向亞萍,周華飛,劉永鋒,陳志誼
(1江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,南京 210014;2南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,南京 210095)
解淀粉芽孢桿菌B1619脂肽類抗生素的分離鑒定及其對(duì)番茄枯萎病菌的抑制作用
向亞萍1,2,周華飛1,2,劉永鋒2,陳志誼1,2
(1江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,南京 210014;2南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,南京 210095)
【目的】從解淀粉芽孢桿菌(Bacillus amyloliquefaciens)生防菌株B1619發(fā)酵液上清中分離脂肽類抗生素,分析其抑菌活性相關(guān)成分,為應(yīng)用解淀粉芽孢桿菌B1619菌株防控番茄枯萎病提供依據(jù)?!痉椒ā坷锰禺愋砸飳?duì)B1619中3種脂肽類抗生素合成相關(guān)基因sfp、ituA和fenB進(jìn)行檢測(cè);通過鹽酸沉淀、甲醇抽提法等方法提取脂肽類抗生素粗提物;用SupelcleanTMLC-18柱及PHASE HF-NH2柱對(duì)3種脂肽類抗生素粗提物進(jìn)行分離;通過MALDI-TOF-MS和HPLC分析、鑒定3種脂肽類抗生素;采用平板對(duì)峙培養(yǎng)分別測(cè)定3種脂肽類抗生素粗提物對(duì)番茄枯萎病菌(Fusarium oxysporum f.sp.lycopersici)的抑菌活性?!窘Y(jié)果】從解淀粉芽孢桿菌B1619的基因組DNA中擴(kuò)增sfp、ituA和fenB等脂肽類抗生素合成基因,擴(kuò)增產(chǎn)物經(jīng)克隆、測(cè)序分析,表明B1619菌株中含有這3個(gè)基因。通過HPLC分析,發(fā)現(xiàn)60%甲醇洗脫液分離物分別在12、16.5、18 min處出現(xiàn)相應(yīng)峰值,保留時(shí)間與bacillomycin L標(biāo)準(zhǔn)品一致,分泌量為18.5 mg·L-1;70%甲醇洗脫液分離物分別在22、34、37、51及53 min處出現(xiàn)相應(yīng)峰值,保留時(shí)間與fengycins標(biāo)準(zhǔn)品一致,分泌量為5.1 mg·L-1;100%甲醇洗脫液分離物分別在27、37、41、51及53 min處出現(xiàn)相應(yīng)峰值,保留時(shí)間與surfactins標(biāo)準(zhǔn)品一致,分泌量為74.3 mg·L-1。經(jīng)液質(zhì)聯(lián)用進(jìn)一步驗(yàn)證分析3種脂肽類抗生素的質(zhì)子化峰值,60%甲醇洗脫液分離物峰值范圍在m/z=1 043.4、1 057.5和1 071.4 Da,是C13—C15的bacillomycin L;70%甲醇洗脫液分離物峰值范圍在m/z= 1 463.9、1 477.9、1 491.9和1 505.9 Da,是C15—C17的fengycins;100%甲醇洗脫液分離物峰值范圍在m/z=1 008.6、1 022.7和1 036.7 Da,是C13 —C15的surfactins。平板對(duì)峙法試驗(yàn)結(jié)果表明1 mg·mL-1bacillomycin L和fengycins對(duì)番茄枯萎病菌有較強(qiáng)的抑菌效果,而1 mg·mL-1surfactins對(duì)番茄枯萎病菌的抑菌活性較弱,再將surfactins的濃度提高至3和6 mg·mL-1,發(fā)現(xiàn)其抑菌效果沒有明顯變化?!窘Y(jié)論】B1619菌株分泌3種脂肽類抗生素,其中對(duì)番茄枯萎病菌生長(zhǎng)起重要抑制作用的抗生素是bacillomycin L和fengycins,surfactins對(duì)番茄枯萎病菌的抑制活性較弱。
解淀粉芽孢桿菌B1619;脂肽類抗生素;抑菌活性;番茄枯萎病菌
【研究意義】番茄枯萎病是由番茄尖鐮孢番茄?;停‵usarium oxysporum f. sp. lycopersici)引起的一種維管束疾病,現(xiàn)已成為影響番茄生產(chǎn)和品質(zhì)的重要土傳病害。解淀粉芽孢桿菌(Bacillus amyloliquefaciens)是重要的植物根圍促生細(xì)菌(PGPR),在植物病害生物防治中起重要作用[1]。解淀粉芽孢桿菌B1619菌株是筆者實(shí)驗(yàn)室研發(fā)的生物殺菌劑發(fā)酵菌株之一,能有效防控設(shè)施蔬菜枯萎病的發(fā)生和危害[2]。芽孢桿菌分泌的脂肽類抗生素是其抑制病原真菌生長(zhǎng)的主要抑菌物質(zhì)之一[3-6],分離與鑒定 B1619分泌的脂肽類抗生素,可為應(yīng)用 B1619 生物防控設(shè)施茄科蔬菜枯萎病提供依據(jù)?!厩叭搜芯窟M(jìn)展】郝曉娟等[7]發(fā)現(xiàn)短短芽孢桿菌(Brevibacillus brevis)JK-2菌株對(duì)番茄枯萎病有較好的防治效果;詹發(fā)強(qiáng)等[8]從大田土壤中分離出一株解淀粉芽孢桿菌(B. amyloliquefaciens GU323369.1)近似種,其在土壤及根中有較好的定殖效果,從而能夠抑制番茄枯萎病的發(fā)生及擴(kuò)散。解淀粉芽孢桿菌能夠產(chǎn)生多種抗菌物質(zhì),解淀粉芽孢桿菌FZB42的全基因組測(cè)序揭示了其能產(chǎn)生多種防病促生物質(zhì)[9],戴秀華等[10]發(fā)現(xiàn)解淀粉芽孢桿菌Lx-11可產(chǎn)生蛋白酶、纖維素酶和嗜鐵素等物質(zhì),而脂肽類抗生素是其最重要的抗菌物質(zhì)[11-12]。脂肽類抗生素包括伊枯草素家簇iturins(iturin A、iturin C、iturin D、iturin E;bacillomycin D、bacillomycin F、bacillomycin L;mycosubtilin)、泛革素家簇 fengycins和表面活性素家簇 surfactins[4,13-15],但不同種類的脂肽類物質(zhì)抗菌性能不同,其中iturins和fengycins具有很強(qiáng)的抗真菌活性,而surfactins對(duì)病毒、腫瘤、支原體都有很高的抑制活性[5,16-17]。解淀粉芽孢桿菌SWB16分泌的脂肽類抑菌物質(zhì)fengycins和iturins可以抑制球孢白僵菌(Beauveria bassiana)的生長(zhǎng)[18]。ARREBOLA等[19]從水果表面分離出解淀粉芽孢桿菌PPCBO04,發(fā)現(xiàn)其抗菌活性物質(zhì)為iturinA;喬俊卿等[20]發(fā)現(xiàn)B1619在番茄根部定殖能力較強(qiáng),其還可促進(jìn)植物生長(zhǎng),抑制線蟲[21]、治理水環(huán)境污染等?!颈狙芯壳腥朦c(diǎn)】生防菌B1619能夠有效地防控番茄枯萎病,防治效果達(dá)到80%左右,其主要控病作用機(jī)理是B1619在植物根部定殖,保護(hù)植物不受病菌侵染,誘導(dǎo)植株產(chǎn)生抗病性等[20],現(xiàn)已開發(fā)成安全、環(huán)保、高效的生物殺菌劑“1.2億活芽孢/g 解淀粉芽孢桿菌B1619水分散粒劑”[22]。然而筆者前期發(fā)現(xiàn)生防菌B1619分泌的脂肽類抗生素對(duì)番茄枯萎病有直接的抑菌作用。【擬解決的關(guān)鍵問題】分離、鑒定B1619分泌的3種脂肽類抗生素,并研究3種脂肽類抗生素對(duì)番茄枯萎病菌生長(zhǎng)的抑菌活性及其強(qiáng)弱,為推廣應(yīng)用生物殺菌劑B1619防控番茄枯萎病提供依據(jù)。
表1 脂肽類抗生素相關(guān)基因引物名稱和序列Table 1 Primer names and sequences of the lipopeptide antibiotics corresponding genes
試驗(yàn)于 2015年在江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所完成。
1.1供試菌種
解淀粉芽孢桿菌B1619菌株、番茄枯萎病菌均為筆者實(shí)驗(yàn)室保存。B1619菌株所用培養(yǎng)基為 LB (g·L-1):胰蛋白胨10、酵母粉5、NaCl 10。番茄枯萎病原真菌培養(yǎng)基為PDA(g·L-1):馬鈴薯200、蔗糖20、pH 7.0,28℃培養(yǎng)。
1.2主要試劑及儀器
所用甲醇、乙腈、三氟乙酸等試劑為色譜純,DNA Marker、Taq DNA聚合酶、DNA提取試劑盒、質(zhì)粒提取試劑盒和膠回收試劑盒購(gòu)于北京全式金生物技術(shù)有限公司,SupelcleanTMLC-18柱由美國(guó)色譜科公司生產(chǎn),PHASE HF-NH2柱由美國(guó)安捷倫公司生產(chǎn)。高速冷凍離心機(jī)GL-21M購(gòu)自湖南湘儀離心機(jī)儀器有限公司,Agilent 1100高效液相色譜儀和Agilent 6410三重串聯(lián)四級(jí)桿質(zhì)譜儀購(gòu)自美國(guó)安捷倫公司,MyCyclerTM梯度PCR儀購(gòu)自美國(guó)BioRad公司,分光光度計(jì)購(gòu)自上海第三分析儀器廠。
1.3脂肽類抗生素合成相關(guān)基因克隆
設(shè)計(jì)擴(kuò)增sfp、ituA和fenB等基因的引物序列(表1),引物在上海生工生物工程股份有限公司合成。提取解淀粉芽孢桿菌B1619基因組DNA,采用PCR方法進(jìn)行擴(kuò)增,sfp、ituA以及fenB大小為預(yù)期產(chǎn)物大小,分別為 675、1 150和1 400 bp。
根據(jù)所設(shè)計(jì)引物的退火溫度和擴(kuò)增片段大小設(shè)計(jì)PCR擴(kuò)增反應(yīng)程序。擴(kuò)增產(chǎn)物經(jīng)膠回收試劑盒凝膠回收后,連接至 pMD18-T質(zhì)粒載體,測(cè)序在生工生物工程(上海)股份有限公司完成。
1.4脂肽類抗生素的分離和純化
脂肽類粗提物的提取采用酸沉淀和甲醇提取的方法。B1619在LB培養(yǎng)基中培養(yǎng)72 h后離心除去菌體,上清液用濃鹽酸調(diào)至pH 2.0沉淀過夜。10 000×g離心25 min得到沉淀,沉淀用甲醇抽提2次(甲醇總體積為發(fā)酵液體積的1/10),每次抽提2 h,合并甲醇抽提物。甲醇抽提物減壓濃縮后過0.22 μm濾膜,即為脂肽類化合物粗提物。
脂肽類抗生素的分離方法參照LUO等[23-24]。將粗提物采用去離子水稀釋為含 30%甲醇水溶液,pH調(diào)至7.0,然后上樣于NH2固相萃取柱,分別用含50%甲醇水溶液,100%甲醇,含0.5%甲酸甲醇溶液,1%甲酸甲醇溶液,2%甲酸甲醇溶液梯度洗脫,在1%甲酸甲醇洗脫溶液中含有目標(biāo)化合物。將含 1%甲酸甲醇洗脫溶液的pH調(diào)至7.0,氮?dú)獯蹈蓾饪s后用去離子水稀釋為30%甲醇水溶液,然后上樣于C18固相萃取柱;采用3倍柱體積的50%、60%、70%、80%、90% 和100%甲醇水溶液梯度洗脫。將60%、70%、80%、90%和100%甲醇水洗脫液氮?dú)獯蹈蓾饪s,再經(jīng)過真空液氮冷凍儀將不同甲醇水洗脫液干燥成粉。
1.5基質(zhì)協(xié)助激光解吸附離子化-飛行時(shí)間質(zhì)譜(MALDI-TOF-MS)和高效液相色譜(HPLC)檢測(cè)
為了準(zhǔn)確了解菌株產(chǎn)生的脂肽類抗生素種類,對(duì)其進(jìn)行基質(zhì)協(xié)助激光解吸附離子化-飛行時(shí)間質(zhì)譜分析。使用337 nm氮激光源解吸附和電離,采用α-氰-4-羥肉桂酸(α-cyano-4-hydroxycinnamic acid)為基質(zhì),1 μL樣品與等體積的基質(zhì)混勻,置于儀器離子源進(jìn)行測(cè)定。質(zhì)量掃描范圍為1 000—2 000 Da,方法參考文獻(xiàn)[14]。BacillomycinL、sunfactins及fengycins為筆者實(shí)驗(yàn)室前期自主制備[23-24],配制成1 mg·mL-1,作為標(biāo)準(zhǔn)樣品。HPLC采用C18柱(微粒大小3.5 μm;柱長(zhǎng)及柱直徑 25和 41 mm;型號(hào) VYDAC 218 TP;VYDAC,Hesperia,CA);流動(dòng)相為水∶乙腈∶三氟乙酸(60∶40∶0.5 V/V;50∶50∶0.5 V/V;20∶80∶0.5 V/V);流速為 0.5 mL·min-1;紫外檢測(cè)波長(zhǎng)為210 nm。
1.6脂肽類抗生素對(duì)番茄枯萎病菌的抑制作用
將分離的bacillomycin L、sunfactins及fengycins分別配制成濃度為1 mg·L-1的甲醇溶液,與B1619脂肽類抗生素粗提物對(duì)比進(jìn)行抑菌試驗(yàn);將濃度為1、3 和6 mg·L-1的surfactins對(duì)番茄枯萎病菌進(jìn)行抑菌活性試驗(yàn),觀察其對(duì)番茄枯萎病菌的抑菌活性。
將植物病原真菌點(diǎn)接在PDA平板中央,待菌落生長(zhǎng)至直徑約2 cm后在菌落的四周分別等距離點(diǎn)接脂肽類物質(zhì)粗提物與3種抗生素分離物。脂肽類物質(zhì)加100 μL,用甲醇做對(duì)照并設(shè)置空白對(duì)照,每個(gè)處理3個(gè)重復(fù)。逐日觀察并記錄。
1.7統(tǒng)計(jì)方法
采用DPS統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)與分析。
2.1B1619菌株脂肽類抗生素合成基因PCR檢測(cè)
對(duì)解淀粉芽孢桿菌B1619 sfp、ituA以及fenB合成基因 PCR擴(kuò)增檢測(cè)結(jié)果見圖 1,解淀粉芽孢桿菌B1619分別在675、1 150和 1 400 bp左右處出現(xiàn)條帶,即能擴(kuò)增出sfp、ituA以及fenB合成基因。根據(jù)分析結(jié)果推測(cè)解淀粉芽孢桿菌 B1619基因組中可能存在surfactins、bacillomycin L、fengycins代謝合成操縱子序列,該菌株可能代謝產(chǎn)生3類脂肽類抗生素。
圖1 PCR擴(kuò)增脂肽類抗生素相關(guān)基因Fig. 1 PCR detection of lipopeptiedes related genes
2.2B1619菌株脂肽類抗生素的HPLC檢測(cè)
將解淀粉芽孢桿菌 B1619分泌的脂肽類物質(zhì)的分離物分別進(jìn)行HPLC檢測(cè),結(jié)果表明(參考LUO等[23-24]),60%甲醇水洗脫分離物分別在12、16.5、 18 min處出現(xiàn)相應(yīng)峰值,與bacillomycin L標(biāo)準(zhǔn)品一致,由此可以進(jìn)一步確定 60%甲醇洗脫分離物是bacillomycin L,其分泌量為18.5 mg·L-1(圖2-A);70%甲醇洗脫分離物分別在22、34、37、51及53 min處出現(xiàn)相應(yīng)峰值,與fengycins標(biāo)準(zhǔn)品一致,由此可以進(jìn)一步確定分離物fengycins,其分泌量為5.1 mg·L-1(圖2-B);100%甲醇洗脫分離物分別在27、37、41、51及53 min處出現(xiàn)相應(yīng)峰值,與surfactins標(biāo)準(zhǔn)品一致,由此可以進(jìn)一步確定 100%甲醇洗脫分離物質(zhì)surfactins,其分泌量為74.3 mg·L-1(圖2-C)。
2.3脂肽類抗生素的質(zhì)譜檢測(cè)
將解淀粉芽孢桿菌B1619分泌的3種脂肽類抗生素的分離物進(jìn)行基質(zhì)輔助解離質(zhì)譜法測(cè)定,B1619產(chǎn)生的3種抗生素對(duì)應(yīng)的特征峰如表2所示。
解淀粉芽孢桿菌B1619的60%甲醇水洗脫液分離物經(jīng)檢測(cè),發(fā)現(xiàn)其峰值m/z=1 043.4、1 057.5和1 071.4 Da,相差 14 Da,它們?yōu)橹舅徭溝嗖?1個(gè)亞甲基(-CH2-)的同系物,屬于C13—C15的bacillomycin L鈉離子加合峰;70%甲醇水洗脫液分離物信號(hào)譜帶在m/z=1 463.9、1 477.9、1 491.9和1 505.9 Da,對(duì)應(yīng)C16 和C17的fengycins,不同的是肽環(huán)上6位氨基酸不同,分別為Ala和Val;100%甲醇水洗脫液分離物峰值范圍在m/z=1 008.6、1 022.7和1 036.7 Da,它們屬于C13—C15的surfactins的質(zhì)子加合峰(圖3)。脂肽類物質(zhì)質(zhì)譜峰的分析參考VATER等[25-26]。
2.4對(duì)番茄枯萎病菌的抑菌活性
1 mg·mL-1的脂肽類抗生素粗提物以及 3種脂肽類抗生素的分離物對(duì)番茄枯萎病菌的抑菌活性見圖4,結(jié)果表明,3種脂肽類抗生素的分離物中fengycins對(duì)番茄枯萎病菌的抑制效果較好圖(4-A-2),bacillomycin L活性次之(圖4-A-1),而surfactins(圖4-A-3)對(duì)番茄枯萎病菌沒有明顯的抑制作用,脂肽類抗生素總粗提物對(duì)番茄枯萎病菌的抑制效果較以上三者更為明顯(圖4-A-4)。濃度為1、3和6 mg·mL-1的surfactins對(duì)番茄枯萎病菌活性試驗(yàn)表明,在低濃度1 mg·mL-1(圖4-B-1)和3 mg·mL-1(圖4-B-2)條件下對(duì)番茄枯萎病菌的抑制作用沒有明顯變化,在高濃度6 mg·mL-1條件下對(duì)番茄枯萎病菌有較弱的抑制作用(圖4-B-3)。
圖2 B1619菌株3種脂肽類物質(zhì)的HPLC圖Fig. 2 HPLC for the lipopeptide antibiotics isolated from B1619
表2 B1619菌株粗提液中脂肽類抗生素surfactins、iturins以及fengycins分子質(zhì)量測(cè)定Table 2 Calculated mass values of bacillomycins, fengycins and surfactins in culture lipopeptides extracts from B1619
圖3 B1619菌株3種脂肽類物質(zhì)MALDI-TOF-MS檢測(cè)圖Fig. 3 MALDI-TOF-MS for the lipopeptide antibiotics isolated from B1619
解淀粉芽孢桿菌可以產(chǎn)生種類繁多的次級(jí)代謝產(chǎn)物,主要在非核糖體肽合成酶(NRPS)和聚酮合酶(PKS)的組織下合成,這些產(chǎn)物可以抑制植物根際中的有害細(xì)菌和真菌[27]。本研究發(fā)現(xiàn)在解淀粉芽孢桿菌生防菌株B1619的NRPS途徑中至少產(chǎn)生3種具有抑制番茄枯萎病菌生長(zhǎng)的物質(zhì),bacillomycin L、fengycins和surfactins。目前國(guó)內(nèi)外對(duì)芽孢桿菌脂肽類物質(zhì)的研究越來(lái)越廣泛,多數(shù)研究者認(rèn)為 iturins和fengycins具有很強(qiáng)的抗真菌活性,而 surfactins對(duì)病毒、腫瘤、支原體都有很高的抑制活性。
ROMERO 等[4]從枯草芽孢桿菌(B. subtilis)UMAF6614發(fā)酵液中提取到 iturins、surfactins、fengycins 3類脂肽類抗生素,其中iturins和fengycins對(duì)植物病原真菌Podosphaera fusca起主要抑制作用。對(duì)桃褐腐病菌(Monilinia fructicola)抑菌試驗(yàn)的研究中發(fā)現(xiàn),在解淀粉芽胞桿菌C06菌株同時(shí)產(chǎn)生的脂肽類抗生素bacillomycin D和fengycins中[28],以及在枯草芽孢桿菌 CPA-8菌株產(chǎn)生 fengycins、iturin A和surfactins[29]等多種脂肽類抗生素中,fengycins均發(fā)揮主要的作用。在本研究中分離到fengycins,當(dāng)其濃度為1 mg·mL-1時(shí),對(duì)番茄枯萎病菌就有非常明顯的抑制作用,其抑菌作用僅次于脂肽類抗生素粗提物。
王雅等[30]在枯草芽孢桿菌Bv10胞外抗菌物質(zhì)中純化到iturin A2和iturin A4,兩者對(duì)芝麻白絹病菌(Sclerotium rolfsii)的抑菌中濃度EC50分別為36.79 和43.03 mg·L-1。從枯草芽孢桿菌M51中分離到脂肽類抗生素iturin A2,當(dāng)其使用濃度為100 μg·g-1土?xí)r就能完全抑制番茄枯萎病菌對(duì)番茄的侵染[31]。羅楚平等[3]發(fā)現(xiàn)枯草芽孢桿菌Bs916分泌的bacillomycin L能使病原真菌菌絲致畸和抑制孢子萌發(fā),當(dāng)濃度為500 μg·mL-1時(shí),其對(duì)水稻紋枯病和苗瘟的防治效果分別為71%和56%。在本研究中分離到bacillomycin L,當(dāng)bacillomycin L濃度為1 mg·mL-1時(shí),對(duì)番茄枯萎病菌也有明顯的抑制作用。從平板抑菌試驗(yàn)結(jié)果發(fā)現(xiàn),fengycins的抑菌活性強(qiáng)于bacillomycin L,但是從HPLC 及MALDI-TOF-MS結(jié)果分析發(fā)現(xiàn),bacillomycinL的分泌量為fengycins的3.6倍,因此,bacillomycin L和fengycins在B1619抑制番茄枯萎病菌中都起相當(dāng)重要的作用。
圖4 B1619菌株3種脂肽類物質(zhì)對(duì)番茄枯萎病菌的抑菌效果Fig. 4 The inhibition effect of the three lipopeptides antibiotics on F. oxysporum
本研究發(fā)現(xiàn) surfactins在解淀粉芽孢桿菌 B1619中的分泌量較高,但其對(duì)番茄枯萎病菌生長(zhǎng)的抑制菌活性較弱,這與其他研究結(jié)果類似,但其在生防中的其他重要作用不可小覷,是解淀粉芽孢桿菌發(fā)揮生防作用的重要基礎(chǔ)物質(zhì)。Surfactins具有較強(qiáng)的表面活性并與細(xì)菌生物膜的形成有關(guān),它的表面活性作用可以促進(jìn)生防菌株在植株上的定殖及擴(kuò)展[23-24]。BAIS等[32]報(bào)道的枯草芽孢桿菌6051分泌的surfactins能使該菌株更好地定殖在擬南芥根部,抵抗丁香假單胞菌的入侵。ONGENA等[33-34]發(fā)現(xiàn),surfactins可以誘導(dǎo)大豆和番茄產(chǎn)生抗病性。任鵬舉等[35]也發(fā)現(xiàn)芽孢桿菌分泌surfactins對(duì)煙草花葉病毒的防治效果顯著,且能誘導(dǎo)煙草產(chǎn)生誘導(dǎo)系統(tǒng)抗性。張榮勝等[36]發(fā)現(xiàn)解淀粉芽孢桿菌 Lx-11粗提物中含有 surfactins、bacillomycin D 和fengycins等3種脂肽類抗生素,surfactins對(duì)水稻細(xì)菌性條斑病菌(Xanthomonas oryzae pv. oryzicola)具有較強(qiáng)的抑制作用,是抑制條斑病菌主要物質(zhì)之一。
在脂肽類抗生素的制備分離中,較常用的為色譜法。別小妹等[37]利用RP-C18柱進(jìn)行HPLC 分離純化,并采用硅膠板進(jìn)行TLC分析,對(duì)枯草芽孢桿菌fmbR抗菌物質(zhì)進(jìn)行了有效的分離純化。但此法常用于高純度脂肽抗生素的分析和制備,但規(guī)模小、成本高。本研究利用SupelcleanTMLC-18柱及PHASE HF-NH2柱,以甲醇為洗脫液對(duì)脂肽類抗生素粗提物進(jìn)行分離,用此方法分離的脂肽類抗生素的產(chǎn)量較高,而且吸附柱可以通過再生得到重復(fù)利用,從而有效降低生產(chǎn)成本。SUN等[38]利用Sephadex LH-20柱,對(duì)解淀粉芽孢桿菌ES-2產(chǎn)生的surfactins和fengycins進(jìn)行提純;另外,MUKHERJEE等[39]利用Sephadex G-50將脂肽類抗生素與雜質(zhì)分離;用XAD-2作吸附色譜柱,也可以從發(fā)酵上清液中分離出surfactin類似物的粗產(chǎn)物[40]。
國(guó)內(nèi)外對(duì)芽孢桿菌脂肽類化合物的研究已從純化、特性和鑒定深入到遺傳、代謝和機(jī)理改造等方面。如通過將脂肽類化合物內(nèi)源啟動(dòng)子更換為強(qiáng)啟動(dòng)子,構(gòu)建工程菌株,iturin A 表達(dá)量提高了 3倍,mycosubtilin表達(dá)量提高了 15倍[3,41]。本研究分析了B1619分泌的脂肽類化合物的種類及抑菌作用,為其今后的開發(fā)和應(yīng)用推廣提供理論依據(jù),并為進(jìn)一步采用基因工程的手段改良生防芽孢桿菌菌株,大幅度提高脂肽類化合物分泌量,特別是脂肽類化合物調(diào)控機(jī)制的研究打下了基礎(chǔ)。
通過甲醇梯度洗脫的方法對(duì)解淀粉芽孢桿菌B1619菌株分泌的3類主要脂肽類抗生素進(jìn)行了有效的分離,通過HPLC和 MALDI-TOF-MS分析驗(yàn)證了B1619產(chǎn)生的3種脂肽類物質(zhì),其中在對(duì)番茄枯萎病菌的抑制作用中起重要作用的抗生素是 bacillomycin L和fengycins,surfactins對(duì)番茄枯萎病菌的抑制活性較弱。
References
[1] 胡江春, 薛德林, 馬成新, 王書錦. 植物根際促生菌(PGPR)的研究與應(yīng)用前景. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(10): 1963-1966. HU J C, XUE D L, MA C X, WANG S J. Research advances in plant growth-promoting rhizobacteria and its application prospects. Chinese Journal of Applied Ecology, 2004, 15(10): 1963-1966. (in Chinese)
[2] 張斌, 楊曉云, 劉郵洲, 陳志誼. 江蘇省 3個(gè)番茄種植基地枯萎病菌種群數(shù)量監(jiān)測(cè)及生防菌B1619的控病效果. 西南農(nóng)業(yè)學(xué)報(bào), 2015,28(6): 2521-2526. ZHANG B, YANG X Y, LIU Y Z, CHEN Z Y. Monitoring population dynamics of tomato fusarium wilt and control effect of bio-control bacteria B1619 at 3 tomato planting bases in Jiangsu province. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2521-2526. (in Chinese)
[3] 羅楚平, 劉郵洲, 吳荷芳, 王曉宇, 劉永鋒, 聶亞鋒, 張榮勝, 陳志誼. 脂肽類化合物 bacillomycin L抗真菌活性及其對(duì)水稻病害的防治. 中國(guó)生物防治學(xué)報(bào), 2011, 27(1): 76-81. LUO C P, LIU Y Z, WU H F, WANG X Y, LIU Y F, NIE Y F, ZHANG R S, CHEN Z Y. Antifungal activity and rice disease biocontrol performance of lipopeptide antibiotic bacillomycin L. Chinese Journal of Biological Control, 2011, 27(1): 76-81. (in Chinese)
[4] TSUGE K, AKIYAMA T, SHODA M. Cloning, sequencing and characterization of the iturin A Operon. Journal of Bacteriology, 2001,183(21): 6265-6273.
[5] ROMERO D, DE VICENTE A, OLMOS J L, DáVILA J C,PéREZ-GARCíA A. Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal of Applied Microbiology,2007, 103(4): 969-976.
[6] ZERIOUH H, ROMERO D, GARCIA-GUTIERREZ L, CAZORLA F M, DE VICENTE A, PéREZ-GARCíA A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 2011, 24(12): 1540-1552.
[7] 郝曉娟, 劉波, 謝關(guān)林, 葛慈斌, 林抗美. 短短芽孢桿菌JK-2菌株對(duì)番茄枯萎病的抑菌作用及其小區(qū)防效. 中國(guó)生物防治, 2007,23(3): 233-236. HAO X J, LIU B, XIE G L, GE C B, LIN K M. Inhibition of Brevibacillus brevis JK-2 strain against the pathogen of tomato Fusarium wilt. Chinese Journal of Biological Control, 2007, 23(3):233-236. (in Chinese)
[8] 詹發(fā)強(qiáng), 侯敏, 楊蓉, 龍宣杞. 一株番茄枯萎病生防菌的鑒定、定殖與盆栽防效研究. 新疆農(nóng)業(yè)科學(xué), 2013, 50(7): 1277-1287. ZHAN F Q, HOU M, YANG R, LONG X Q. Identification,colonization and control effect of an antagonistic bacterium against Fusarium wilt tomato. Xinjiang Agricultural Sciences, 2013, 50(7):1277-1287. (in Chinese)
[9] Chen X H, Koumoutsi A, Scholz R, EISENREICH A, SCHNEIDER K, HEINEMEYER I, MORGENSTERN B, VOSS B, HESS W R,REVA O, JUNGE H, VOIGT B, JUNGBLUT PR, VATER J, SüSSMUTH R, LIESEGANG H, STRITTMATTER A, GOTTSCHALK G, BORRISS R. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 2007, 25(9):1007-1014.
[10] 戴秀華, 張榮勝, 陳志誼. 解淀粉芽孢桿菌Lx-11生物學(xué)特性研究.中國(guó)生物防治學(xué)報(bào), 2014, 30(4): 573-580. DAI X H, ZHANG R S, CHEN Z Y. The biological characterization of Bacillus amyloliquefaciens Lx-11. Chinese Journal of Biological Control, 2014, 30(4): 573-580. (in Chinese)
[11] ZHAO J F, LI Y H, ZHANG C, YAO Z Y, ZHANG L, BIE X M, LU F X, LU Z X. Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR. Journal of Industrial Microbiology & Biotechnology, 2012, 39(6): 889-896.
[12] CHEN X H, KOUMOUTSI A, SCHOLZ R, SCHNEIDER K, VATER J, SüSSMUTH R, PIEL J, BORRISS R. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 2009, 140(1): 27-37.
[13] MOYNE A L, CLEVELAND T E, TUZUN S. Molecular characterization and analysis of the operon encoding the antifugal lipopeptide bacillomycin D. FEMS Microbiology Letters, 2004,234(1): 43-49.
[14] KOUMOUTSI A, CHEN X H, HENNE A, LIESEGANG H,HITZEROTH G, FRANKE P, VATER J, BORRISS R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 2004, 186(4): 1084-1096.
[15] CHEN X H, VATER J, PIEL J, FRANKE P, SCHOLZ R, SCHEIDER K, KOUMOUTSI A, HITZEROTH G, GRAMMEL N,STRITTMATTER A W, GOTTSCHALK G, SüSSMUTH R D,BORRISS R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens strains FZB42. Journal of Bacteriology, 2006, 188(11): 4024-4036.
[16] MEENA K R, KANWAR S S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Research International, 2015, 2015: Article ID 473050.
[17] GORDILLO M A, MALDONADO M C. Purification of peptides from Bacillus strains with biological activity//DHANARASU S. Chromatography and Its Applications, InTech, 2012: 201-225.
[18] 汪靜杰, 趙東洋, 劉永貴, 敖翔, 范蕊, 段正巧, 劉艷萍, 陳倩茜,金志雄, 萬(wàn)永繼. 解淀粉芽孢桿菌SWB16菌株脂肽類代謝產(chǎn)物對(duì)球孢白僵菌的拮抗作用. 微生物學(xué)報(bào), 2014, 54(7): 778-785. WANG J J, ZHAO D Y, LIU Y G, AO X, FAN R, DUAN Z Q, LIU Y P, CHEN Q Q , JIN Z X, WAN Y J. Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16. Acta Microbiologica Sinica, 2014,54(7): 778-785. (in Chinese)
[19] ARREBOLA E, JACOBS R, KORSTEN L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 2010, 108: 386-395.
[20] 喬俊卿, 劉郵洲, 夏彥飛, 慕少鋒, 陳志誼. 生防菌 B1619在番茄根部的定殖及對(duì)根際微生態(tài)的影響. 植物保護(hù)學(xué)報(bào), 2013, 40(6):507-511. QIAO J Q, LIU Y Z, XIA Y F, MU S F, CHEN Z Y. Root colonization by Bacillus amyloliquefaciens B1619 and its impact on the microbial community of tomato rhizosphere. Acta Phytophylacica Sinica, 2013,40(6): 507-511. (in Chinese)
[21] 朱麗梅, 吳小芹, 徐旭麟. 松材線蟲拮抗細(xì)菌的篩選和鑒定. 南京林業(yè)大學(xué)學(xué)報(bào) (自然科學(xué)版), 2008, 32(3): 91-94. ZHU L M, WU X Q, XU X L. The screening and identification of the bacterium with nematicidal activity to Bursaphelenchusxy lophilus. Journal of Nanjing Forestry University (Natural Sciences Edition),2008, 32(3): 91-94. (in Chinese)
[22] 明亮, 劉程程, 楊曉云, 儲(chǔ)西平, 陸凡, 陳志誼. 生物殺菌劑解淀粉芽孢桿菌 B1619水分散粒劑配方及助劑篩選. 中國(guó)生物防治學(xué)報(bào), 2015, 31(4): 529-535. MING L, LIU C C, YANG X Y, CHU X P, LU F, CHEN Z Y. Screening on formula and auxiliaries for biological germicide Bacillus amyloliquefaciens B1619. Chinese Journal of Biological Control,2015, 31(4): 529-535. (in Chinese)
[23] LUO C P, LIU X H, ZHOU H F, WANG X Y, CHEN Z Y. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Applied and Environmental Microbiology, 2015, 81(1): 422-431.
[24] LUO C P, LIU X H, ZHOU H F, ZOU J C, WANG X Y, ZHANG R S,XIANG Y P, CHEN Z Y. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Applied Microbiology and Biotechnology, 2015, 99: 1897-1910.
[25] VATER J, GAO X W, HITZEROTH G, WILDE C, FRANKE P. “Whole cell”-matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-presentstate of research. Combinatorial Chemistry & High Throughput Screening, 2003, 6(6): 557-567.
[26] 何美玉. 現(xiàn)代有機(jī)與生物質(zhì)譜. 北京: 北京大學(xué)出版社, 2002. HE M Y. Modern Organic and Biological Mass Spectrometry. Beijing:Beijing University Press, 2002. (in Chinese)
[27] STRIEKER M, TANOVI? A, MARAHIEL M A. Nonribosomal peptide synthetases: structures and dynamics. Current Opinion in Structural Biology, 2010, 20(2): 234-240.
[28] LIU J, ZHOU T, HE D, LI D, WU H, LIU W, GAO X. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillusa myloliquefaciens C06 towards Monilinia fructicola. Journal of Molecular Microbiology and Biotechnology, 2011, 20(1): 43-52.
[29] YANEZ-MENDIZABAL V, ZERIOUH H, VI?AS I, TORRES R,USALL J, DE VICENTE A, PéREZ-GARCíA A, TEIXIDó N. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 2012, 132(4): 609-619.
[30] 王雅. 枯草芽孢桿菌菌株Bv10胞外抗菌物質(zhì)的純化及其特性測(cè)定[D]. 南寧: 廣西大學(xué), 2013. WANG Y. Purification and characterization of antimicrobial substances produced by Bacillus subtilis strain Bv10[D]. Nanning: Guangxi University, 2013. (in Chinese)
[31] LEIFERT C, WHITE D, KILLHAM K, MALATHRACIS N E,WOLF G A, LI H. Advances in biological control of plant diseases//Proceeding of the International Workshop on Biological Control of Plant Disease. Beijing: China Agricultural University Press,1996.
[32] BAIS H P, FALL R, VIVANCO J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringaeis facilitated by biofilm formation and surfactin production. Plant Physiology, 2004, 134(1): 307-319.
[33] ONGENA M, JACQUES P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008, 16(3):115-125.
[34] ONGENA M, DUBY F, JOURDAN E, BEAUDRY T, JADIN V,DOMMES J, THONART P. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology, 2005, 67(5): 692-698.
[35] 任鵬舉, 謝永麗, 張巖, 伍輝軍, 高學(xué)文. 枯草芽孢桿菌 OKB105產(chǎn)生的 surfactin防治煙草花葉病毒病及其機(jī)理研究. 中國(guó)生物防治學(xué)報(bào), 2014, 30(2): 216-221. REN P J, XIE Y L, ZHANG Y, REN H J, GAO X W. Effect and mechanism of controlling TMV disease on tobacco by surfactin produced by Bacillus subtilis OKB105. Chinese Journal of Biological Control, 2014, 30(2): 216-221. (in Chinese)
[36] 張榮勝, 王曉宇, 羅楚平, 劉永鋒, 劉郵洲, 陳志誼. 解淀粉芽孢桿菌 Lx-11產(chǎn)脂肽類物質(zhì)鑒定及表面活性素對(duì)水稻細(xì)菌性條斑病的防治作用. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(10): 2014-2021. ZHANG R S, WANG X Y, LUO C P, LIU Y F, LIU Y Z, CHEN Z Y. Identification of the lipopeptides from Bacillus amyloliquefaciens Lx-11 and biocontrol efficacy of surfactin against bacterial leaf streak. Scientia Agricultura Sinica, 2013, 46(10): 2014-2021. (in Chinese)
[37] 別小妹, 陸兆新, 呂鳳霞, 趙海珍, 楊勝遠(yuǎn), 孫力軍. Bacillus subtilis fmbR抗菌物質(zhì)的分離和鑒定. 中國(guó)農(nóng)業(yè)科學(xué), 2006, 39(11):2327-2334. BIE X M, LU Z X, Lü F X, ZHAO H Z, YANG S Y, SUN L J. Isolation and identification of the antimicrobial substance produced by Bacillus subtilis fmbR. Scientia Agricultura Sinica, 2006, 39(11):2327-2334. (in Chinese)
[38] SUN L J, LU Z X, BIE X M, LU F X, YANG S Y. Isolation and characterization of a co-producer of fengycins and surfactins,endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World Journal of Microbiology and Biotechnology,2006, 22(12): 1259-1266.
[39] MUKHERJEE S, DAS P, SIVAPATHASEKARAN C, SEN R. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification. Letters in Applied Microbiology, 2009, 48(3):281-288.
[40] LIN S C, MINTON M A, SHARMA M M, GEORGIOU G. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Applied and Environmental Microbiology,1994, 60(1): 31-38.
[41] LECLERE V, BECHET M, ADAM A, GLUE J, WATHELET B,ONGENA M, THONART P, GANCEL F, IMBERT M, JACQUES P. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 2005, 71(8): 4577-4584.
(責(zé)任編輯 岳梅)
Isolation and Identification of Lipopeptide Antibiotics Produced by Bacillus amyloliquefaciens B1619 and the Inhibition of the Lipopeptide Antibiotics to Fusarium oxysporum f. sp. lycopersici
XIANG Ya-ping1,2, ZHOU Hua-fei1,2, LIU Yong-feng2, CHEN Zhi-yi1,2
(1Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014;2College of Plant Protection, Nanjing Agricultural University, Nanjing 210095)
【Objective】 Bacillus amyloliquefaciens, biocontrol strain B1619, can effectively prevent and control the occurrenceand damage of tomato fusarium wilt. In order to study and analyze the antifungal substances produced by strain B1619, the lipopeptide antibiotics were isolated from the supernatant of fermented broth.【Method】Three primers designed based on the known lipopeptide genes sfp, ituA and fenB were used to amplify the corresponding genes from the genome of B1619 strain. The crude lipopeptides extracts were extracted by acid precipitation and methanol. The supelcleanTMLC-18 column and PHASE HF-NH2 column were used to separate lipopeptide antibiotics. All the samples were analyzed by HPLC and MALDI-TOF-MS techniques. Inhibition rates of the three lipopeptide antibiotics against Fusarium oxysporum f. sp. lycopersici were tested by dual culture on plate. 【Result】The PCR products with three primer pairs were cloned and sequenced. The result showed that the sfp, ituA and fenB genes existed in the genome of B1619. The HPLC results showed that the peak time of 60% methanol eluent isolates were at 12,16.5 and 18 min, the secretion was 18.5 mg·L-1, and the retention times were consistent with bacillomycin L standards. The peak time of 70% methanol eluent isolates were at 22, 34, 37, 51 and 53 min, the secretion was 5.1 mg·L-1, and the retention times were consistent with fengycins standards. The peak time of 100% methanol eluent isolates were at 27, 37, 41, 51 and 53 min, the secretion was 74.3 mg·L-1, and the retention times were consistent with surfactins standards. The further verification of MALDI-TOF-MS results showed that 60% methanol eluent isolates which m/z were 1 043.4, 1 057.5 and 1 071.4 Da, was C13-C15 bacillomycin L, 70% methanol eluent isolates which m/z were 1 463.9, 1 477.9, 1 491.9 and 1 505.9 Da, was C15-C17 fengycins, 100% methanol eluent isolates which m/z were 1 008.6, 1 022.7 and 1 036.7 Da, was C13-C15 surfactins. The mycostatic tests showed that the antifungal activities of 1 mg·mL-1fengycins were higher than 1 mg·mL-1bacillomycin L, and the 1 mg·mL-1surfactins had the weakest effect on F. oxysporum. However, when the concentration of surfactins was increased to 3 and 6 mg·mL-1, the antifungal activities didn’t change obviously.【Conclusion】B1619 strain secreted the three kinds of lipopeptide antibiotics in which fengycins and bacillomycin L played an important role in the inhibitory effect on F. oxysporum, while the surfactins had no obvious effect on it.
Bacillus amyloliquefaciens B1619; lipopeptide antibiotics; antifungal activities; Fusarium oxysporum f. sp. lycopersici
2015-03-14;接受日期:2016-04-18
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(“863”計(jì)劃)(2011AA10A201)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金(CX(14)2128)
聯(lián)系方式:向亞萍,E-mail:xiangyaping393@163.com。通信作者陳志誼,Tel:025-84390393;E-mail:chzy84390393@163.com