李榮強(qiáng),呂愛民,王建忠,李 陽,詹世遠(yuǎn),王月英
[1.中國石油大學(xué)(華東),山東 青島 266580;2.中國石化 勝利油田分公司 工程技術(shù)管理中心,山東 東營 257000]
?
低滲透油藏仿水平井注采井網(wǎng)產(chǎn)能
李榮強(qiáng)1,2,呂愛民1,王建忠1,李陽1,詹世遠(yuǎn)1,王月英1
[1.中國石油大學(xué)(華東),山東 青島 266580;2.中國石化 勝利油田分公司 工程技術(shù)管理中心,山東 東營 257000]
仿水平井技術(shù)可大幅度增加單井泄油面積和控制儲(chǔ)量,實(shí)現(xiàn)了低豐度、特低滲透油藏的有效動(dòng)用。為比較該技術(shù)與傳統(tǒng)水平井技術(shù)開發(fā)效果的不同,對(duì)仿水平井不同開發(fā)井網(wǎng)穩(wěn)態(tài)產(chǎn)能進(jìn)行精確快速預(yù)測,以仿水平井滲流特征為基礎(chǔ),基于流管流線積分方法建立了不同井網(wǎng)形式考慮啟動(dòng)壓力梯度的仿水平井產(chǎn)能預(yù)測模型。與實(shí)際產(chǎn)量對(duì)比表明,所建立產(chǎn)能預(yù)測模型得到的計(jì)算結(jié)果具有較高的準(zhǔn)確度(最大誤差為8.04%)。通過應(yīng)用所建立模型進(jìn)行計(jì)算對(duì)比可知,仿水平水井長度相同時(shí),交錯(cuò)井網(wǎng)穩(wěn)態(tài)產(chǎn)能大于正對(duì)井網(wǎng)穩(wěn)態(tài)產(chǎn)能,波及面積較大,開發(fā)效果較好,而且正對(duì)井網(wǎng)對(duì)水井長度的敏感性大于交錯(cuò)井網(wǎng)。該研究對(duì)特低滲透油藏仿水平井井網(wǎng)注水開發(fā)具有一定的理論指導(dǎo)意義。
產(chǎn)能;穿透比;仿水平井;注采井網(wǎng);低滲透油藏
針對(duì)特低滲透油藏常規(guī)開發(fā)產(chǎn)能低、效益差的問題,勝利油田2012年以來應(yīng)用仿水平井技術(shù)結(jié)合適配井網(wǎng)進(jìn)行注水開發(fā),突破了特低滲透油藏難以有效開發(fā)的瓶頸。與直井常規(guī)壓裂、彈性開發(fā)不同,仿水平井技術(shù)可形成類似水平井筒的長縫滲流通道。裂縫半長一般達(dá)到200 m以上,為普通直井壓裂的2~3倍,平均單井控制儲(chǔ)量為普通直井壓裂的1.6倍,并可大幅度提高油井產(chǎn)能。目前特低滲透油藏仿水平井開發(fā)在滲流機(jī)理、井網(wǎng)部署及產(chǎn)能預(yù)測等方面的研究尚相對(duì)滯后[1-4],制約了該技術(shù)在低滲透油藏中的進(jìn)一步規(guī)?;瘜?shí)施。王鋒、Stalgorov和Rbeawi等學(xué)者多利用保角變換、點(diǎn)源函數(shù)、拉式變換等方法對(duì)井網(wǎng)穩(wěn)態(tài)產(chǎn)能和非穩(wěn)態(tài)產(chǎn)能進(jìn)行計(jì)算,普遍存在應(yīng)用局限、公式復(fù)雜等問題[5-13],難以推廣到低滲透油藏仿水平井注采井網(wǎng)。
圖1 仿水平井與直井、水平井流線分布對(duì)比示意圖Fig.1 Streamline distributions of imitation horizontal,vertical and horizontal wellsa.直井滲流場;b.水平井滲流場;c.仿水平井滲流場
為了保證預(yù)測精度并提高計(jì)算速度,亟需針對(duì)低滲油藏仿水平井井網(wǎng)的滲流特點(diǎn)[14-17]開展相關(guān)的研究,從而為現(xiàn)場仿水平井井網(wǎng)的優(yōu)化部署奠定理論基礎(chǔ)。
仿水平井技術(shù)是通過高加砂量,在儲(chǔ)層中形成半縫長達(dá)200m以上的長縫,形成“仿水平井”,增大泄油面積,提高油井產(chǎn)能。圖1為仿水平井與直井、水平井的流線分布對(duì)比示意圖。由圖可見,仿水平井繼承了水平井的平面滲流特征,其注采井網(wǎng)在平面和縱向上均呈現(xiàn)線性流模式,滲流阻力比常規(guī)的直井和水平井都小,更易克服啟動(dòng)壓力梯度,在低滲油藏中取得高產(chǎn)能。
1.1單井產(chǎn)量的推導(dǎo)
根據(jù)上述仿水平井井網(wǎng)流線特征,采用劈分流場法,建立仿水平井井網(wǎng)產(chǎn)能模型,基本假設(shè)包括:①流體為油水兩相流體;②仿水平井高度與油層有效厚度相等,忽略仿水平井形態(tài)變化;③不考慮多孔介質(zhì)和液體的壓縮性;④等溫穩(wěn)態(tài)滲流;⑤考慮啟動(dòng)壓力梯度的影響。
從注入井到生產(chǎn)井,可視為油藏流體在以不同流線為邊界形成的“流管”內(nèi)流動(dòng)。流管具有如下性質(zhì):①流管不能相交;②流管形狀及位置,在定常流動(dòng)時(shí)不隨時(shí)間變化;③流管不能在流場內(nèi)部中斷。假設(shè)油水井之間由一系列流管構(gòu)成,任一不與流管側(cè)面平行的面被流管截取的那部分面積,稱作流管截面。考慮啟動(dòng)壓力梯度時(shí)截面處流量:
(1)
式中:Δq為截面流量,cm3/s;k為地層滲透率,10-3μm2;A(ξ)為截面面積,cm2;λ為啟動(dòng)壓力梯度,0.1 MPa/cm;μ為地層混合流體粘度,mPa·s。
穩(wěn)定滲流的混合流體粘度按照多相流飽和度加權(quán)法修正,即:
式中:μo為油相粘度,mPa·s;μw為水相粘度,mPa·s;Siw為瞬時(shí)含水飽和度,%;Siwc為束縛水飽和度,%;Sior為殘余油飽和度,%。
如圖2所示,在一個(gè)注采單元內(nèi),井距AB=L,cm;流管ξ,流管面積A(ξ),cm2;流管中心流線長X,cm,由X1和X2組成;rw為注水井和生產(chǎn)井的井筒半徑,cm。
對(duì)(1)變形并沿流線積分:
(3)
可得沿流線積分的流量為:
(4)
式中:h為油層有效厚度,cm;pi為注水井井底壓力,0.1 MPa;pw為采油井井底壓力,0.1 MPa。
代入式(4)可得X流線上產(chǎn)量:
(5)
圖2 注采單元示意圖Fig.2 Sketch map of the flooding unit
(6)
由于啟動(dòng)壓力梯度的存在,在低滲透油藏注采壓差一定時(shí),并非整個(gè)井網(wǎng)單元都能動(dòng)用,將滲流達(dá)到穩(wěn)態(tài)時(shí)能動(dòng)用的最大注水井和生產(chǎn)井的張開角度定為αn,即(6)式中被積分函數(shù)等于0時(shí)的α取值,α0為可以波及到的最大角度,則α0=min{αm,αn}。
1.2交錯(cuò)排狀仿水平井網(wǎng)產(chǎn)能
取注采井網(wǎng)的1/4為計(jì)算單元(圖3),將其分為3個(gè)區(qū),劃分基本原則是保持計(jì)算單元與實(shí)際流線盡量一致,以保證計(jì)算結(jié)果的合理性。
其中Ⅰ區(qū)、Ⅱ區(qū)產(chǎn)能近似為曲線流管積分,可利用單井注采公式得到產(chǎn)量。
1) Ⅰ區(qū)產(chǎn)量
(7)
2) Ⅱ區(qū)產(chǎn)量
(8)
其中,α01,α02為產(chǎn)生有效流量的流線所能張開的最大角度:
(9)
(10)
3) Ⅲ區(qū)產(chǎn)量
假設(shè)仿水平油井長度L1與仿水平水井長度L2存在以下關(guān)系:
L2=mL1(m≠1)
(11)
利用三角變化關(guān)系,可以得到:
由插值可得微流管截面積為(圖4):
(13)
根據(jù)(4)式可得微流管產(chǎn)量:
圖3 交錯(cuò)排狀井網(wǎng)1/4注采單元Fig.3 Sketch map of 1/4 flooding unit of the cross well pattern
圖4 交錯(cuò)排狀井網(wǎng)Ⅲ區(qū)計(jì)算單元Fig.4 Sketch map of Ⅲ zone of the cross well pattern
(14)
(15)
1.3正對(duì)式仿水平井網(wǎng)產(chǎn)能
圖5 正對(duì)排狀井網(wǎng)1/4注采單元Fig.5 Sketch map of 1/4 flooding unit of the staggered well pattern
(16)
與交錯(cuò)井網(wǎng)Ⅱ區(qū)、Ⅲ區(qū)相似,可以得到正對(duì)井網(wǎng)Ⅱ區(qū)流量為:
(17)
式中:a03=min{β3,an3}。
2.1產(chǎn)能模型驗(yàn)證
根據(jù)沙河街組三段(沙三段)低滲透油藏的相關(guān)資料,設(shè)定儲(chǔ)層基質(zhì)滲透率K=5.0×10-3μm2,儲(chǔ)層有效厚度h=10m,注入井井底壓力pi=52 MPa,油井井底壓力為pw=22 MPa,啟動(dòng)壓力梯度λ=0.06 MPa/m,井距L=600 m,排距d=200 m,水井壓縫半長L2=200 m,油井壓縫半長L1=200 m,地層原油的體積系數(shù)Bo=1.1,地面原油的密度ρo=0.90 g/cm3,油相的粘度μo=2.31 mPa·s,水相的粘度μw=0.31 mPa·s,穩(wěn)態(tài)后的含水飽和度Sw=0.80,束縛水飽和度Swc=0.25,殘余油飽和度Sor=0.17,此時(shí)水相相對(duì)滲透率Krw=0.46,油相相對(duì)滲透率為Kro=0.37。
對(duì)試驗(yàn)區(qū)塊不同井網(wǎng)形式下共11口仿水平井穩(wěn)態(tài)產(chǎn)能進(jìn)行統(tǒng)計(jì)整理(表1),根據(jù)實(shí)際參數(shù),利用產(chǎn)能模型計(jì)算結(jié)果與之進(jìn)行對(duì)比驗(yàn)證,最大誤差為8.04%,能夠滿足現(xiàn)場的精度要求。
2.2兩種井網(wǎng)的產(chǎn)能對(duì)比
由圖6知,在相同的仿水平水井長度下,隨井底流壓增大,兩種井網(wǎng)產(chǎn)油量基本呈現(xiàn)線性下降的趨勢;在相同井底流壓下,隨仿水平水井長度的增加,產(chǎn)油量逐漸增大。仿水平水井長度相同時(shí),交錯(cuò)井網(wǎng)穩(wěn)態(tài)產(chǎn)能大于正對(duì)井網(wǎng)穩(wěn)態(tài)產(chǎn)能,而且水井長度對(duì)正對(duì)井網(wǎng)影響程度大于其對(duì)交錯(cuò)井網(wǎng)的影響。
1) 仿水平井井網(wǎng)穩(wěn)態(tài)滲流在平面和縱向上均呈現(xiàn)線性流模式,繼承了水平井的平面滲流特征,改善了水平井縱向滲流模式。
2) 根據(jù)正對(duì)式、交錯(cuò)式仿水平井注采井網(wǎng)的不同區(qū)域油水兩相流線特征差異,分別計(jì)算疊加的不同油藏區(qū)域的產(chǎn)能,可快速計(jì)算不同仿水平井注采井網(wǎng)的產(chǎn)能,并具有較高的精度。
3) 仿水平水井長度相同時(shí),交錯(cuò)井網(wǎng)穩(wěn)態(tài)產(chǎn)能大于正對(duì)井網(wǎng)穩(wěn)態(tài)產(chǎn)能,而且水井長度對(duì)正對(duì)井網(wǎng)影響程度大于其對(duì)交錯(cuò)井網(wǎng)的影響。
圖6 兩種井網(wǎng)仿水平井產(chǎn)油量對(duì)比曲線Fig.6 Correlative production curves of two well patterns
表1 產(chǎn)能新模型與實(shí)際產(chǎn)能驗(yàn)證數(shù)據(jù)
[1]廉黎明,秦積舜,楊思玉,等.水平井滲流模型分析評(píng)價(jià)及發(fā)展方向[J].石油與天然氣地質(zhì),2013,34(6):821-826.
Lian Liming,Qin Jishun,Yang Siyu,et al.Analysis and evaluation on horizontal well seepage models and their developing trends[J].Oil & Gas Geology,2013,34(6):821-826.
[2]計(jì)秉玉,李莉,王春艷.低滲透油藏非達(dá)西滲流面積井網(wǎng)產(chǎn)油量計(jì)算方法[J].石油學(xué)報(bào),2008,2(29):256-261.
Ji Bingyu,Li Li,Wang Chunyan.Oil production calculation for area well pattern of low-permeability reservoir with non-Darcy seepage flow[J].Acta Petrolei Sinica,2008,2(29):256-261.
[3]蘇玉亮,曹國梁,袁彬,等.低滲透油藏壓裂井網(wǎng)水電模擬[J].深圳大學(xué)學(xué)報(bào)(理工版),2013,30(3):294-298.
Su Yuliang,Cao Guoliang,Yuan Bin,et al.Hydroelectric simulation experimental research on fractured well pattern in low permeability reservoirs[J].Journal of Shenzhen University Science and Enginee-ring,2013,30(3):294-298.
[4]楊清立,楊正明,王一飛,等.特低滲透油藏滲流理論研究[J].鉆采工藝,2007,30(6):52-55.
Yang qingli,Yang Zhengming,Wang Yifei,et al.Study of flow theory in ultra-low permeability oil reservoir[J].Drilling & Production Technology,2007,30(6):52-55.
[5]王鋒,劉慧卿,呂廣忠.低滲透油藏長縫壓裂直井穩(wěn)態(tài)產(chǎn)能預(yù)測模型[J].油氣地質(zhì)與采收率,2014,21(1):81-83.
Wang Feng,Liu Huiqing,Lv Guangzhong.Steady-state productivity prediction model for long-length fractured vertical well in low permeability oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2014,21(1):81-83.
[6]Wang J,Jia A.A general productivity model for optimization of multiple fractures with heterogeneous properties[J].Journal of Natural Gas Science and Engineering,2014,21:608-624.
[7]Stalgorova E,Mattar L.Practical analytical model to simulate production of horizontal wells with branch fractures[C]//SPE Canadian Unconventional Resources Conference,Calgary,Society of Petroleum Engineers,2012.
[8]Torcuk M A,Kurtoglu B,Fakcharoenphol P,et al.Theory and application of pressure and rate transient analysis in unconventional reservoirs[C]//SPE Annual Technical Conference and Exhibition,New Orleans,Society of Petroleum Engineers,2013.
[9]Stalgorova K,Mattar L.Analytical model for unconventional multifractured composite systems[J].SPE Reservoir Evaluation & Enginee-ring,2013,16(03):246-256.
[10]Jiang R,Xu J,Sun Z,et al.Rate transient analysis for multistage fractured horizontal well in tight oil reservoirs considering stimulated reservoir volume[J].Mathematical Problems in Engineering,2014,2014.
[11]Al Rbeawi S J H,Tiab D.Effect of penetrating ratio on pressure behavior of horizontal wells with multiple-inclined hydraulic fractures[C]//SPE Western Regional Meeting,Society of Petroleum Engineers,2012.
[12]Al Rbeawi S,Tiab D.Impacts of reservoir boundaries and fracture dimensions on pressure behaviors and flow regimes of hydraulically fractured formations[J].Journal of Petroleum Exploration and Production Technology,2014,4(1):37-57.
[13]Al-kobaisi M,Ozkan E,Kazemi H.A hybrid numerical/analytical model of a finite-conductivity vertical fracture in tercepted by a horizontal well[J].SPE,2006:345-355.
[14]李軍詩,侯劍鋒,胡永樂,等.壓裂水平井不穩(wěn)定滲流分析[J].石油勘探與開發(fā),2008,35(1):92-96.
Li Junshi,Hou Jianfeng,Hu Yongle,et al.Performance analysis of unsteady porous flow in fractured horizontal wells[J].Petroleum Exploration and Development,2008,35(1):92-96.
[15]廉培慶,同登科,程林松,等.垂直壓裂水平井非穩(wěn)態(tài)條件下的產(chǎn)能分析[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,33(4):98-102.
Lian Peiqing,Tong Dengke,Cheng Linsong,et al.Analysis of productivity in unsteady state of vertical fractured horizontal well[J].Journal of China University of Petroleum,2009,33(4):98-102.
[16]郭肖,伍勇.啟動(dòng)壓力梯度和應(yīng)力敏感效應(yīng)對(duì)低滲透氣藏水平井產(chǎn)能的影響[J].石油與天然氣地質(zhì),2007,28(4):539-543.
Guo Xiao,Wu Yong.Influence of start-up pressure gradient and stress sensitivity on productivity of low-permeability gas reservoirs[J].Oil & Gas Geology,2007,28(4):539-543.
[17]熊敏.利用啟動(dòng)壓力梯度計(jì)算低滲油藏極限注采井距的新模型及應(yīng)用[J].石油天然氣學(xué)報(bào),2006,28(6):146-149.
Xiong Min.A new model for calculating ultimate injection-production well spacing in low permeability reservoirs with starting pres-sure gradient and its application[J].Journal of Oil and Gas Technology,2006,28(6):146-149.
(編輯董立)
Productivity of the imitation horizontal well pattern in low permeability reservoirs
Li Rongqiang1,2,Lyu Aimin1,Wang Jianzhong1,Li Yang1,Zhan Shiyuan1,Wang Yueying1
(1.ChinaUniversityofPetroleum(EastChina),Qingdao,Shandong266580,China;2.EngineeringTechnologyManagementCenterofShengliOilfield,SINOPEC,Dongying,Shandong257000,China)
Imitation horizontal wells can significantly enlarge single well drainage area and increase controlled reserves,thus effectively develop low-abundance and ultra-low permeability reservoirs.In order to accurately and rapidly predict steady-state productivity of various imitation horizontal well patterns,deliverability prediction models with start-up pressure being taken into consideration were established for different imitation horizontal well patterns by using stream tube flow line integral method based on seepage flow characteristics of imitation horizontal wells.Comparison of the modeling results with actual production shows that the models are accurate in productivity prediction with an error less than 8.04% only.The models also show that staggered well pattern is better than cross well pattern in terms of steady-state productivity and sweep area when the lengths of the imitation horizontal well are the same.The latter is also more sensitive to well length than the former.The study may help theoretically guiding the application of imitation horizontal wells in ultra-low permeability reservoirs.
productivity,penetration ratio,imitation horizontal well,injector-producer pattern,low-permeability oil reservoir
2016-01-21;
2016-04-25。
李榮強(qiáng)(1973—),男,博士研究生,高級(jí)工程師,油氣田開發(fā)理論與技術(shù)。E-mail:lirongqiang.slyt@sinopec.com。
簡介:王建忠(1973—),博士、副教授,油氣滲流理論與油田開發(fā)技術(shù)。E-mail:wangjzh@upc.edu.cn。
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(14CX05025A,14CX02045A);國家自然科學(xué)基金項(xiàng)目(51490654)。
0253-9985(2016)03-0439-05
10.11743/ogg20160318
TE348
A