羊大曼斷裂的走滑作用是在西域組沉積時(shí)期即早更新世同時(shí)啟動的.
4.2.3帕米爾東北緣中—上新世的構(gòu)造體制轉(zhuǎn)折
帕米爾構(gòu)造結(jié)地質(zhì)演化的運(yùn)動學(xué)模型經(jīng)過了幾十年的研究(陳漢林等,2014),由最初的走滑模型(Peltzer and Tapponnier,1988)發(fā)展為徑向逆沖模型(Thomas et al.,1994)、馬蹄形彎曲模型(Yin et al.,2001),后Cowgill(2010)提的走滑與徑向的結(jié)合模型.因?yàn)閰^(qū)域規(guī)模廣,地質(zhì)演化復(fù)雜,無論哪種模型都不能較好地將此區(qū)域的空間演化和時(shí)間演化特征統(tǒng)一起來.帕米爾構(gòu)造結(jié)西側(cè)長期以來顯著的逆時(shí)針旋轉(zhuǎn)運(yùn)動是帕米爾弧形構(gòu)造帶北向發(fā)展過程中形成的系列逆沖構(gòu)造變形結(jié)果(Sobel et al.,2013),東側(cè)旋轉(zhuǎn)運(yùn)動則不同,不同時(shí)期、不同區(qū)域存在不同方向不同幅度的旋轉(zhuǎn)運(yùn)動.帕米爾弧形構(gòu)造帶東西兩側(cè)發(fā)育的不同性質(zhì)的斷裂系統(tǒng)導(dǎo)致了兩側(cè)不同的旋轉(zhuǎn)特征.
最近Bosboom等(2014)結(jié)合古地磁學(xué)證據(jù),將帕米爾東西兩翼分別討論,并以早中新世為時(shí)間節(jié)點(diǎn)分階段進(jìn)行闡述,一定程度上彌補(bǔ)了前人提出的模型的缺陷,但也無法解釋帕米爾東緣KYTS在5—3 Ma活動減弱或已停止的現(xiàn)象(Sobel et al.,2011).本文的數(shù)據(jù)對Bosboom等(2014)所提出的最新模型進(jìn)行了制約和完善,不支持中新世以來帕米爾東緣一直經(jīng)歷右旋走滑的結(jié)論,而是認(rèn)為中—上新世界限附近發(fā)生了構(gòu)造體制的轉(zhuǎn)折(Thompson et al.,2015).
結(jié)合喀什凹陷北部地區(qū)已有數(shù)據(jù),認(rèn)為塔里木盆地西緣上新世時(shí)經(jīng)歷了外圍造山帶的強(qiáng)烈逆沖(Wei et al.,2013), 喀什凹陷在上新世之后整體發(fā)生了逆時(shí)針旋轉(zhuǎn)運(yùn)動.英吉沙背斜的形成,羊大曼斷裂的走滑作用,帕米爾東北緣的逆時(shí)針旋轉(zhuǎn),是帕米爾弧形構(gòu)造帶東緣構(gòu)造演化體制轉(zhuǎn)折的地質(zhì)過程記錄.
致謝感謝審稿人與編輯提出的建設(shè)性意見,使得文章結(jié)構(gòu)與討論得以完善.
References
Besse J, Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr.JournalofGeophysicalResearch:SolidEarth(1978—2012), 107(B11): EPM 6-1-EPM 6-31.
Bosboom R, Dupont-Nivet G, Huang W T, et al. 2014. Oligocene clockwise rotations along the eastern Pamir: Tectonic and paleogeographic implications.Tectonics, 33(2): 53-66.
Chen H L, Zhang F F, Cheng X G, et al. 2010. The deformation features and basin-range coupling structure in the northeastern Pamir tectonic belt.ChineseJournalofGeology(in Chinese), 45(1): 102-112.
Chen H L, Chen S Q, Lin X B. 2014. A review of the Cenozoic Tectonic evolution of Pamir syntax.AdvancesinEarthScience(in Chinese), 29(8): 890-902.
Chen J, Yin J H, Qu G S, et al. 2000. Timing, lower boundary, genesis, and deformation of Xiyu formation around the western margins of the Tarim basin.SeismologyandGeology(in Chinese), 22(S1): 104-116. Chen J, Burbank D W, Scharer K M, et al. 2002. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting.EarthandPlanetaryScienceLetters, 195(1-2): 113-130.
Chen J, Li T, Li W Q, et al. 2011. Late Cenozoic and present tectonic deformation in the pamir salient, northwestern China.SeismologyandGeology(in Chinese), 33(2): 241-259. Chen Y, Cogné J P, Courtillot V. 1992. New Cretaceous paleomagnetic poles from the Tarim Basin, northwestern China.EarthandPlanetaryScienceLetters, 114(1): 17-38.Cheng X G, Huang Z B, Chen H L, et al. 2012. Fault characteristics and division of tectonic units of the thrust belt in the front of the West Kunlun Mountains.ActaPetrologicaSinica(in Chinese), 28(8): 2591-2601.
Cogné J P. 2003. PaleoMac: a MacintoshTMapplication for treating paleomagnetic data and making plate reconstructions.Geochemistry,Geophysics,Geosystems, 4(1),doi:10.1029/2001GC000227. Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China.GeologicalSocietyofAmericaBulletin, 122(1-2): 145-161.
Dupont-Nivet G, Guo Z, Butler R F, et al. 2002. Discordant paleomagnetic direction in Miocene rocks from the central Tarim Basin: evidence for local deformation and inclination shallowing.EarthandPlanetaryScienceLetters, 199(3-4): 473-482.
Enkin R. 1994. A computer program package for analysis and presentation of paleomagnetic data. Sidney: Pacific Geoscience Centre, Geological Survey of Canada, 16.
Fisher R. 1953. Dispersion on a sphere.ProceedingsoftheRoyalSocietyofLondon.SeriesA:MathematicalandPhysicalSciences, 217(1130): 295-305. Fu B H, Ninomiya Y, Guo J M. 2010. Slip partitioning in the northeast Pamir-Tian Shan convergence zone.Tectonophysics, 483(3-4): 344-364.
Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.JournalofGeophysicalResearch:SolidEarth(1978—2012), 112(B8): B08416.
Gilder S, Zhao X X, Coe R, et al. 1996. Paleomagnetism and tectonics of the southern Tarim basin, northwestern China.JournalofGeophysicalResearch:SolidEarth(1978—2012), 101(B10): 22015-22031.
He J K, Lu S J, Wang W M. 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions.Tectonophysics, 584: 257-266.
Hu J Z, Tan Y J, Zhang P, et al. 2008. Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim basin.EarthScienceFrontiers(in Chinese), 15(2): 222-231.
Hu W S, Chen Y S, Xiao A C, et al. 1997. Structural features of major fault zones in the southwest depression in Tarim basin and their control on oil accumulation.XinjiangPetroleumGeology(in Chinese), 18(3): 201-207.
Huang B C, Piper J D A, Zhu R X. 2009. Paleomagnetic constraints on neotectonic deformation in the Kashi depression of the western Tarim Basin, NW China.InternationalJournalofEarthSciences, 98(6): 1469-1488.
Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data.Geophys.J.Int., 62(3): 699-718. Lei J S, Zhou H L, Zhao P D, et al. 2002. 3-D velocity structure of p-wave in the crust and upper-mantle beneath pamir and adjacent region.ChineseJ.Geophys. (in Chinese), 45(6): 802-811. Li K. 2014. Late Cenozoic tectonic and sedimentary evolution of the NE Pamir [Ph. D. thesis] (in Chinese). Hangzhou: University of Zhejiang.
Li J H, Cai Z Z, Luo C S, et al. 2007. The structural transfer at the southern end of talas-ferghana fault and its regional tectonic response in the Cenozoic.ActaGeologicaSinica(in Chinese), 81(1): 23-31.
Li Z Y, Ding L, Lippert P C, et al. 2013. Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir plateau from the Western Kunlun Shan foreland.Tectonophysics, 603: 257-271.
Liu S, Wang X, Wu X Q, et al. 2004. Growth strata and the deformation time of the late Cenozoic along front belts of Pamir-western Kunlun-southwest Tianshan in China.ActaPetroleiSinica(in Chinese), 25(5): 24-28.
Luo J H, Zhou X Y, Qiu B, et al. 2004. Controls of talas-ferghana fault on Kashi sag, Northwestern Tarim Basin.XinjiangPetroleumGeology(in Chinese), 25(6): 584-587. Pei J L, Sun Z M, Li H B, et al. 2008. Paleocurrent direction of the Late Cenozoic sedimentary sequence of the Tibetan Plateau northwestern margin constrained by AMS and its tectonic implications.ActaPetrologicaSinica(in Chinese), 24(7): 1613-1620.
Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach.JournalofGeophysicalResearch:SolidEarth(1978—2012), 93(B12): 15085-15117.Qu G S, Li Y G, Li Y F, et al. 2005. Tectonic segmentation and its origin of southwestern Tarim foreland basin.ScienceinChina(SeriesD) (in Chinese), 35(3): 193-202.
Rumelhart P E, Yin A, Cowgill E, et al. 1999. Cenozoic vertical-axis rotation of the Altyn Tagh fault system.Geology, 27(9): 819-822.
Sobel E R, Schoenbohm L M, Chen J, et al. 2011. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis.EarthandPlanetaryScienceLetters, 304(3-4): 369-378.
Sobel E R, Chen J, Schoenbohm L M, et al. 2013. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen.EarthandPlanetaryScienceLetters, 363: 204-218.
Sun Z M, Li H B, Pei J L, et al. 2013. Paleomagnetic study of Cenozoic sediments from western Kunlun-Pamir and its tectonic implications.ActaPetrologicaSinica(in Chinese), 29(9): 3183-3191.
Tang M S, Zheng Y, Ge C, et al. 2014. Study on crustal structure in the northeastern Pamir region by P receiver functions.ChineseJ.Geophys. ( in Chinese), 57(10): 3176-3188, doi: 10.6038/cjg20141007.
Thomas J C, Chauvin A, Gapais D, et al. 1994. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia).JournalofGeophysicalResearch, 99(B8): 15141-15160.
Thompson J A, Burbank D W, Li T, et al. 2015. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China.Tectonics, 34(3): 510-534.
Wang B Q, Huang Z B, Ma P L, et al. 2009. Establishment of division standard, evidence and principle of structural units in Tarim Basin.GeotectonicaetMetallogenia(in Chinese), 33(1): 86-93.
Wei H H, Meng Q R, Ding L, et al. 2013. Tertiary evolution of the western Tarim basin, northwest China: A tectono-sedimentary response to northward indentation of the Pamir salient.Tectonics, 32(3): 558-575. Xiao A C, Chen Y S, Hu W S, et al. 1995. Structural type of southwest depression, Tarim basin.XinjiangPetroleumGeology(in Chinese), 16(2): 102-108.
Xu Y, Liu J H, Liu F T, et al. 2006. Crustal velocity structure and seismic activity in the Tianshan-Pamir conjunctive zone.ChineseJ.Geophys. (in Chinese), 49(2): 469-476.Yang W, Dupont-Nivet G, Jolivet M, et al. 2015. Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision.Tectonophysics, 644-645: 122-137. Yin A, Robinson A C, Manning C E. 2001. Oroclinal bending and slab-break-off causing coeval east-west extension and east-west contraction in the Pamir-Nanga Parbat syntaxis in the past 10 m.y.∥ AGU Fall Meeting Abstracts. AGU.
Zhang X K, Zhao J R, Zhang C K, et al. 2002. Crustal structure at the northeast side of the Pamirs.ChineseJ.Geophys. (in Chinese), 45(5): 665-671. Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau.Geology, 28(8): 715-718.
Zheng H B, Chen H Z, Jin H L, et al. 2002. Magnetostratigraphic evidence for the Pliocene-early Pleistocene uplift of the northern Tibetan plateau.MarineGeology&QuaternaryGeology(in Chinese), 22(2): 57-62.
Zubovich A V, Wang X Q, Scherba Y G, et al. 2010. GPS velocity field for the Tien Shan and surrounding regions.Tectonics, 29(6),doi: 10.1029/2010TC002772.
附中文參考文獻(xiàn)
陳漢林, 張芬芬, 程曉敢等. 2010. 帕米爾東北緣地區(qū)構(gòu)造變形特征與盆山結(jié)構(gòu). 地質(zhì)科學(xué), 45(1): 102-112.
陳漢林, 陳沈強(qiáng), 林秀斌. 2014. 帕米爾弧形構(gòu)造帶新生代構(gòu)造演化研究進(jìn)展. 地球科學(xué)進(jìn)展, 29(8): 890-902.
陳杰, 尹金輝, 曲國勝等. 2000. 塔里木盆地西緣西域組的底界、時(shí)代、成因與變形過程的初步研究. 地震地質(zhì), 22(S1): 104-116.
陳杰, 李濤, 李文巧等. 2011. 帕米爾構(gòu)造結(jié)及鄰區(qū)的晚新生代構(gòu)造與現(xiàn)今變形. 地震地質(zhì), 33(2): 241-259.
程曉敢, 黃智斌, 陳漢林等. 2012. 西昆侖山前沖斷帶斷裂特征及構(gòu)造單元?jiǎng)澐? 巖石學(xué)報(bào), 28(8): 2591-2601.
胡建中, 譚應(yīng)佳, 張平等. 2008. 塔里木盆地西南緣山前帶逆沖推覆構(gòu)造特征. 地學(xué)前緣, 15(2): 222-231.
胡望水, 陳毓遂, 肖安成等. 1997. 塔西南坳陷主要斷裂帶構(gòu)造特征及其控油作用. 新疆石油地質(zhì), 18(3): 201-207.
雷建設(shè), 周蕙蘭, 趙大鵬. 2002. 帕米爾及鄰區(qū)地殼上地幔P波三維速度結(jié)構(gòu)的研究. 地球物理學(xué)報(bào), 45(6): 802-811.
李康. 2014. 帕米爾東北緣晚新生代構(gòu)造與沉積演化[博士論文]. 杭州: 浙江大學(xué).
李江海, 蔡振忠, 羅春樹等. 2007. 塔拉斯—費(fèi)爾干納斷裂帶南端構(gòu)造轉(zhuǎn)換及其新生代區(qū)域構(gòu)造響應(yīng). 地質(zhì)學(xué)報(bào), 81(1): 23-31.
劉勝, 汪新, 伍秀芳等. 2004. 塔西南山前晚新生代構(gòu)造生長地層與變形時(shí)代. 石油學(xué)報(bào), 25(5): 24-28.
羅金海, 周新源, 邱斌等. 2004. 塔拉斯—費(fèi)爾干納斷裂對喀什凹陷的控制作用. 新疆石油地質(zhì), 25(6): 584-587.
裴軍令, 孫知明, 李海兵等. 2008. 青藏高原西北緣晚新生代沉積巖古流向的磁化率各向異性確定及其構(gòu)造意義. 巖石學(xué)報(bào), 24(7): 1613-1620.
曲國勝, 李亦綱, 李巖峰等. 2005. 塔里木盆地西南前陸構(gòu)造分段及其成因. 中國科學(xué)(D輯: 地球科學(xué)), 35(3): 193-202.
孫知明, 李海兵, 裴軍令等. 2013. 帕米爾—西昆侖地區(qū)新生代古地磁結(jié)果及其構(gòu)造意義. 巖石學(xué)報(bào), 29(9): 3183-3191.
唐明帥, 鄭勇, 葛粲等. 2014. 帕米爾東北緣地殼結(jié)構(gòu)的P波接收函數(shù)研究. 地球物理學(xué)報(bào), 57(10): 3176-3188, doi: 10.6038/cjg20141007.
王步清, 黃智斌, 馬培領(lǐng)等. 2009. 塔里木盆地構(gòu)造單元?jiǎng)澐謽?biāo)準(zhǔn)、依據(jù)和原則的建立. 大地構(gòu)造與成礦學(xué), 33(1): 86-93.
肖安成, 陳毓遂, 胡望水等. 1995. 塔里木盆地西南坳陷的構(gòu)造類型. 新疆石油地質(zhì), 16(2): 102-108.
胥頤, 劉建華, 劉福田等. 2006. 天山—帕米爾結(jié)合帶的地殼速度結(jié)構(gòu)及地震活動研究. 地球物理學(xué)報(bào), 49(2): 469-476.
張先康, 趙金仁, 張成科等. 2002. 帕米爾東北側(cè)地殼結(jié)構(gòu)研究. 地球物理學(xué)報(bào), 45(5): 665-671.
鄭洪波, 陳惠忠, 靳鶴齡等. 2002. 上新世—早更新世青藏高原北緣隆升的磁性地層學(xué)證據(jù). 海洋地質(zhì)與第四紀(jì)地質(zhì), 22(2): 57-62.
(本文編輯何燕)
基金項(xiàng)目國家自然科學(xué)基金面上項(xiàng)目(41172177)資助.
作者簡介周在征,男,1989年生,碩士研究生,構(gòu)造地質(zhì)學(xué)專業(yè). E-mail:zzzheng8023@gmail.com *通訊作者裴軍令,男,副研究員,主要從事區(qū)域構(gòu)造地質(zhì)與古地磁學(xué)研究工作. E-mail:peijunling@yeah.net
doi:10.6038/cjg20160220 中圖分類號P318,P542
收稿日期2015-05-04,2015-08-11收修定稿
New evidence for rotation of Northeastern Pamir since Late Cenozoic
ZHOU Zai-Zheng1,2,3,PEI Jun-Ling1,2*,LI Jian-Feng1,LIU Feng1,SHENG Mei1,2,ZHAO Yue1
1InstituteofGeomechanics,ChineseAcademyofGeologicalSciences,Beijing100081,China2KeyLaboratoryofPaleomagnetismandTectonicReconstructionofMinistryofLandandResources,Beijing100081,China3SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences(Beijing),Beijing100083,China
AbstractThe Pamir-western Himalayan syntaxis lies at the western end of the India-Asia collision zone and is bounded by the Main Pamir Thrust to the north, and the Main Boundary Thrust and Main Frontal Thrust to the south. To facilitate the study on the deformation history of the northeastern Pamir in response to the India-Asia collision, paleomagnetic samples were collected from 11 sites in the Pliocene sedimentary rock adjacent to the western Kunlun mountains. A stable magnetic component was isolated by stepwise thermal demagnetization of 111 samples from this section, which is characterized by a positive C-class reversal test. The mean direction of residual magnetism is Dg=342.4°, Ig=59.2°, κg=32.3,α95=8.6°; Ds=352.4°, Is=49.9°, κs=59.1,α95=6.3°,corresponding to a paleopole at λp=79.7°N, φp=295.9°E, dp=5.6°, dm=8.4°, α95=6.9°.
周在征, 裴軍令, 李建鋒等. 2016. 帕米爾東北緣晚新生代旋轉(zhuǎn)運(yùn)動新證據(jù).地球物理學(xué)報(bào),59(2):633-642,doi:10.6038/cjg20160220.
Zhou Z Z, Pei J L, Li J F, et al. 2016. New evidence for rotation of Northeastern Pamir since Late Cenozoic.ChineseJ.Geophys. (in Chinese),59(2):633-642,doi:10.6038/cjg20160220.