• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      維納過程單變點(diǎn)模型的貝葉斯參數(shù)估計(jì)

      2016-08-05 07:45:12何朝兵

      何朝兵

      (安陽師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,中國 安陽 455000)

      ?

      維納過程單變點(diǎn)模型的貝葉斯參數(shù)估計(jì)

      何朝兵

      (安陽師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,中國 安陽455000)

      摘要通過引入潛在變量,利用正態(tài)分布的重要性質(zhì)得到了維納過程單變點(diǎn)模型比較簡單的似然函數(shù).結(jié)合Metropolis-Hastings算法對參數(shù)進(jìn)行Gibbs抽樣,基于Gibbs樣本對參數(shù)進(jìn)行估計(jì).隨機(jī)模擬的結(jié)果表明估計(jì)的精度較高.

      關(guān)鍵詞潛在變量;可加性;滿條件分布;Gibbs抽樣;Metropolis-Hastings算法

      變點(diǎn)問題成為近年來比較熱的研究方向,它在經(jīng)濟(jì)、質(zhì)量控制和醫(yī)學(xué)等領(lǐng)域應(yīng)用廣泛[1-5].變點(diǎn)分析方法主要有非參數(shù)方法、最小二乘法和貝葉斯方法等.而隨著統(tǒng)計(jì)計(jì)算技術(shù)的發(fā)展,貝葉斯變點(diǎn)分析方法越來越受到人們的歡迎,而復(fù)雜性的計(jì)算是貝葉斯方法的難點(diǎn).貝葉斯計(jì)算方法中的Markov chain Monte Carlo (MCMC) 方法是最近發(fā)展起來的一種簡單有效的計(jì)算方法.MCMC方法中的Gibbs抽樣和Metropolis-Hastings算法使變點(diǎn)分析變得非常方便[6-9].Gibbs抽樣可以簡化變點(diǎn)問題,例如,未知參數(shù)的滿條件分布可轉(zhuǎn)化為無變點(diǎn)的后驗(yàn)分布,變點(diǎn)的滿條件分布可轉(zhuǎn)化為分布參數(shù)已知的后驗(yàn)分布.維納過程是具有平穩(wěn)獨(dú)立增量的二階矩過程,是一種特殊的擴(kuò)散過程,它在純數(shù)學(xué)、應(yīng)用數(shù)學(xué)、經(jīng)濟(jì)學(xué)與物理學(xué)中都有重要應(yīng)用.維納過程不只是布朗運(yùn)動(dòng)的數(shù)學(xué)模型,在應(yīng)用數(shù)學(xué)中,維納過程可以描述高斯白噪聲的積分形式;在電子工程中,維納過程是建立噪音的數(shù)學(xué)模型的重要部分;控制論中,維納過程可以用來表示不可知因素.對擴(kuò)散過程變點(diǎn)模型的研究較多[10-13],雖然維納過程是特殊的擴(kuò)散過程,但對維納過程變點(diǎn)模型的研究卻較少[14-15],并且這些文獻(xiàn)都是基于隨機(jī)微分方程的求解來進(jìn)行參數(shù)估計(jì),計(jì)算比較繁瑣,但基于似然函數(shù)并且利用MCMC方法研究此模型還不多見.

      本文主要利用MCMC方法研究維納過程單變點(diǎn)模型的參數(shù)估計(jì)問題.通過添加潛在變量得到了比較簡單的似然函數(shù),結(jié)合Metropolis-Hastings算法對參數(shù)進(jìn)行Gibbs抽樣,基于Gibbs樣本對參數(shù)進(jìn)行估計(jì).隨機(jī)模擬的結(jié)果表明估計(jì)的精度較高.

      1維納過程單變點(diǎn)模型

      定義1隨機(jī)過程W(t)如果滿足:

      1)W(0)=0,具有獨(dú)立增量;

      2)對任意s,t>0,W(s+t)-W(s)服從正態(tài)分布N(0,σ2t),σ>0,則稱W(t)為以σ2為參數(shù)的維納過程.

      當(dāng)維納過程的參數(shù)σ2在某個(gè)時(shí)刻改變時(shí),有如下定義.

      定義2隨機(jī)過程W(t)如果滿足:

      1)W(0)=0,具有獨(dú)立增量,

      (1)

      在n個(gè)時(shí)刻t1

      W(ti)-W(ti-1)=zi,t0=0,i=1,2,…,n.

      假設(shè)已知在觀察時(shí)間區(qū)域(0,tn]內(nèi)有一個(gè)變點(diǎn),即0<τ

      τ∈(tm,tm+1],0≤m≤n-1,實(shí)際上m是τ的函數(shù).

      由式(1)知

      由正態(tài)分布的可加性得

      W(tm+1)-W(tm)的觀察值為zm+1.

      下面介紹概率論中一個(gè)很重要的結(jié)果,即下面的引理1.

      當(dāng)m=0時(shí),D1=?, 當(dāng)m=n-1時(shí),D2=?.記x為X的取值,添加潛在變量后的似然函數(shù)為

      2模型的貝葉斯估計(jì)

      下面給出參數(shù)的先驗(yàn)分布.

      1) 取τ的先驗(yàn)分布為均勻分布,即π(τ)∝1,0<τ

      下面介紹MCMC方法的具體步驟.

      3隨機(jī)模擬

      下面進(jìn)行隨機(jī)模擬試驗(yàn).

      表1 各參數(shù)的貝葉斯估計(jì)

      圖1 τ的Gibbs抽樣迭代               圖2 τ的兩條迭代鏈     Fig.1 Gibbs sampling iterations of τ               Fig.2 Two iterative chains of τ

      參考文獻(xiàn):

      [1]PAGE E S. Continuous inspection schemes[J]. Biometrika, 1954,41(1):100-115.

      [2]CHERNOFF H, ZACKS S. Estimating the current mean of a normal distribution which is subjected to changes in time[J]. Ann Math Stat, 1964,35(3):999-1018.

      [3]CS?RG? M, HORVTH L. Limit theorems in change-point analysis[M]. New York: Wiley, 1997.

      [4]PERREAULT L, BERNIER J, BOBéE B,etal. Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited[J]. J Hydrol, 2000,235(3):221-241.

      [5]FEARNHEAD P. Exact and efficient Bayesian inference for multiple changepoint problems[J]. Stat Comput, 2006,16(2):203-213.

      [6]LIANG F, WONG W H. Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models[J]. J Am Stat Assoc, 2001,96(454):653-666.

      [7]LAVIELLE M, LEBARBIER E. An application of MCMC methods for the multiple change-points problem[J]. Sig Pro, 2001,81(1):39-53.

      [8]KIM J, CHEON S. Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo[J]. Comput Stat, 2010,25(2):215-239.

      [9]YUAN T, KUO Y. Bayesian analysis of hazard rate, change point, and cost-optimal burn-in time for electronic devices[J]. IEEE Trans Rel, 2010,59(1):132-138.

      [10]ABBAS-TURKI L A, KARATZAS I, LI Q. Impulse control of a diffusion with a change point[J]. Stoch Int J Probab Stoch Process, 2015,87(3):382-408.

      [11]MISHRA M N, PRAKASA RAO B L S. Estimation of change point for switching fractional diffusion processes[J]. Stoch Int J Probab Stoch Process, 2014,86(3):429-449.

      [12]GAPEEV P V, SHIRYAEV A N. Bayesian quickest detection problems for some diffusion processes[J]. Adv Appl Probab, 2013,45(1):164-185.

      [13]NEGRI I, NISHIYAMA Y. Asymptotically distribution free test for parameter change in a diffusion process model[J]. Ann Inst Stat Math, 2012,64(5):911-918.

      [14]VOSTRIKOVA, L YU. Detection of a “disorder” in a Wiener process[J]. Theor Probab Appl, 1981,26(2):356-362.

      [15]HADJILIADIS O, MOUSTAKIDES V. Optimal and asymptotically optimal CUSUM rules for change point detection in the Brownian motion model with multiple alternatives[J]. Theor Probab Appl, 2006,50(1):75-85.

      (編輯HWJ)

      DOI:10.7612/j.issn.1000-2537.2016.04.014

      收稿日期:2015-11-12

      基金項(xiàng)目:國家自然科學(xué)基金(61174099); 河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(16A110001)

      *通訊作者,E-mail:chaobing5@163.com

      中圖分類號O212.8; O212.4

      文獻(xiàn)標(biāo)識碼A

      文章編號1000-2537(2016)04-0084-05

      Bayesian Parameter Estimation of Wiener Process with a Change-Point

      HEChao-bing*

      (School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China)

      AbstractBy introducing a latent variable, the simple likelihood function of Wiener process with a change-point is obtained according to the important property of the normal distribution. All the parameters are sampled by Gibbs sampler together with Metropolis-Hastings algorithm, and the parameters are estimated based on the Gibbs samples. Random simulation results show that the estimations are fairly accurate.

      Key wordslatent variable; additivity; full conditional distribution; Gibbs sampling; Metropolis-Hastings algorithm

      沙坪坝区| 宾川县| 北辰区| 长乐市| 镇远县| 张掖市| 夏津县| 凤城市| 团风县| 梨树县| 应城市| 榆中县| 芜湖县| 罗源县| 万年县| 聂拉木县| 汤阴县| 大连市| 左权县| 宁都县| 大港区| 红原县| 刚察县| 南开区| 高唐县| 石楼县| 同德县| 大关县| 绵竹市| 舞阳县| 石阡县| 胶州市| 大田县| 南雄市| 永和县| 拉萨市| 定兴县| 象山县| 宝清县| 鲁甸县| 林甸县|