王宏濤 張寶強(qiáng) 孟瑩梅
摘要:設(shè)計(jì)了一種基于同步開關(guān)和中間電容的接口電路——SSIC(Synchronized Switch and Intermediate Capacitor)接口電路,完成了該接口電路在恒定激振位移和恒定激振力條件下回收功率的理論分析和計(jì)算,并將其與壓電振動(dòng)能量回收技術(shù)中4種常用的接口電路標(biāo)準(zhǔn)、SECE、串聯(lián)-SSHI、并聯(lián)-SSHI進(jìn)行了比較。計(jì)算和實(shí)驗(yàn)結(jié)果均表明SSIC和SECE接口電路均具有回收功率與負(fù)載變化無關(guān)的優(yōu)點(diǎn),此外SSIC接口電路顯著提高了回收功率,在恒定位移激勵(lì)情況下其回收功率約是SECE的2倍。
關(guān)鍵詞:
能量回收; 壓電效應(yīng); 接口電路; 機(jī)電轉(zhuǎn)換
中圖分類號(hào):TN712+.5; TK01文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1004-4523(2016)03-0386-09
DOI:10.16385/j.cnki.issn.1004-4523.2016.03.003
引言
壓電能量回收技術(shù)是指利用壓電材料將周圍環(huán)境的機(jī)械振動(dòng)能轉(zhuǎn)換為電能[1-4],其基本原理是將壓電材料黏貼在振動(dòng)結(jié)構(gòu)表面,當(dāng)振動(dòng)結(jié)構(gòu)在外界的激勵(lì)下發(fā)生振動(dòng)時(shí),壓電材料特有的壓電效應(yīng)使其上下表面產(chǎn)生交變電壓,接口電路將該交變電壓轉(zhuǎn)換為直流電并儲(chǔ)能回收于電容或電池中,回收的能量可為微型機(jī)電系統(tǒng)和無線傳感設(shè)備提供能量,可見,接口電路是壓電能量回收系統(tǒng)的重要組成部分。接口電路具有較好的性能主要表現(xiàn)為回收功率大且不隨負(fù)載變化,標(biāo)準(zhǔn)(Standard)、SECE (Synchronous Electric Charge Extraction)、串聯(lián)-SSHI(Parallel Synchronized Switch Harvesting on Inductor)和并聯(lián)-SSHI(Series Synchronized Switch Harvesting on Inductor)接口是4種常用的接口電路技術(shù)[5],其中,僅SECE接口電路的回收功率與負(fù)載變化無關(guān),并聯(lián)-SSHI的回收功率最大但與負(fù)載變化相關(guān)。由4種接口技術(shù)還衍生出了SSHI-MR(Synchronized Switch Harvesting on Inductor using Magnetic Rectifier)[6],hybrid SSHI[7],DSSH(Double Synchronized Switch Harvesting)[8],ESSH(Enhanced Synchronized Switch Harvesting)[9]以及一些能自動(dòng)產(chǎn)生控制信號(hào)的自供能接口技術(shù)[10-13]。
本文提出了一種基于同步開關(guān)和中間電容的SSIC接口技術(shù),該接口技術(shù)的優(yōu)勢(shì)在于回收功率與負(fù)載的變化無關(guān)且回收功率約是SECE接口技術(shù)的2倍。
5結(jié)論
隨著無線傳感網(wǎng)絡(luò)的快速發(fā)展,利用壓電片回收環(huán)境中的振動(dòng)能量為無線傳感器節(jié)點(diǎn)供電的技術(shù)得到了廣泛的關(guān)注,而接口電路是壓電能量回收技術(shù)的重要組成部分,因此先后出現(xiàn)了Standard、SECE、串聯(lián)-SSHI、并聯(lián)-SSHI 4
[HJ*3/5]種基本接口電路。本文設(shè)計(jì)了SSIC接口電路,該接口電路主要由兩個(gè)同步開關(guān)和中間電容組成,理論分析和實(shí)驗(yàn)均驗(yàn)證了該接口電路的回收功率與負(fù)載無關(guān),而且約是SECE接口電路的2倍,有著優(yōu)越的性能。但是,實(shí)驗(yàn)中的單片機(jī)和光電耦合器都需要外接電源,回收的能量沒有考慮它們的功耗,因此,設(shè)計(jì)一個(gè)自供能的接口電路,實(shí)現(xiàn)用回收的能量給單片機(jī)和光電耦合器供電是今后工作的主要研究重點(diǎn)。
參考文獻(xiàn):
[1]Badel A, Guyomar D, Lefeuvre E, et al. Piezoelectric energy harvesting using a synchronized switch technique[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8-9): 831—839.
[2]Shu Y, Lien I. Analysis of power output for piezoelectric energy harvesting systems[J]. Smart Materials and Structures, 2006, 15(6):1499—1512.
[3]邊義祥,楊成華. 基于壓電材料的振動(dòng)能量回收技術(shù)現(xiàn)狀綜述[J]. 壓電與聲光,2011,33(4): 612—622.
[KG2*2]Bian Yi-xiang, Yang Cheng-hua. A review of current research for energy harvesting based on vibration of piezoelectric materials[J]. Piezoelectrics and Acoustooptics, 2011, 33(4): 612—622.
[4]Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(4):584—595.
[5]Guyomar D, Lallart M. Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation[J]. Micromachines, 2011, 2(2): 274—294
[6]Garbuio L, Lallart M, Guyomar D, et al. Mechanical energy harvester with ultralow threshold recti?cation based on SSHI nonlinear technique[J]. IEEE Transactions on Industrial Electronics, 2009, 56( 4):1048—1056.
[7]Lallart M, Richard C, Garbuio L, et al. High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach[J]. Sensors and Actuators A: Physical, 2011,165(2): 294—302.
[8]Lallart M, Garbuio L, Petit L, et al. Double Synchronized Switch Harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(10): 2119—2130.
[9]Shen H, Qiu J, Ji H, et al. Enhanced synchronized switch harvesting: A new energy harvesting scheme for efficient energy extraction[J]. Smart Materials and Structures, 2010,19(11): 115017.
[10]Lallart M, Guyomar D. Piezoelectric conversion and energy harvesting enhancement by initial energy injection[J]. Applied Physics Letters, 2010, 97(1): 014104—3.
[11]Lallart M, Lefeuvre E, Richard C, et al. Self-powered circuit for broadband, multimodal piezoelectric vibration control[J]. Sensors and Actuators A: Physical, 2008,143(2):377—382.
[12]曹軍義,任曉龍,周生喜,等. 基于并聯(lián)電感同步開關(guān)控制的振動(dòng)能量回收方法研究[J]. 振動(dòng)與沖擊,2012,31(17):56—60.
[KG2*2]Cao Jun-yi, Ren Xiao-long, Zhou Sheng-xi, et al. Vibration energy harvesting based on synchronized switch control of parallel inductor[J]. Journal of Vibration and Shock, 2012, 31(17): 56—60.
[13]Junrui L, Wei-Hsin L. Improved design and analysis of self-Powered synchronized switch interface circuit for piezoelectric energy harvesting systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4):1950—1960.
[14]Badel A, Lagache M, Guyomar D, et al. Finite element and simple lumped modeling for flexural nonlinear semi-passive damping[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(7): 727—742.
[15]Lefeuvre E, Badel A, Richard C, et al. A comparison between several vibration-powered piezoelectric generators for standalone systems[J]. Sensors and Actuators A: Physical, 2006, 126(2):405—416.