余佳玲, 宋海星, 謝桂先*, 張振華* , 廖 瓊, 官春云
(1湖南農業(yè)大學資源環(huán)境學院, 土壤肥料資源高效利用國家工程實驗室, 南方糧油作物協同創(chuàng)新中心, 農田污染控制與農業(yè)資源利用湖南省重點實驗室, 植物營養(yǎng)湖南省普通高等學校重點實驗室, 長沙 410128;2國家油料改良中心湖南分中心, 長沙 410128 )
?
不同氮效率油菜SPS和PEPC活性差異及其對籽粒產量與油分含量的影響
余佳玲1, 宋海星1, 謝桂先1*, 張振華1*, 廖 瓊1, 官春云2
(1湖南農業(yè)大學資源環(huán)境學院, 土壤肥料資源高效利用國家工程實驗室, 南方糧油作物協同創(chuàng)新中心, 農田污染控制與農業(yè)資源利用湖南省重點實驗室, 植物營養(yǎng)湖南省普通高等學校重點實驗室, 長沙 410128;2國家油料改良中心湖南分中心, 長沙 410128 )
【目的】蔗糖磷酸合成酶(sucrose phosphate synthase,SPS)與磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase,PEPC)分別控制著植物體內的碳骨架向碳代謝和氮代謝的流轉,影響作物的產量與品質。為探明氮高效油菜品種在高效利用氮素的同時協調籽粒蛋白與油分累積矛盾的機理,研究了不同氮效率油菜品種的SPS與PEPC活性差異及其對籽粒油分含量的影響?!痉椒ā坎捎猛僚嘣囼?,以氮高效品種27號(H)與氮低效品種6號(L)為試驗材料,在常氮(N)與低氮(S)條件下,研究不同氮效率油菜品種苗期到花期葉片與角果發(fā)育初期的角果、角果發(fā)育中期的角果皮與籽粒中SPS與PEPC活性變化及差異、生長后期碳素轉運量與轉運率以及收獲期籽粒油分含量的差異?!窘Y果】兩種供氮水平下,氮高效品種27號的產量與籽粒油分含量均顯著高于氮低效品種6號,品種優(yōu)勢明顯;且氮高效品種27號苗期到花期葉片與角果發(fā)育初期的角果、角果發(fā)育中期的角果皮與籽粒中的SPS與PEPC活性均高于氮低效品種6號,兩種供氮水平的規(guī)律相同,但是SPS與PEPC活性的比值(SPS/PEPC)卻因生育期不同而異,營養(yǎng)生長期葉片中氮高效品種27號的SPS/PEPC高于氮低效品種6號,開花期品種間葉片SPS/PEPC相近,角果發(fā)育期主要生殖器官中的SPS/PEPC值氮高效品種反而低于氮低效品種。說明氮高效品種向碳代謝和氮代謝輸送的碳骨架在全生育期均多于氮低效品種,而碳代謝對氮代謝的響應只在生育前期強于氮低效品種,生育后期則相反。碳素轉運量與轉運率、籽粒油分含量與產量也是氮高效品種大于氮低效品種,這可能為氮高效品種協調籽粒蛋白與油分累積矛盾的重要生理機制。供氮水平對上述各指標有不同的影響,籽粒產量、PEPC活性、碳素轉運量及轉運率以常氮處理高于低氮處理,而油分含量、SPS活性及SPS/PEPC以常氮處理低于低氮處理,但不改變以上指標的品種間差異?!窘Y論】與氮低效品種相比,氮高效品種全生育期向碳、氮代謝均輸送更多的碳骨架,這是氮高效品種緩解碳、氮代謝矛盾的重要前提;碳代謝對氮代謝的響應生育前期較高、生育后期較低,同時生育后期有更多營養(yǎng)器官的碳素轉運到籽粒,也為油菜生育后期滿足籽粒碳、氮代謝所需要的碳骨架,并協調籽粒油分與蛋白質含量的矛盾提供了條件。
油菜; SPS; PEPC; 碳氮代謝; 籽粒油分
碳與氮是作物體內兩大重要元素,參與作物生命活動中化合物的形成,對作物產量與品質的形成起重要作用。碳、氮代謝對于作物的生長發(fā)育尤為重要,其最首要的功能是為細胞的新陳代謝提供碳骨架與能量[1-2],其中氮代謝可為合成蛋白質與核酸等重要生命物質提供氮源[3]。碳、氮代謝二者密不可分,其相互作用是作物產量與品質的基石[4],同時碳、氮代謝作為植物體內的兩大主要代謝過程,對代謝途徑所需要的碳骨架與能量存在著明顯的競爭[5]。因此,作物生長過程中調節(jié)碳和能量的流向,以最大限度地同時滿足碳、氮代謝的需求,達到作物優(yōu)質高產是十分重要的[6]。研究表明,蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)與磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)在碳和能量的流轉過程中起重要作用,二者共同調節(jié)著光合作用固定的碳在糖類與氨基酸之間的分配[7-8],從而調節(jié)碳、氮代謝的方向。SPS為植物體蔗糖合成的關鍵調控酶,在控制蔗糖合成速率的同時,平衡光合作用物質合成、蔗糖運輸與淀粉形成等過程;PEPC具有固定CO2為C3循環(huán)提供碳源的重要作用,同時PEPC還可促進并調節(jié)有機酸合成,為氮代謝途徑提供碳骨架和能量[9-10],在油菜等C3植物中則以后一個作用為主。油菜是油料作物,碳、氮代謝競爭導致的籽粒蛋白質與油分含量之間的矛盾比較突出,較好的氮素營養(yǎng)條件,雖可提高產量和籽粒蛋白質含量,但減少籽粒油分含量。因此,如何調節(jié)油菜碳、氮代謝的關系,在保證籽粒形成過程所需的基本氮代謝需求的前提下,使碳骨架及時流向碳代謝方向是人們關注的問題。陳歷儒等[11]研究表明,氮高效油菜品種并沒有因高效吸收利用氮素而降低油分含量,說明其中存在著較好的碳、氮代謝協調機理,但這一協調機理是否和SPS與PEPC的活性有關,目前尚未見相關報道。本試驗對不同氮效率油菜品種的SPS與PEPC酶活性及其與籽粒油分的關系進行研究,以期為揭示油菜碳、氮代謝方向調節(jié)對籽粒油分形成的影響機理提供參考。
1.1 材料及試驗設計
試驗于2013年9月至2014年3月在湖南農業(yè)大學耘圓基地進行,供試土壤為第四紀紅土母質發(fā)育的沖積菜園土,其有機質含量23.08 g/kg、全氮1.53 g/kg、全磷1.33 g/kg、全鉀19.79 g/kg、堿解氮129.0 mg/kg、速效磷79.7 mg/kg、速效鉀137.4 mg/kg、pH 5.18。供試油菜品種為本課題組經過大田試驗篩選出的氮高效品種27號(No.27)和氮低效品種6號(No.6),其中氮高效品種的氮素吸收與利用效率以及籽粒中氮素積累量均高于氮低效品種。本試驗采用盆栽土培試驗,用30 cm×20 cm白瓷缽,每缽裝土6.25 kg,栽植1株,采用育苗移栽方法,于2013年8月25日大田育苗,9月25日移栽,完全隨機區(qū)組排列。試驗設品種與氮水平兩個因子,氮水平設正常供氮與低氮兩個水平,共4個處理,分別為:高效品種正常供氮(H-N);高效品種低氮(H-S);低效品種正常供氮(L-N);低效品種低氮(L-S)。每處理重復24次(每處理每次取樣重復4次),共96缽。正常供氮處理每公斤土施N 0.2 g、 P2O50.1 g、 K2O 0.15 g、 B 0.0024 g;低氮處理除不施氮肥外,其余養(yǎng)分施用量與正常供氮處理相同。氮肥用尿素(含N 46%)、磷肥用鈣鎂磷肥(含P2O512%)、鉀肥用氯化鉀(含K2O 60%)、硼肥用硼砂(含B 10.8%)。
1.2取樣及測定方法
分別在油菜苗期、抽薹期、開花期、角果發(fā)育初期、角果發(fā)育中期與收獲期取整株樣品,其中前5個時期樣品洗凈、吸干水分后稱鮮重;苗期、抽薹期與開花期取長勢健壯的葉片、角果發(fā)育初期及角果發(fā)育中期選取同一生長梯度的角果用于測定蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)和磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)活性,剩余部分烘干,烘干后的所有樣品粉碎過篩測定植株全碳含量;收獲期樣品烘干后測定全碳和籽粒產量與籽粒油分含量。
SPS活性用可見分光光度法測定[12];PEPC活性用紫外分光光度法測定[13];籽粒油分含量用索氏提取法測定[14];植株總碳用Vario PYRO cube元素分析儀 (Elemental公司) 測定。根據植株總碳測定結果,以營養(yǎng)器官中總碳累積量最高的生育期為基準(本試驗中為抽薹期)用差減法計算碳素轉運量與轉運率[15]。計算公式為:
碳素轉運量(mg)=抽薹期植株碳素累積量-收獲期營養(yǎng)器官碳素累積量
碳素轉運率(%)=碳素轉運量/抽薹期植株碳素累積量×100
1.3數據處理
試驗數據均用Excel和SPSS 15.0專業(yè)版統(tǒng)計軟件進行處理。
2.1不同氮效率油菜籽粒的產量與油分含量
2.1.1 籽粒產量由圖1可以看出,品種與供氮水平對籽粒產量有顯著影響,無論氮水平高低,氮高效品種27號的籽粒產量均顯著高于氮低效品種6號。與正常供氮相比,兩品種均表現為低氮水平下籽粒產量顯著降低。
2.1.2 籽粒油分含量圖2顯示,無論氮水平高低,品種27號的籽粒油分均高于品種6號,差異顯著;不同供氮水平,兩品種均表現為低氮處理時籽粒油分含量顯著高于正常供氮。即氮高效品種具有更高的油分積累能力,低氮條件下有利于籽粒油分含量的累積,這是因為缺氮時氮代謝減弱,相應地有更多的碳骨架流向碳代謝。但因為缺氮時籽粒產量下降,總油分產量不會提高。
2.2不同氮效率油菜SPS與PEPC活性的差異
2.2.1 油菜SPS活性SPS是作物碳水化合物積累
圖1 不同氮水平對兩油菜品種籽粒產量的影響Fig.1 Seed yield of the two rape varieties in different nitrogen conditions[注(Note): 柱上不同大寫字母表示同一氮水平不同品種處理間差異達5%顯著水平Different capital letters above the bars indicate that differences between varieties are significant under same nitrogen condition at 5% level;不同小寫字母表示同一品種不同氮水平處理間差異達5%顯著水平Different lowercase letters above the bars indicate that differences of same variety between nitrogen conditions are significant at 5% level.]
圖2 不同氮水平對兩油菜品種籽粒油分含量的影響Fig.2 Seed oil content of the two rape varieties in different nitrogen conditions[注(Note): 柱上不同大寫字母表示同一氮水平不同品種處理間差異達5%顯著水平Different capital letters above the bars indicate that differences between varieties are significant under same nitrogen condition at 5% level;不同小寫字母表示同一品種不同氮水平處理間差異達5%顯著水平 Different lowercase letters above the bars indicate that differences of same variety between nitrogen conditions are significant at 5% level.]
的關鍵酶。由表1可知,兩種供氮水平下,葉片SPS活性品種27號高于品種6號,苗期、抽薹期、開花期呈現相同規(guī)律,兩品種苗期與抽薹期的酶活性差異達到了顯著水平,開花期差異不顯著;角果發(fā)育初期的角果、角果發(fā)育中期的角果皮和籽粒中的SPS活性也表現為品種27號高于品種6號,角果與籽粒中的酶活性差異達到了顯著水平。
觀察不同供氮水平對SPS活性的影響,表明兩品種均表現為低氮處理高于正常供氮處理,所有生育期規(guī)律一致,其中品種27號苗期葉片與角果發(fā)育初期角果中的酶活性差異也達到了顯著水平。與苗期和抽薹期相比,所有處理的開花期葉片的SPS活性明顯下降,說明進入生殖生長期以后油菜營養(yǎng)器官的基本干物質積累大幅度減弱。
表1 不同氮素供應條件下不同油菜品種的SPS活性[mg/(g·h), FW]
注(Note): 數據后不同大寫字母表示同一氮水平不同品種處理間差異達5%顯著水平Values followed by different capital letters indicate that differences between varieties are significant under same nitrogen condition at 5% level; 數據后不同小寫字母表示同一品種不同氮水平處理間差異達5%顯著水平Values followed by different lowercase letters indicate that differences of same variety between nitrogen conditions are significant at 5% level.
2.2.2 油菜PEPC活性PEPC可為作物氮代謝提供碳骨架。由表2可以看出,兩種供氮水平下,葉片PEPC活性以品種27號高于品種6號,苗期、抽薹期、開花期呈現相同規(guī)律,其中正常供氮處理下苗期與開花期PEPC活性品種間的差異達到了顯著水平;無論供氮水平高低,角果發(fā)育初期的角果、角果發(fā)育中期的角果皮與籽粒中的PEPC活性均以品種27號高于品種6號,其中正常供氮處理下的角果和兩種供氮水平下籽粒中的PEPC酶活性兩品種之間差的異也達到了顯著水平。
表2 不同氮素供應條件下不同油菜品種PEPC活性 [μg/(mg·min)]
注(Note): 數據后不同大寫字母表示同一氮水平不同品種處理間差異達5%顯著水平Values followed by different capital letters indicate that differences between varieties are significant under same nitrogen condition at 5% level; 數據后不同小寫字母表示同一品種不同氮水平處理間差異達5%顯著水平Values followed by different lowercase letters indicate that differences of same variety between nitrogen conditions are significant at 5% level.
不同供氮水平對PEPC活性的影響顯示,所有生育期兩品種均表現為正常供氮高于低氮處理,除品種27號在角果發(fā)育期的角果和品種6號苗期與抽薹期葉片的PEPC活性差異不顯著之外,其余均達到了差異顯著水平。
2.3不同氮效率油菜SPS/PEPC比值的差異
SPS/PEPC比值表明單位PEPC活性變化所對應的SPS活性變化,可表征碳代謝對氮代謝變化的響應情況,由表3可以看出,營養(yǎng)生長期葉片SPS/PEPC在兩種供氮水平下均表現為品種27號高于品種6號,差異顯著;而開花期葉片SPS/PEPC兩品種差異較?。唤枪l(fā)育期的SPS/PEPC,除正常供氮角果發(fā)育中期角果皮中SPS/PEPC以品種27號高于品種6號之外,其余處理下SPS/PEPC均為品種27號低于品種6號,低氮處理下角果與角果皮、兩種供氮處理下籽粒中的SPS/PEPC值品種間差異達到顯著水平。說明氮代謝加強時碳代謝相應加強的程度在營養(yǎng)生長期以氮高效品種明顯高于氮低效品種,到開花期則兩品種趨于接近,角果發(fā)育期氮高效品種反而低于氮低效品種。這是因為氮高效品種的籽粒油分含量高于氮低效品種,顯然氮高效品種在角果發(fā)育期SPS/PEPC值較低的情況下應該另有補充碳素的途徑。供氮水平對SPS/PEPC也有影響,主要表現為低氮條件下的SPS/PEPC值升高。
表3 不同氮水平下兩品種SPS/PEP 比值
注(Note): 數據后不同大寫字母表示同一氮水平不同品種處理間差異達5%顯著水平Values followed by different capital letters indicate that differences between varieties are significant under same nitrogen condition at 5% level;數據后不同小寫字母表示同一品種不同氮水平處理間差異達5%顯著水平Values followed by different lowercase letters indicate that differences of same variety between nitrogen conditions are significant at 5% level.
2.4不同氮效率碳素轉運量與轉運率的變化
碳素轉運量與轉運率表示油菜生育前期營養(yǎng)器官所積累的碳素向生殖器官所轉運的情況。本試驗中營養(yǎng)器官累積的碳素以抽薹期最高,因此,本文用抽薹期和收獲期營養(yǎng)器官總碳計算碳素轉運量與轉運率。圖3表明,收獲期兩種供氮處理下碳素轉運量與轉運率均為品種27號大于品種6號,差異皆達到了顯著水平,說明品種27號具有更高的碳素轉運能力;比較不同供氮水平,兩品種皆表現為正常供氮處理下碳素轉運量與轉運率大于低氮處理,差異也達到了顯著水平。
圖3 不同氮水平下兩油菜品種碳轉運量與轉運率Fig.3 Carbon transportation amount and rate of two rape varieties under different nitrogen conditions[注(Note): 柱上不同大寫字母表示同一氮水平不同品種處理間差異達5%顯著水平Different capital letters above the bars indicate that differences between varieties are significant under same nitrogen condition at 5% level;不同小寫字母表示同一品種不同氮水平處理間差異達5%顯著水平Different lowercase letters above the bars indicate that differences of same variety between nitrogen conditions are significant at 5% level.]
3.1不同氮效率油菜品種SPS與PEPC活性差異及其對籽粒產量與油分含量的影響
碳、氮代謝決定油菜的產量與品質,碳代謝與氮代謝競爭光合作用產生的碳架與還原力,而SPS與PEPC在碳、氮代謝交匯點對碳架在碳、氮代謝間的分配及二者代謝方向的調節(jié)中起重要作用,SPS促進碳骨架向碳代謝方向運輸,而PEPC促進碳骨架運往氨基酸形成途徑[16-17]。唐湘如等[18]研究表明,SPS活性高有利于油菜籽粒油分的積累;Rademacher等[19]將PEPC基因轉入土豆后發(fā)現,碳素流動直接從糖類與淀粉的合成轉入蘋果酸與氨基酸的合成。以上研究已從不同角度證明了SPS與PEPC活性對碳、氮代謝帶來的影響,但是不同氮效率作物品種之間SPS與PEPC活性差異及其對作物產品品質影響的研究目前報道還很少。本試驗中氮高效品種的籽粒產量與油分含量高,且葉片及角果的SPS與PEPC活性均高于氮低效品種,即無論是營養(yǎng)生長期還是生殖生長期,氮高效品種均可以向碳代謝與氮代謝輸送更多的碳骨架與能量,氮高效品種的碳(氮)代謝加強,并沒有以抑制氮(碳)代謝為代價的,這是氮高效品種氮素吸收利用效率高、籽粒累積蛋白質多,但并沒有降低籽粒產量與油分含量的物質基礎,當然其前提是氮高效品種具有更高的光合能力[20]。本試驗還表明,供氮水平也影響SPS與PEPC活性,低氮時,兩個品種的SPS活性皆升高,PEPC活性皆降低,與唐湘如等[18]和羅鳳等[21]的研究結果一致。低氮條件下SPS與PEPC活性的以上變化使氮代謝相對減弱,碳代謝相對加強,但是過弱的氮代謝會抑制油菜的正常生長和產量形成,從而導致籽粒油分含量提高、產量卻降低的現象。因此,調節(jié)碳氮代謝方向,使更多的碳骨架流向碳代謝,必需在保證基本氮代謝的基礎上進行,才可達到既提高產量又提高油分含量的目的。
3.2不同氮效率品種油菜SPS/PEPC差異及其對油菜籽粒產量與油分含量的影響
SPS/PEPC可反映氮代謝加強時相應的碳代謝強化能力,即碳代謝對氮代謝的響應能力,該能力強,向碳代謝輸送碳的能力強,反之亦然。已有研究表明,SPS/PEPC降低,更多光合碳化物分配至氨基酸從而增強氮代謝[22],但以上研究還沒有涉及SPS/PEPC與籽粒品質的關系。本試驗計算的SPS/PEPC結果表明,營養(yǎng)生長期氮高效品種高于氮低效品種,開花期兩品種相近,角果發(fā)育期氮高效品種反而低于氮低效品種,即碳代謝對氮代謝的響應能力,油菜生長前期氮高效品種大于氮低效品種,生長后期則相反,而且上述變化過程基本與生殖生長進程相吻合。那么,油菜生長后期氮高效品種累積更多油分的碳素來自何方?鄒娟等[23]指出,油菜苗期是物質積累的主要時期,其決定著籽粒產量的形成,Severine等[24]指出,油菜生育后期籽粒形成所需的干物質有很大一部分來自生育前期積累的轉運,生育前期葉片中蔗糖合成能力決定著后期的產量。本試驗用差減法計算了生育后期營養(yǎng)器官碳素的轉運量,結果表明,氮高效品種生育后期由營養(yǎng)器官向籽粒的碳素轉運量和轉運率均高于氮低效品種。可見,營養(yǎng)生長期氮高效品種不僅向碳、氮代謝輸送的碳骨架多,碳代謝對氮代謝變化的響應度也高,而到生殖生長期,營養(yǎng)生長與生殖生長并行,碳、氮代謝之間的矛盾加劇,氮高效品種僅保證向碳、氮代謝輸送更多的碳骨架,碳代謝對氮代謝變化的響應度降低,由此不足的碳素由莖葉等營養(yǎng)器官的碳素轉運來補充,這種方式有利于緩解生殖生長期角果和籽粒中碳、氮代謝對碳骨架的競爭,從而為協調籽粒油分與蛋白質含量的矛盾并提高產量提供了條件。
1)氮高效油菜品種的籽粒產量與油分含量均高于氮低效品種。
2)氮高效油菜品種的SPS與PEPC活性全生育期皆高于氮低效品種,說明氮高效品種向碳代謝和氮代謝輸送的碳骨架全生育期均多于氮低效品種,這是氮高效品種協調籽粒油分與蛋白質含量矛盾的重要物質基礎。
3)氮高效油菜品種的SPS/PEPC值生育前期較高,生育后期較低,同時生育后期營養(yǎng)器官有更多的碳素轉運到籽粒,這為油菜生育后期同時滿足籽粒碳、氮代謝所需的碳骨架,進而為協調籽粒油分與蛋白質含量的矛盾提供了條件。
4)供氮水平并不改變以上指標在品種間的差異,但對上述各指標分別產生不同的影響,籽粒產量、PEPC活性、碳素轉運量及轉運率以正常供氮高于低氮處理,而油分含量、SPS活性及SPS/PEPC值則為正常供氮低于低氮處理。
[1]Hanson J, Johannesson H, Engstrom P. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip geneATHB13[J]. Plant Molecular Biology, 2001, 45: 247-262.
[2]Heyer A G, Raap M, Schroeer B,etal. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits inArabidopsisthaliana[J]. The Plant Journal, 2004, 39(2):161-169.
[3]王月福, 于振文, 李尚霞, 等. 氮素營養(yǎng)水平對冬小麥氮代謝關鍵酶活性變化和籽粒蛋白質含量的影響[J]. 作物學報, 2002, 28(6): 743-748.
Wang Y F, Yu Z W, Li S X,etal. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat[J]. Acta Agronomica Sinica, 2002, 28(6): 743-748.
[4]De La Torre A, Delgado B, Lara C. Nitrate-dependent O2evolution in intact leaves[J]. Plant Physiology, 1991, 96: 898-901.
[5]Halford N G, Hey S, Jhurreea D. Highly conserved protein kinases involved in the regulation of carbon and amino acid metabolism[J]. Journal of Experimental Botany, 2004, 55(394): 35-42.
[6]Vincentz M, Moureaux T, Leydecker M T,etal. Regulation of nitrate and nitrite reductase expression inNicotianaplumbaginifolialeaves by nitrogen and carbon metabolites[J]. The Plant Journal, 1993, 3(2): 315-324.
[7]Champigny M L, Foyer C. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis[J]. Plant Physiology, 1992, 100: 7-12.
[8]Foyer C H, Lescure J C, Lefebvre C,etal. Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenicNicotianaplumbaginifoliaplants to changes in nitrate reductase activity[J]. Plant Physiology. 1994, 104: 171-178.
[9]Masunoto C, Miyazawa S L, Ohkawa H,etal. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a curical role in ammonium assimilation[J]. Proceedings of the National Academy of Science, 2010, 107: 5226-5231.
[10]Moing A, Rothan C, Svanella L,etal. Role of phosphoenolpyruvate carboxylase in organic acid accumulation during peach fruit development[J]. Plant Physiology, 2000, 180: 1-10.
[11]陳歷儒, 宋海星, 諶亞忠, 等. 不同氮效率油菜品種產量和品種對供氮水平的反應[J]. 植物營養(yǎng)與肥料學報, 2011, 17(6):1424-1429.
Chen L R, Song H X, Zhan Y Z,etal. Response of yield and quality to nitrogen fertilization for oilseed rape cultivars with different nitrogen efficiencies[J]. Plant Nutrition and Fertilizer Science, 2011, 17 (6): 1424-1429.
[12]趙越, 魏自民, 馬鳳鳴. 銨態(tài)氮對甜菜蔗糖合成酶和蔗糖磷酸合成酶的影響[J]. 中國糖料, 2003, (3):1-5.
Zhao Y, Wei Z M, Ma F M. Influence of ammoniacal nitrogen on Sucrose synthase and sucrose phosphate synthase in sugar beet[J]. Sugar Crops of China, 2003, (3): 1-5.
[13]王晶英. 植物生理與生化實驗技術與原理[M].哈爾濱: 東北林業(yè)大學出版社, 2003.
Wang J Y. Technology and principle of plant physiology and biochemistry experiment[M]. Harbin: Northeast Forestry University Press, 2003.
[14]鄭炳松. 現代植物生理生化研究技術[M]. 北京: 氣象出版社, 2006.
Zhen B S. Research techniques in contemporary plant physiology and biochemistry[M]. Beijing: China Meteorological Press, 2006.
[15]胡鈞銘, 何禮健, 江立庚, 等. 不同施氮下優(yōu)質稻植株花后碳氮物質流轉與籽粒生長的相關性[J]. 西南農業(yè)學報, 2012, 25(3): 922-929.
Hu J M, He L J, Jiang L G,etal. Relationship between post-anthesis carbon and nitrogen remobilization and grain growth of high quality indica rice under different nitrogen levels[J]. Southweat China Journal of Agricultural Sciences, 2012, 25(3): 922-929.
[16]Shuichi Y, Akiyama A, Kisaka H,etal. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions[J]. Biological Sciences, 2004, 18(101):7833-7838.
[17]宋建民, 田紀春, 趙世杰. 植物光合碳和氮代謝之間的關系及其調節(jié)[J]. 植物生理學通訊, 1998, 34(3): 230-238.
Song J M, Tian J C, Zhao S J. Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation[J]. Plant Physiology Communications, 1998, 34(3): 230-238.
[18]唐湘如, 官春云. 施氮對油菜幾種酶活性的影響及其與產量和品質的關系[J]. 中國油料作物學報, 2001, 23(4): 32-37.
Tang X R, Guan C Y. Effect of N application on activities of several enzymes and trait of yield and quality in rapeseed cultivar Xiangyou No.13[J]. Chinese Journal of Oil Crop Sciences, 2001, 23(4): 32-37.
[19]Rademacher T, Hausler R E, Hirsch H J,etal. An endineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants[J]. The Plant Journal, 2002, 32: 25-39.
[20]李敏, 張洪程, 楊雄, 等. 高產氮高效型粳稻品種的葉片光合及衰老特性研究[J]. 中國水稻科學, 2013, 27(2): 168-176.
Li M, Zhang H C, Yang X,etal. Leaf photosynthesis and senescence characteristics of japonica rice cultivars with high yield and high N-efficiency[J]. China Journal of Rice Science, 2013, 27(2): 168-176.
[21]羅鳳. 氮磷脅迫對水稻營養(yǎng)生長期氮代謝的影響分析[D]. 武漢: 華中農業(yè)大學碩士學位論文, 2011.
Luo F. The influence analysis of nitrogen and phosphorus starvation on nitrogen metabolism during rice vegetative growth stage[J]. Wuhan: MS Thesis of Huazhong Agricultural University, 2011.
[22]Shinano T, Nakajima K, Wasaki J,etal. Development regulation of photosynthate distribution in leaves of rice[J]. Photosynthetica, 2006, 44(1):1-10.
[23]鄒娟, 魯劍巍, 劉銳林, 等. 4個雙低甘藍型油菜品種干物質積累及養(yǎng)分吸收動態(tài)[J]. 華中農業(yè)大學學報, 2008, 27(2): 229-234.
Zou J, Lu J W, Liu R L,etal. Dynamics of dry mass accumulation and nutrients uptake in 4 double-low rapeseed (BrassicanapusL.) varieties[J]. Journal of Huazhong Agricultural University, 2008, 27(2): 229-234.
[24]Severine S, Nathalie M J, Christian J,etal. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by15N in vivo labeling throughout[J]. Plant Physiology, 2005, 137:1463-1473.
Different activities of SPS and PEPC in oilseed rape with different nitrogen use efficiency and their influence on seed yield and oil-content
YU Jia-ling1, SONG Hai-xing1, XIE Gui-xian1*, ZHANG Zhen-hua1*, LIAO Qiong1, GUAN Chun-yun2
(1CollegeofResourcesandEnvironmentalSciencesofHunanAgriculturalUniversity/NationalEngineeringLaboratoryofSoilandFertilizerResourcesEfficientUtilization/SouthernRegionalCollaborativeInnovationCenterforGrainandOilCropsinChina/HunanProvincialKeyLaboratoryofFarmlandPollutionControlandAgriculturalResourcesUse/HunanProvincialKeyLaboratoryofPlantNutritioninCommonUniversity,Changsha410128,China; 2NationalCenterofOilseedCropsImprovement,HunanBranch,Changsha410128,China)
【Objectives】 Transportation of carbon skeleton into carbon metabolism pathway and nitrogen metabolism circulation were respectively controlled by SPS (sucrose phosphate synthase) and PEPC (phosphoenolpyruvate carboxylase), and then the yield and grain quality of crop were affected by the two enzymes. In order to elucidate the regulation mechanism of contradiction between seed protein and oil during the high nitrogen use efficiency (NUE) progress in oilseed rape with high N efficiency, the different activities of SPS and PEPC and their influence on seed yield and oil content in oilseed rape with different NUE were studied in this paper.【Methods】 Variety No.27 with high NUE (H) and variety No.6 with low NUE (L) were cultured in soil under different nitrogen conditions [normal nitrogen condition(N) and nitrogen stress condition(S)] to study the difference of enzyme activities (SPS and PEPC) in leaf from seedling stage to flowering stage, in silique at early silique stage and in grain and silique husk at silique mid-term stage between the two NUE rape varieties as well as carbon (C) transportation amount and rate and their seed yield and seed oil content. 【Results】The test results showed that seed yield and seed oil content of high NUE (No.27) variety were significantly higher than those of low NUE (No.6) variety under two nitrogen conditions(normal nitrogen and nitrogen stress), the high NUE rape showed obvious variety advantage. Moreover, activities of SPS and PEPC of high NUE (No.27) variety in leaf from seedling stage to flowering stage were higher than those of low NUE (No.6) variety under two nitrogen conditions, the same tendency was found in silique at early silique stage as well as in grain and silique husk at silique mid-term stage. While the SPS/PEPC of the two variety rape was changed at different growth periods, SPS/PEPC of high NUE (No.27) variety in leaf at vegetative stage was higher than those of low NUE (No.6) variety, SPS/PEPC of the two varieties rape was similar in leaf at flowering stage, instead SPS/PEPC in main reproduction organs at silique stage of high NUE (No.27) variety was lower compared to low NUE (No.6) variety, which revealed that amount of delivery of carbon skeleton to C metabolism and N assimilation of high NUE (No.27) variety was more than those of low NUE (No.6) variety during the whole growth period and the response of C metabolism to N assimilation of high NUE (No.27) variety was higher than those of low NUE (No.6) variety at early growth stage, while at late growth stage the response of response of high NUE (No.27) variety was lower than that of low NUE (No.6) variety. Meanwhile C transportation amount and rate of high NUE (No.27) variety were significantly higher than those of low NUE (No.6) variety, which might be the vital physiological mechanism that regulating the contradiction between seed protein and oil during the high nitrogen use efficiency (NUE) progress in oilseed rape with high N efficiency. As for influence of different nitrogen conditions on items which we tested above, the results showed that seed yield, activity of PEPC, carbon transportation amount and rate were higher under normal nitrogen condition than under nitrogen stress condition, but seed oil content, activity of SPS, SPS/PEPC showed an inverse law, these phenomena appeared in the two rape varieties.【Conclusions】Compared to low NUE (No.6) variety, more carbon skeleton was transported into C and N metabolism pathway in high NUE (No.27) variety during the whole growth stage. This was the important premise for HNUE variety to coordinate the contradiction between C and N metabolisms. Response of C metabolism to N assimilation was higher during earlier growth stage than during later growth stage. Meanwhile, higher proportion of C in vegetative organs was transported into seed during later growth stage, which met the demands of carbon skeleton in C and N metabolism and coordinated the contradiction between seed oil and protein contents during later growth stage.
BrassicanapusL.; SPS; PEPC; carbon nitrogen metabolism; seed oil
2014-12-06接受日期: 2015-02-07網絡出版日期: 2015-12-11
國家自然科學基金(31372130, 31071851, 31101596); 國家支撐計劃(2012BAD15BO4, 2010BAD01B01); 湖南省高校創(chuàng)新平臺開放基金(12K064)資助。
余佳玲(1990—),女,湖南冷水江人,碩士研究生,主要從事植物營養(yǎng)生理研究。E-mail: Haizeiwang00@sina.com
E-mail:xieguixian@126.com; E-mail:zhzh1468@163.com
S565.4.01
A
1008-505X(2016)03-0618-08