王渭娜, 王 帥, 王文亮
(陜西省大分子重點(diǎn)實(shí)驗(yàn)室, 陜西師范大學(xué) 化學(xué)化工學(xué)院, 陜西 西安 710119)
?
白皮杉醇甲氧基衍生物與OOH自由基的反應(yīng)機(jī)理
王渭娜*, 王帥, 王文亮
(陜西省大分子重點(diǎn)實(shí)驗(yàn)室, 陜西師范大學(xué) 化學(xué)化工學(xué)院, 陜西 西安 710119)
采用M05-2X/6-311++G(d,p)水平對白皮杉醇甲氧基化衍生物的活性位點(diǎn)B環(huán)4′位清除OOH自由基的反應(yīng)機(jī)理進(jìn)行研究,并采用連續(xù)極化介質(zhì)模型考察極性溶劑對該反應(yīng)機(jī)理的影響。結(jié)果表明,白皮杉醇的A環(huán)3和5位被甲氧基取代得到的衍生物比白皮杉醇清除自由基能力強(qiáng)、水溶性好。PIC-R1-A5和PIC-R2-A3A5與OOH反應(yīng)速率大于PIC與OOH反應(yīng)速率,抽氫與加成反應(yīng)均呈現(xiàn)正溫度效應(yīng),且抽氫反應(yīng)為優(yōu)勢通道。
白皮杉醇; 甲氧基衍生物; OOH自由基; 反應(yīng)機(jī)理
多酚類天然產(chǎn)物具有抗氧化、抗菌和抗癌等功效,能有效抑制磷酸酶和脂氧化酶等的產(chǎn)生。芪類(stilbene)多酚化合物白藜蘆醇(Resveratrol, RES)及其衍生物白皮杉醇(Piceatannol, PIC)具有良好的清除活性氧自由基(·OH和·OOH)的能力[1],其清除活性氧自由基的反應(yīng)機(jī)理主要分為抽氫(hydrogen atom transfer, HAT)、自由基加成(radical adduct formation, RAF)和單電子轉(zhuǎn)移(single electron transfer, SET)三類[2]。以白藜蘆醇類多酚化合物ArOH清除OOH自由基為例,其反應(yīng)方程如下:
ArOH+·OOH→ArO·+H2O2HAT
(1)
ArOH+·OOH→[ArOH—OOH]·RAF
(2)
ArOH+·OOH→ArOH+·+OOH-SET
(3)
Rossi等[3]以對甲氧基氯苯為原料合成了白藜蘆醇(RES)及其甲氧基衍生物,并將其引入到被OOH入侵的DNA中,發(fā)現(xiàn)衍生物阻止OOH對DNA的破壞能力強(qiáng)于RES。Shang等[4]合成了RES及其一系列衍生物,通過紫外光譜研究其清除galvinoxyl自由基的活性和反應(yīng)機(jī)理,發(fā)現(xiàn)OCH3取代后其清除自由基能力增強(qiáng)。Benayahoum等[5]用采用密度泛函理論(B3LYP/6-311++G),計(jì)算了RES及其衍生物的鍵解離能和電離能的大小,并分析OH及OCH3的數(shù)目與位置對其抗氧化性的影響,得出對位或鄰位有OH或OCH3的衍生物的抗氧化活性強(qiáng)于母體RES。Cordova-Gomez等[2]采用M05-2X/6-311++G(d,p)方法研究了PIC及RES與OOH在水和苯溶劑中的反應(yīng)機(jī)理,結(jié)果表明抽氫反應(yīng)為主通道,且PIC與OOH反應(yīng)的速率比RES與OOH反應(yīng)大1個(gè)數(shù)量級(jí),即PIC清除OOH自由基的能力強(qiáng)于RES。
從實(shí)驗(yàn)和理論方面對RES及其甲氧基衍生物都有研究。RES甲氧基衍生物比RES清除OOH自由基的能力更強(qiáng),而對于活性更強(qiáng)的PIC,并無關(guān)于其衍生物與OOH自由基反應(yīng)的研究報(bào)道。因此,本文將對白皮杉醇甲氧基衍生物清除OOH自由基的抽氫(HAT)、自由基加成(RAF)和單電子轉(zhuǎn)移(SET) 3種反應(yīng)機(jī)理進(jìn)行分子反應(yīng)動(dòng)力學(xué)分析,同時(shí)考慮溶劑化效應(yīng)對其的影響,以期為白皮杉醇衍生物清除自由基的實(shí)驗(yàn)研究提供理論參考。
1 計(jì)算方法
本文采用密度泛函理論,對氣相和極化連續(xù)介質(zhì)模型(SMD)下水溶劑(ε=78.39)中PIC及其甲氧基衍生物清除OOH自由基的反應(yīng)機(jī)理進(jìn)行研究。由于M05-2X方法對于酚類化合物與相關(guān)自由基反應(yīng)體系的研究可獲得實(shí)驗(yàn)結(jié)果較為一致的幾何結(jié)構(gòu)及合理的能量信息[6],因而本文在M05-2X/6-311++G(d,p)水平上對各反應(yīng)路徑上的所有反應(yīng)物、中間體、過渡態(tài)和產(chǎn)物等駐點(diǎn)物種的幾何構(gòu)型進(jìn)行全參數(shù)優(yōu)化,基于振動(dòng)頻率分析確認(rèn)其各駐點(diǎn)性質(zhì),并在相同水平上應(yīng)用內(nèi)稟反應(yīng)坐標(biāo)(IRC)驗(yàn)證了各反應(yīng)路徑中過渡態(tài)與反應(yīng)物及產(chǎn)物的相關(guān)性。所有電子結(jié)構(gòu)計(jì)算均采用Gaussian 09程序[7]完成。
2 結(jié)果與討論
白皮杉醇PIC清除自由基活性最好的位點(diǎn)為B環(huán)4′位[11-13],因此,本文僅研究白皮杉醇及其衍生物(圖1)B環(huán)4′位清除OOH自由基的3種反應(yīng)機(jī)理。PIC+OOH的HAT及RAF反應(yīng)駐點(diǎn)物種結(jié)構(gòu)見圖2所示,HAT及RAF反應(yīng)勢能剖面圖見圖3,氣相和液相中HAT、RAF及SET反應(yīng)所有通道的相關(guān)能量信息列于表1與表2中,液相中標(biāo)題反應(yīng)中駐點(diǎn)物種的偶極矩列于表3中,標(biāo)題反應(yīng)優(yōu)勢通道的速率常數(shù)kCVT/SCT列于表4。
圖1 PIC及其甲氧基衍生物的結(jié)構(gòu)
2.1白皮杉醇甲氧基衍生物與OOH氣相反應(yīng)機(jī)理
圖2優(yōu)化后的PIC與OOH的HAT(a)和RAF(b)反應(yīng)中駐點(diǎn)物種結(jié)構(gòu)
Fig.2Optimized geometries of the stationary points for HAT(a) and RAF(b) of PIC with OOH radical
對RAF反應(yīng),如圖2b所示,當(dāng)OOH出現(xiàn)在PIC的平面上方進(jìn)攻B環(huán)C4′OH位碳原子時(shí),首先形成含有一個(gè)五元環(huán)(O4′, C4′, C3′, O3′, 和H3′)和一個(gè)四元環(huán)(O4′, H4′, O1和C4′)的反應(yīng)復(fù)合物r-RC,O1逐漸移動(dòng)到C4′上方,當(dāng)O1…C4′之間的距離由0.309 1 nm縮短為0.190 8 nm時(shí),形成過渡態(tài)r-TS,從r-RC到r-TS之間的勢壘為61.69 kJ/mol,O1進(jìn)一步靠近C4′形成產(chǎn)物r-P(O1…C4′之間的距離為0.145 0 nm),此過程共放出26.25 kJ/mol的熱量。
表1 在M05-2X/6-311++G(d,p)水平上標(biāo)題反應(yīng)在氣相與液相中HAT、RAF及SET通道的相關(guān)能量信息*
*.kJ/mol。
由以上分析得出,PIC與OOH的HAT和RAF反應(yīng)機(jī)理是熱力學(xué)可行的,SET則是熱力學(xué)禁阻的,從能壘及反應(yīng)熱考慮,HAT為優(yōu)勢通道。該結(jié)果與PIC與OH反應(yīng)的機(jī)理一致[14]。
2.1.2 白皮杉醇甲氧基衍生物與OOH氣相反應(yīng)機(jī)理對一個(gè)甲氧基取代的PIC衍生物PIC-R1的HAT反應(yīng),由勢能剖面圖(如圖3所示)及表1和表2可以看出,與PIC+OOH(Path-1)通道相比,R-A3+OOH(Path-2)與R-A5+OOH(Path-3)所需的勢壘及產(chǎn)物穩(wěn)定性均相近,而與R-B3′+OOH(Path-4)則存在較大差異,從h-RC-B3′到h-TS-B3′需越過67.04 kJ/mol的勢壘,比Path-1高出25.63 kJ/mol,且Path-4總反應(yīng)過程也僅放出ΔH=-1.96 kJ/mol的能量。即鄰位酚羥基(B環(huán)3′位)被OCH3取代后使4′位的活性明顯降低。PIC清除自由基能力強(qiáng)于RES的根本原因是在PIC中存在鄰位OH,在清除自由基時(shí)失去一個(gè)H后,與鄰位OH之間形成分子內(nèi)氫鍵,使得產(chǎn)物更穩(wěn)定。當(dāng)B環(huán)3′位被OCH3取代后,破壞產(chǎn)物的穩(wěn)定性,因而清除自由基能力減弱。對兩個(gè)甲氧基和三個(gè)甲氧基取代的PIC衍生物與自由基反應(yīng)存在相似的規(guī)律,即鄰位酚羥基(B環(huán)3′位)被OCH3取代后使4′位的活性明顯降低。
對一個(gè)甲氧基取代的PIC衍生物PIC-R1的RAF反應(yīng),由勢能剖面圖(如圖3所示)及表1和表2可以看出,與PIC+OOH(Path-1)通道相比,R-A3+OOH(Path-2)、R-A5+OOH(Path-3′與R-B3′+OOH(Path-4)所需的勢壘相近,而在Path-4中形成的反應(yīng)復(fù)合物RC-B3′、過渡態(tài)TS-B3′與產(chǎn)物P-B3′的能量顯著升高,穩(wěn)定性較差;同理,二和三取代衍生物存在相似的規(guī)律,即鄰位酚羥基(B環(huán)3′位)被OCH3取代后形成的衍生物與OOH反應(yīng)中形成的各駐點(diǎn)的穩(wěn)定性均較差。
圖3 PIC及PIC-R1與OOH的HAT和RAF反應(yīng)勢能剖面圖
反應(yīng)通道氣相ΔEg≠ele(RC→TS)ΔEg≠app(R→TS)ΔEg(R→P)ΔHg(R→P)液相ΔEw≠ele(RC→TS)ΔEw≠app(R→TS)ΔEw(R→P)ΔHg(R→P)(Path-1)HAT43.5154.05-30.71-40.6537.1862.85-35.68-36.38(Path-2)HAT44.4054.26-39.80-39.1441.1864.68-34.89-35.83(Path-3)HAT39.9949.87-34.41-42.7842.8665.30-36.21-36.50(Path-4)HAT68.1674.58-5.83-1.9659.9172.36-19.25-18.41(Path-5)HAT43.1951.94-39.99-39.8538.0962.69-38.80-36.26(Path-6)HAT68.2475.55-3.33-3.8360.5675.25-21.34-19.45(Path-7)HAT70.6975.40-8.09-2.7558.5673.20-16.97-21.28(Path-8)HAT69.2873.68-5.66-3.2957.6373.25-22.55-17.96(Path-1)RAF68.2878.7728.03-26.2557.9483.0336.93-17.51(Path-2)RAF70.1177.7727.37-25.9367.8184.0438.07-16.48(Path-3)RAF63.9573.3428.83-26.1464.1682.2037.66-16.42(Path-4)RAF68.01101.4946.86-4.4661.6491.1544.06-9.40(Path-5)RAF66.0575.9226.99-27.3565.7182.0535.88-17.44(Path-6)RAF69.64103.3746.66-7.3266.6196.3244.70-11.03(Path-7)RAF68.43101.7749.01-4.6858.8791.8144.58-9.39(Path-8)RAF65.66100.7747.38-5.3756.8790.0539.97-9.34
2.2溶劑化效應(yīng)對白皮杉醇甲氧基衍生物與OOH反應(yīng)的影響
表3 液相中標(biāo)題反應(yīng)的HAT及RAF通道中駐點(diǎn)物種的偶極矩 (Debye)
在表3的水溶液中,從HAT與RAF反應(yīng)通道中各駐點(diǎn)的偶極矩可看出,除Path-2中個(gè)別駐點(diǎn)以外,其余通道中各駐點(diǎn)的偶極矩均大于Path-1,即衍生物在水中的溶解度大于白皮杉醇。
綜上所述,從各通道的反應(yīng)勢壘、產(chǎn)物穩(wěn)定性及各駐點(diǎn)的溶解度分析得出,在氣相及水溶液的HAT、RAF中,PIC-R1-A5+OOH (Path-3)及PIC-R2-A3A5+OOH (Path-5)都與PIC+OOH(Path-1)通道反應(yīng)活性相當(dāng),其余通道次之。甲氧基取代A環(huán)OH時(shí),能影響PIC清除自由基的能力,同時(shí)能夠增大其在水溶液中的溶解性。
2.3高活性衍生物與OOH反應(yīng)速率常數(shù)計(jì)算
根據(jù)上述分析,對于白皮杉醇及甲氧基衍生物+OOH的反應(yīng)體系,R-A5+OOH(Path-3)及R-A3A5+OOH(Path-5)與PIC+OOH(Path-1)反應(yīng)活性相當(dāng)。因此,本文利用Zhang rate程序計(jì)算氣相條件下該反應(yīng)通道的HAT與RAF速率常數(shù),其值列于表4中。
表4 HAT及RAF中部分反應(yīng)通道的速率常數(shù)k
*k的單位為L/(mol·s)。
表4數(shù)據(jù)表明,各反應(yīng)通道均具有正溫度效應(yīng)系數(shù),且衍生物清除OOH自由基的能力強(qiáng)于白皮杉醇, HAT為優(yōu)勢通道。
3 結(jié)論
采用M05-2X/6-311++G(d,p)方法對抗氧化劑白皮杉醇甲氧基化衍生物B環(huán)4′位清除OOH自由基可能的抽氫反應(yīng)(HAT)、自由基加成反應(yīng)(RAF)和單電子轉(zhuǎn)移反應(yīng)(SET)機(jī)理進(jìn)行研究,可得到如下主要結(jié)論:
(1)在氣相和液相溶液中,白皮杉醇及其甲氧基化衍生物與OOH自由基的抽氫反應(yīng)(HAT)和加成反應(yīng)(RAF)在熱力學(xué)上都是可行的放熱反應(yīng),單電子轉(zhuǎn)移(SET)則是熱力學(xué)與動(dòng)力學(xué)上均不可行。
[1] PEREZ-GONZALEZ A,MARIANA REBOLLAR-ZEPEDA A,RAFAEL LEON-CARMONA J,et al.Reactivity indexes and O—H bond dissociation energies of a large series of polyphenols: implications for their free radical scavenging activity[J]. Journal of the Mexican Chemical Society,2012, 56(3): 241-249.
[2] CORDOVA-GOMEZ M, GALANO A, ALVAREZ-LDABOY J R. Piceatannol, a better peroxyl radical scavenger than resveratrol[J]. RSC Advances,2013, 3 (43): 20209-20218.
[3] ROSSI M, CARUSO F, ANTONIOLETTI R, et al. Scavenging of hydroxyl radical by resveratrol and related natural stilbenes after hydrogen peroxide attack on DNA[J]. Chemico-Biological Interactions,2013, 206 (2): 175-185.
[4] SHANG Y J, QIAN Y P, LIU X D, et al. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution[J]. The Journal of Organic Chemistry,2009, 74 (14): 5025-5031.
[5] BENAYAHOUM A, AMIRA-GUEBAILIA H, HOUACHE O. A DFT method for the study of the antioxidant action mechanism of resveratrol derivatives[J]. Journal of Molecular Modeling, 2013, 19 (6): 2285-2298.
[6] ZHAO Y, TRUHLAR D G. How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals[J]. The Journal of Physical Chemistry A, 2008, 112 (6): 1095-1099.
[7] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Gaussian Inc., Wallingford CT, 2009.
[8] ZHANG S W, TRUONG N T. VKLab version 1.0[CP]. University of Utah, Salt Lake City, 2001.
[9] MARCUS R A. Transfer reactions in chemistry. Theory and experiment[J]. Pure and Applied Chemistry,1997, 69 (1): 13-30.
[10] MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment[J]. Reviews of Modern Physics,1993, 65 (3): 599.
[11] LEOPOLDINI M, RUSSO N, TOSCANO M. The molecular basis of working mechanism of natural polyphenolic antioxidants[J]. Food Chemistry,2011, 125 (2): 288-306.
[12] LUGA C, ALVAREZ-IDABOY J R L, RUSSO N. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study[J]. The Journal of Organic Chemistry, 2012, 77 (8): 3868-3877.
[13] ROSSI M, CARUSO F, OPAZO C, et al. Crystal and molecular structure of piceatannol: scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretin[J]. Journal of Agricultural and Food Chemistry, 2008, 56 (22): 10557-10566.
[14] 王帥,王渭娜,高志芳,等. 白皮杉醇PIC與OH自由基反應(yīng)機(jī)理的理論研究[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2015, 36(8): 1588-1595.
〔責(zé)任編輯王勇〕
Theoretical study on the reaction mechanism of piceatannol methoxy derivatives with OOH radicals
WANG Weina*, WANG Shuai, WANG Wenliang
(Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
At M05-2X/6-311++G(d,p) level, the reaction mechanisms of piceatannol and its methoxy derivatives with OOH free radical were studied in gas phase, the effect of solvent polarity on the reaction mechanisms were also considered using the polarizable continuum model. The results showed that PIC-R1-A5 and PIC-R2-A3A5 have best reactivity and higher solubility among the derivatives. The reaction rates of PIC-R1-A5 and PIC-R2-A3A5 with OOH are higher than that of PIC with OOH,the more favorable channel is hydrogen atom transfer. Furthermore, the results also manifested that there is a positive correlation between the rate constants and temperature. Keywords: piceatannol; methoxy derivatives; OOH free radical; mechanism
1672-4291(2016)04-0060-06
10.15983/j.cnki.jsnu.2016.04.342
2016-03-31
國家自然科學(xué)基金(21473108);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(JK201603035)
王渭娜,女,講師,博士研究生。E-mail: wangwn@snnu.edu.cn
O643.1
A