• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Functions of PARylation in DNA Damage Repair Pathways

    2016-09-28 08:02:04HuitingWeiXiaochunYu
    Genomics,Proteomics & Bioinformatics 2016年3期
    關(guān)鍵詞:中共中央辦公廳下文國務(wù)院辦公廳

    Huiting WeiXiaochun Yu*b

    1Department of Immunology,Tianjin Key Laboratory of Cellular and Molecular Immunology,MOE Key Laboratory of Immune Microenvironment and Disease,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China

    2Department of Cancer Genetics and Epigenetics,Beckman Research Institute,City of Hope Medical Center,Duarte,CA 91010,USA

    ?

    REVIEW

    Functions of PARylation in DNA Damage Repair Pathways

    Huiting Wei1,a,Xiaochun Yu2,*,b

    1Department of Immunology,Tianjin Key Laboratory of Cellular and Molecular Immunology,MOE Key Laboratory of Immune Microenvironment and Disease,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China

    2Department of Cancer Genetics and Epigenetics,Beckman Research Institute,City of Hope Medical Center,Duarte,CA 91010,USA

    Available online 27 May 2016

    Handled by Zhao-Qi Wang

    KEYWORDS

    Poly ADP-ribosylation;

    PARPs;

    DNA damage response;

    PAR-binding modules;

    Ubiquitination

    AbstractProtein poly ADP-ribosylation(PARylation)is a widespread post-translational modification at DNA lesions,which is catalyzed by poly(ADP-ribose)polymerases(PARPs).This modification regulates a number of biological processes including chromatin reorganization,DNA damage response(DDR),transcriptional regulation,apoptosis,and mitosis.PARP1,functioning as a DNA damage sensor,can be activated by DNA lesions,forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity.Here,we highlight molecular insights into PARylation recognition,the expanding role of PARylation in DDR pathways,and the functional interaction between PARylation and ubiquitination,which will offer us a better understanding of the biological roles of this unique post-translational modification.

    Introduction

    Throughout the biological life,genomic stability of the organisms is always challenged by both endogenous and exogenous toxic stresses[1,2].It has been estimated that every cell could experience up to 105spontaneous DNA lesions per day[3]. To maintain genomic integrity,the organisms have evolved a series of sophisticated and precise mechanisms to protect their genome against the deleterious lesions,including cell cycle checkpoint,diverse DNA repair signaling pathways,chromatin reorganization,and protein modifications[4].Among these responses,poly ADP-ribosylation(PARylation)is a pivotal post-translational protein modification(PTM)that appears rapidly at DNA damage sites[5,6].

    In human,ADP-ribosylation is catalyzed by poly(ADP-ribose)polymerases(PARPs),which consists of 17 members[7-10].PARPs primarily covalently attach the ADP-ribose(ADPR)unit via an ester bond to the carboxyl group of acidic residues such as glutamate or aspartate residues on the target proteins[11,12],but cysteine(Cys)and lysine(Lys)residues could also act as acceptors[13,14].However,most of them are only able to transfer single mono(ADP-ribose)(MAR)group onto their target proteins[5,15].To date,PARP1,2,and 3 have been identified to catalyze PARylation during DNA damage response(DDR)[5,15].In addition,tankyrases including tankyrase-1(PARP5a)and tankyrase-2(PARP5b)have also been shown to contribute to genomic stability[15,16].Among these PARPs,PARP1 is the founding member of PARP family for the synthesis of PAR chains.The mechanism of PARP1 activation by single-strand and double-strand DNA breaks(SSBs and DSBs)is well established[17].Using NAD+as substrate,PARPs repeatedly catalyze the transfer of successive units of ADPR moieties via a unique 2′,1′′-O-glycosidic ribose-ribose bond to target proteins,finally producing PAR chain[5].Several reports have demonstrated that PAR chains can comprise up to 200 ADPR units in length[5,11,17].In addition,PARP1 can introduce branching into PAR chains through the 2′′,1′′′-glycosidic bond[18,19].

    In cells,PAR polymers are primarily degraded by PAR glycohydrolase(PARG),which possesses both exoglycosidic activity and endoglycosidic activity[20-22].PARG efficientlycleavestheunique2′,1′′-glycosidicribose-ribose bonds of the PAR chains and releases the free ADPR moieties[22,23].In addition,ADP-ribosylhydrolase 3(ARH3)also exhibits the PAR-degrading activity,although ARH3 has only exoglycosidase activity[24,25].Neither PARG norARH3canhydrolyzetheproximalprotein-bound ADPR unit from a PAR chain,possibly due to steric hindrance,thus leaving a MARylated protein.MARylated proteins can be recognized by different protein domain and thus serve as scaffolds for recruitment of proteins during diverse biological processes[22,24].Interestingly,a set of Macro domain-containing(MacroD)proteins have been found to exhibit hydrolase activities.These include the terminal ADPR protein glycohydrolase(TARG1/C6orf130)[26],as well as MacroD1 and MacroD2[27-30].Earlier studies showed that these three enzymes can hydrolyze O-acetyl-ADPR,a metabolite derived from NAD during sirtuin2-catalyzed protein deacetylation,regulating diverse biological processes[31].Recently,TARG,MacroD1,and MacroD2 were identified for their action in removal of glutamatespecific ADPR[26,28,29].The hydrolysis of last ADPR from modified protein is the final and rate-limiting step of PAR chain degradation[32].Like many other PTMs,synthesis and degradation of PAR chains is tightly and dynamically controlled in vivo with the half-life of only several minutes[4,27].If PAR chains cannot be hydrolyzed in a timely manner,excessive protein-free PAR chains can induce the apoptosis-like cell death,termed parthanatos[4,27].Parthanatos is another form of programed cell death which is distinct from necrosis and apoptosis.As a distinct death pathway,parthanatos is associated with PARP-1.The synthesis and accumulation of PAR chain will result in mitochondrial depolarization and nuclear apoptosis inducing factor(AIF)translocation,thus inducing cell death[33].

    PARylation and DNA repair pathway

    PARylation in base excision repair/SSB repair process

    The base excision repair/SSB repair process(BER/SSBR)is a pivotal DNA repair signal pathway to repair oxidized bases,apurinic/apyrimidinic sites(AP sites,also known as abasic sites)or SSBs[1].In cells,many chemical alterations such as oxidation,methylation,deamination,and hydroxylation can induce base damage and SSBs[1].In the BER process,damaged bases are cleaved by DNA glycosylases,producing abasic sites,which are next processed by AP endonuclease(APE)into SSBs[2,34].These sites are further repaired through two different pathways termed short-patch repair and long-patch repair,which are distinct in terms of patch sizes and DNA repair factors involved[35].

    PARP1 can physically and functionally interact with SSBR factor X-ray repair cross-complementing protein 1(XRCC1),which plays a major role in SSBR signal pathway,facilitating the recruitment and assembly of the SSBR machinery[35]. OurrecentstudyindicatesthattheBRCA1CTerminus(BRCT)domain of XRCC1 directly binds to PAR chain and mediates early recruitment of XRCC1 to DNA lesions[36].Several reports have also demonstrated that PARP1 is able to interact with key factors of the BER/SSBR process including the DNA glycosylase 8-oxoguanine glycosylase 1(OGG1),XRCC1,DNA polymerase(DNAP)β,DNA ligase III,proliferating cell nuclear antigen(PCNA),aprataxin,and condensin I[37-40]. Many of these factors can undergo PARylation by PARP1(Figure 1).Additionally,PARP2 has also been identified to interact with BER/SSBR proteins such as XRCC1,DNAP β,andDNAligaseIII[41].Thesefindingssupport thatPARchain could provide a landing platform for the recruitment of DNA repair complexes as proposed by Masson et al.in 1998[42].

    PARylation in DSB repair

    DNADSBsareregardedasthemostdetrimentalDNAdamage,whichseriouslyanddirectlythreatengenomicstabilityviainterrupting the physical continuity of the chromosome[1].The failure to repair DSBs will lead to catastrophic consequences such as oncogenesis,cell death,and developmental disorders[1].To deal with DSBs,organisms have employed three major DNA repair mechanisms including classical non-homologous end joining(C-NHEJ),alternative non-homologous end joining(alt-NHEJ),and homologous recombination(HR).The choice ofDNArepairpathwaydependsonwhetherthedamagedDNA end is resected,which is likely mediated by the Mre11/Rad50/ Nbs1(MRN)complexandC-terminal-bindingprotein(CtBP)-interacting protein(CtIP).Once DNA resection is impeded,repair by C-NHEJ is invoked.However,if resection has occurred,HR and alt-NHEJ may compete with each other torepairthedamagedDNA.RAD51formsafilamentatthesite of SSB that drives strand exchange and facilities HR,whereas PARP1 may serve as a platform for recruiting alt-NHEJ repair factors such as DNAP θ[43].

    PARylation in C-NHEJ

    Eukaryocytes mainly employ C-NHEJ to repair damaged DNA.The process is DNA end resection-independent,and is also unrelated to sequence homology.Therefore,C-NHEJ occurs throughout the cell cycle,but predominantly in G0/G1 and G2 phase[44,45].In the process of C-NHEJ,the Ku70/Ku80 heterodimer is recruited to DNA damage sites followed by loading of DNA-dependent protein kinase catalytic subunit(DNA-PKcs).Meanwhile,Ku70/Ku80 heterodimer facilitates the activation of the DNA ligase IV/XRCC4 complex.AccessoryfactorssuchasnucleaseArtemis,aprataxin-polynucleotidekinase-likefactor(APLF),or polynucleotide kinase/phosphatase(PNKP)process the damaged DNA end to be compatible for ligation.At the final step,the activated DNA ligase IV and its cofactor XRCC4,or Cernunnos/XRCC4-like factor(XLF),rejoin the DNA ends[46].

    Figure 1 PARylation mediates DNA damage repair

    Several studies support an important role of PARP1 in CNHEJ.Interaction between PARP1 and DNA-PKcs facilitates genomic integrity during V(D)J recombination and prevents tumor development[47].It is of note that PARP can stimulate DNA-PKcs activity via PARylation in vitro[48].This interaction is further supported by in vivo evidence as reported recently.A structural PARP1/DNA-PKcs/Ku molecular complex has been identified in which PARP1 elicits a major architectural rearrangement of the DNA-PKcs-mediated synapsis[49].Moreover,previous studies from our lab have shown that the BRCT domain of DNA ligase IV directly recognizes the ADP-ribose of PAR chains,which mediates the early recruitment of the ligase to DNA lesions.Such efficient recruitment may facilitate C-NHEJ[50].

    PARylation in alt-NHEJ

    As a new DSB repair signal pathway,alt-NHEJ has attracted much attention recently[46].When classical C-NHEJ is deficient,alt-NHEJ can be initiated by resected DNA end.Compared with C-NHEJ,alt-NHEJ is characterized by the following features:initiated by damaged DNA end resection;independent of the Ku70/Ku80 heterodimer,XRCC4,and DNA ligase IV;using complementary microhomologies—short stretches(1-10 nucleotides)that can anneal,to guide DNA repair and much less faithful than C-NHEJ[51].PARP-1,XRCC1,DNA ligase III,PNKP,WRN,CtIP,NBS1,and ERCC1 have all been implicated in alt-NHEJ[46].PARPs play pivotal roles in this process.PARP1 can recognize the broken DNA ends and create a scaffold for the recruitment of other DNA damage factors involved in alt-NHEJ.Finally,end-rejoining is carried out by the DNA ligase III/XRCC1 complex in coordination with PARP1[52](Figure 1).In addition,both XRCC1 and PNKP can be recruited to the DNA damage sites through PAR binding,which could occur at the early steps of alt-NHEJ[50].

    PARylation in HR

    HR can be activated by single-stranded DNA(ssDNA)resection.The process produces a lagging strand gap or 3′overhang,which is the key step for HR[53].Owing to its requirement for a sister chromatid,HR predominates in S and G2 phases,when the amount of DNA replication is highest and the sister template is available[45,54].HR is typically characterized by error-free[1,55].Using homologous sequence to repair damaged DNA,HR requires strand invasion mediated by the recombinase RAD51.Earlier findings show that PARP1 is dispensable for HR.PARylation appears to have little direct effect on HR since HR is normal in PARP-depleted cells[53].However,PARP1 has been associated with HR-mediated repair and reactivation of stalled replication forks,therefore promoting faithful DNA replication[56].Moreover,PARP1 facilitates recruitment of MRE11 and RAD51,which restart stalled replication BRCA1/2-dependent early DDR[57].The BRCTs of BARD1,theoligonucleotide/oligosaccharidebinding-fold(OB-fold)of BRCA2,and the protein incorporated later into tight junctions(PilT)N terminus(PIN)domain of exonuclease 1(EXO1)are the PAR-binding modules that target these HR repair machineries to DSBs for damaged DNA repair[58].

    PAR-binding modules

    To regulate numerous biological functions,PAR chains must be recognized by diverse proteins such as DDR factors.To date,several distinct classes of PAR-binding modules have been identified.These include the PAR-binding zinc finger(PBZ),the Macro domain,the WWE domain,the BRCT domain,the forkhead-associated(FHA)domain,the OB-fold domain,the PIN domain,and the RNA recognition motif(RRM)domain[9,59].

    PBZ domain

    The recently-identified PBZ domains possess the consensus sequence[K/R]xxCx[F/Y]GxxCxbbxxxxHxxx[F/Y]xH[60]. PBZs are less common in mammalian proteins involved in DNA repair and cell cycle checkpoint,although PBZs are much more widespread in some other eukaryotes[48,60-62].Up till now,PBZ domains are only found in three human proteins,including histone chaperone APLF,checkpoint with FHA and RING finger(CHFR),and sensitive to nitrogen mustard 1A(SNM1A)[48,60-62].Crystal structures of APLF and CHFR show that PBZs are essential for their functions.Initial analysis of CHFR primary sequence has identified a zing finger called C2H2,which binds to PAR efficiently.Therefore,this motif is defined as a new PAR binding module termed PBZ[60].APLF containstwotandemPBZdomainstermedF1andF2.Although F1andF2canrecognizethePARchainindependently,presence of both domains remarkably increase the affinity of PAR chain binding,whichisover1000timesmoreefficientthantheisolated PBZ domain[63].Structural analysis demonstrates that PBZ module contains a central zinc ion coordinated by two cysteine and two histidine residues,which can recognize adenines in two neighboring ADP-ribose units of the PAR chain.This type of recognition renders the PBZ motifs to be the truly specific PAR binding modules[63](Figure 2).

    The WWE domain

    The WWE domain is the most recently discovered PAR-binding domain,named after the three strictly conserved amino acid residues,tryptophan-tryptophan-glutamate(WWE)[64]. The WWE domains,which can recognize iso-ADPR of PAR chain with high affinity,tightly links ubiquitination and PARylation signal pathways.The iso-ADPR which contains a characteristic bond,2′,1′′-O-glycosidic ribose-ribose is the signature of PAR chains[64].The negatively-charged phosphate groups of the iso-ADPR can bind the positively-charged WWE domain[64].The WWE domain is primarily found in two distinct protein families,including the E3 ubiquitin ligases(RNF146,deltex1,and TRIP12)and the PARPs(PARP8 and PARP11-14)[63].So far,the function of WWE domain has been well described for RNF146/Iduna.RNF146 recognizes PAR chain and ubiquitinates DNA repair proteins such as XRCC1,PARP1,DNA ligase III,and Ku70.The PARylated proteins are targeted to proteosome for degradation[64,65]. Taken together,the WWE domain-containing proteins are tightly linked with and influence each other(Figure 2).

    The Macro domain

    The Macro domain,which consists of 130-190 amino acid residues,is evolutionarily conserved and widely spread throughout all kingdoms of organisms.This is distinct from the PBZ and WWE domains.It is estimated that more than 300 proteins,including 11 human proteins,with a diverse set of biological functions possess the Macro domain[66].Macro domains can bind to the terminal ADPR of PAR,MAR,as well as O-acetyl-ADPR[66-68].Some proteins such as amplified in liver cancer 1(ALC1,also known as CHD1L),can interact with PAR chains through Macro domains and catalyze PARP1-stimulated nucleosome sliding,thus participating in DDR and chromatin remodeling[69,70].Some other Macro domain-containing proteins,in addition to their binding ability,also exhibit catalytic activity on the hydrolysis of PAR chains,making the Macro domains unique among the other PAR-binding modules.These include PARG[22],TARG1[26,71],and MacroD1/2[28,31](Figure 2).PARG enzyme uses Macro domain for the binding and hydrolysis of PAR chains,as we outlined above.

    Additional domains

    ItiswellknownthatFHAandBRCTdomainscanbindtophosphorylated proteins and modify protein-protein interactions[72].Recently,it was reported that the phosphate-binding pocket in the central BRCT domain of BARD1 is required forselective binding to PAR chain[50,73].Meanwhile,BRCT domainpromotestheinteractionbetweenBARD1andPARP1. Moreover,the FHA domains of aprataxin(APTX)and PNKP confer affinity to iso-ADPR of PAR chain[50,73].

    Figure 2 PAR-binding modules

    The OB-fold is an ssDNA or ssRNA binding domain that has been found in proteins from all three kingdoms.OB-fold comprises 70-150 AA residues forming five-stranded beta-barrel with a terminating alpha-helix[57].Interestingly,it is reportedrecentlythattheOB-foldcanbindtothePAR-specific iso-ADPR and such binding is required to bring the ssDNA-binding protein 1(SSB1)to sites of DNA damage[58].

    The PIN domain-containing proteins serve as nucleases that cleave ssDNA/ssRNA in a sequence-specific manner[74].The PIN domain consists of~130 amino acid residues characterized by a group of three strictly conserved acidic amino acid residues[75].Our recent study found that the PIN domain of EXO1 recognizes PAR in DDR[58].

    The RRM is one of the most abundant protein domains in eukaryotes,which can serve as a plastic RNA-binding platform to regulate post-transcriptional gene expression[76].Several RRM-containing proteins have been reported to assemble at sites of PAR formation to promote DDR[77,78].

    It is reported that some RNA and DNA binding motifs can recognize PAR chains.Motifs enriched in arginines and glycines,which are termed glycine-arginine-rich(GAR)domains and/or RGG boxes,were identified several decades ago. RGG boxes are found in more than 1000 human proteins that are involved in numerous biological processes including transcription and DDR[79].RGG boxes in the RNA-binding proteins such as FUS/TLS,EWS/EWSR1,TAF15,SAFB1,SAFA,and hnRNPUL1/2,have been identified,and these proteins can be recruited to DNA damage sites via binding to PAR chain through RGG boxes[80-86].

    PARylation and ubiquitination

    Ubiquitin is a small regulatory protein consisting of 76 amino acid residues,which has been found in almost all tissues of eukaryotic organisms.It can be covalently transferred to a Lys residue of an acceptor protein.This process is termed ubiquitination[87].The ubiquitination pathway in cells is an elaborate system for targeting unwanted proteins for degradation,carried out by three classes of enzymes,E1,E2,andE3.Ubiquitinisfirstactivatedbyubiquitinactivating enzyme(E1)before being transferred to the active site of E1 in an ATP-dependent manner.Then the ubiquitin molecule is passed on to the second enzyme,ubiquitinconjugating enzyme(E2),whereubiquitin is linkedby another thioester bond to the Cys active site of E2.Finally,with the help of a third enzyme,ubiquitin protein ligase(E3),ubiquitin is transferred from E2 to a Lys residue on a substrate protein.Additional ubiquitin molecules can be linked to the first one to form a poly-ubiquitin chain usually targeting the protein to the proteasome[87].

    Recent studies have demonstrated that PARylation can serve as a signal for the ubiquitination and promote the degradation of PARsylated proteins[88-90].Some E3 ligases bind PAR via either a WWE(RNF146,also known as Iduna)domain or a PBZ(CHFR)domain[43,44,46].The relationship betweenPARylationandubiquitinationhasbeenwell described in the RING-type E3 ubiquitin ligase,RNF146. The RNF146 WWE domain recognizes the PAR chain via interacting with iso-ADPR(Figure 2),functioning as an allosteric signal that changes the RING domain conformation from a catalytically-inactive state to an active one.RNF146 can polyubiquitylate many repair factors in a PAR-dependent manner,such as PARP-2,XRCC1,DNA ligase III,and Ku70[62].The discovery of a direct connection between PARylation and ubiquitination provides us with a new interpretation of the signaling function of PAR—degradation of proteins in a timely and orchestrated manner.

    Dysregulation of PARylation and human diseases

    PARP1 is a key facilitator of DDR and is implicated in tumorigenesis of several malignancies,particularly those associated with dysfunctional DNA repair pathways[37].Recent studies further demonstrate that transcript,protein,and enzyme activity of PARP1were increased in several tumor types with the most striking differences noticed in ovarian cancer,hepatocellular cancer,colorectal cancer,and leukemia[76-78].Given that PARP1 has an important role in DDR,a novel therapeutic targeting PARP1 has been developed to treat cancers through increasing tumor sensitivity to chemotherapeutic agents and also through inducing‘‘synthetic lethality”in cells[78].Now PARP inhibitors have demonstrated efficacy in a number of tumor types,including platinum-sensitive epithelial ovarian cancer[50],breast cancer with mutation in BRCA1 or BRCA2[91],and prostate cancer[92].Olaparib is a PARP inhibitor that blocks enzymes involved in repairing damaged DNA[92].Recently olaparib has been licensed as monotherapy for the treatment of patients with hereditary BRCA1 or BRCA2 mutations[91].

    Perspectives and conclusions

    Over the last decades,PARylation has been proved to be involved in numerous cellular functions including DDR. PAR serves as an initial sensor and mediates the early recruitment of DNA damage repair machineries.As a kind of protein modification,PARylation is tightly and dynamically regulated. PAR chain synthesis is mediated by several PARPs,whereas PARG mainly takes charge of PAR chain degradation.Great strides have been made in the past few decades to decipher the PARylation regulatory processes and the underlying molecular mechanisms.However,many questions remain to be answered.First,other NAD+-consuming enzymes,such as sirtuin 1,are thought to compete for NAD+with PARPs[9]. What is the reciprocal influence of these enzymes?Moreover,how these DNA damage factors are assembled at the DNA damage sites via PAR chains is still unclear exactly,as PAR chain does not have any sequence specificity.In addition,new molecular or chemical methods need to be developed to better achieve cell-permeable PARG or/and ARH inhibitors.More investigations are needed to address these questions in the future.In this regard,a better understanding of the biochemical and functional properties of PARylation in DNA repair may provide new clues to answer these fundamental questions.

    Competing interests

    The authors declare that they have no competing financial interests.

    Acknowledgments

    References

    [1]Ciccia A,Elledge SJ.The DNA damage response:making it safe to play with knives.Mol Cell 2010;40:179-204.

    [2]Lindahl T,Barnes DE.Repair of endogenous DNA damage.Cold Spring Harb Symp Quant Biol 2000;65:127-33.

    [3]Hoeijmakers JH.DNA damage,aging,and cancer.N Engl J Med 2009;361:1475-85.

    [4]Wang Y,Kim NS,Haince JF,Kang HC,David KK,Andrabi SA,et al.Poly(ADP-ribose)(PAR)binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death(parthanatos).Sci Signal 2011;4:ra20.

    [5]Gibson BA,Kraus WL.New insights into the molecular and cellular functions of poly(ADP-ribose)and PARPs.Nat Rev Mol Cell Biol 2012;13:411-24.

    [6]Perina D,Mikoc A,Ahel J,Cetkovic H,Zaja R,Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life.DNA Repair(Amst)2014;23:4-16.

    [7]Luo X,Kraus WL.On PAR with PARP:cellular stress signaling throughpoly(ADP-ribose)andPARP-1.GenesDev 2012;26:417-32.

    十八屆四中全會通過的《中共中央關(guān)于全面推進依法治國若干重大問題的決定》,首次提出實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制。2017年5月,中共中央辦公廳、國務(wù)院辦公廳印發(fā)《關(guān)于實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制的意見》(下文簡稱《意見》),《意見》是對黨的十八屆四中全會決定明確提出的實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制這一重要要求的具體化、規(guī)范化。

    [8]Hakme A,Wong HK,Dantzer F,Schreiber V.The expanding field of poly(ADP-ribosyl)ation reactions.’Protein Modifications: BeyondtheUsualSuspects’ReviewSeries.EMBORep 2008;9:1094-100.

    [9]Hottiger MO.Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity,Cell Differentiation,and Epigenetics.Annu Rev Biochem 2015;84:227-63.

    [10]Rouleau M,Patel A,Hendzel MJ,Kaufmann SH,Poirier GG. PARPinhibition:PARP1andbeyond.NatRevCancer 2010;10:293-301.

    [11]D’Amours D,Desnoyers S,D’Silva I,Poirier GG.Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342:249-68.

    [12]Tallis M,Morra R,Barkauskaite E,Ahel I.Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response.Chromosoma 2014;123:79-90.

    [13]Altmeyer M,Hottiger MO.Poly(ADP-ribose)polymerase 1 at the crossroad of metabolic stress and inflammation in aging.Aging(Albany NY)2009;1:458-69.

    [14]Vyas S,Chang P.New PARP targets for cancer therapy.Nat Rev Cancer 2014;14:502-9.

    [15]De Vos M,Schreiber V,Dantzer F.The diverse roles and clinical relevance of PARPs in DNA damage repair:current state of the art.Biochem Pharmacol 2012;84:137-46.

    [16]Dregalla RC,Zhou J,Idate RR,Battaglia CL,Liber HL,Bailey SM.Regulatory roles of tankyrase 1 at telomeres and in DNA repair:suppression of T-SCE and stabilization of DNA-PKcs. Aging(Albany NY)2010;2:691-708.

    [17]Juarez-Salinas H,Levi V,Jacobson EL,Jacobson MK.Poly(ADP-ribose)has a branched structure in vivo.J Biol Chem 1982;257:607-9.

    [18]Tanuma S,Kanai Y.Poly(ADP-ribosyl)ation of chromosomal proteinsintheHeLaS3cellcycle.JBiolChem 1982;257:6565-70.

    [19]Miwa M,Saikawa N,Yamaizumi Z,Nishimura S,Sugimura T. Structure of poly(adenosine diphosphate ribose):identification of 2’-[1”-ribosyl-2”-(or3”-)(1”’-ribosyl)]adenosine-5’,5”,5”’-tris(phosphate)as a branch linkage.Proc Natl Acad Sci U S A 1979;76:595-9.

    [20]Dunstan MS,Barkauskaite E,Lafite P,Knezevic CE,Brassington A,Ahel M,et al.Structure and mechanism of a canonical poly(ADP-ribose)glycohydrolase.Nat Commun 2012;3:878.

    [21]Kim IK,Kiefer JR,Ho CM,Stegeman RA,Classen S,Tainer JA,et al.Structure of mammalian poly(ADP-ribose)glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat Struct Mol Biol 2012;19:653-6.

    [22]Slade D,Dunstan MS,Barkauskaite E,Weston R,Lafite P,Dixon N,et al.The structure and catalytic mechanism of a poly(ADP-ribose)glycohydrolase.Nature 2011;477:616-20.

    [23]Ueda K,Oka J,Naruniya S,Miyakawa N,Hayaishi O.Poly ADP-ribose glycohydrolase from rat liver nuclei,a novel enzyme degradingthepolymer.BiochemBiophysResCommun 1972;46:516-23.

    [24]Mueller-Dieckmann C,Kernstock S,Lisurek M,von Kries JP,Haag F,Weiss MS,et al.The structure of human ADP-ribosylhydrolase 3(ARH3)provides insights into the reversibility of protein ADP-ribosylation.Proc Natl Acad Sci U S A 2006;103:15026-31.

    [25]Niere M,Mashimo M,Agledal L,Dolle C,Kasamatsu A,Kato J,et al.ADP-ribosylhydrolase 3(ARH3),not poly(ADP-ribose)glycohydrolase(PARG)isoforms,is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).J Biol Chem 2012;287:16088-102.

    [26]Sharifi R,Morra R,Appel CD,Tallis M,Chioza B,Jankevicius G,et al.Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease.EMBO J 2013;32:1225-37.

    [27]Barkauskaite E,Brassington A,Tan ES,Warwicker J,Dunstan MS,Banos B,et al.Visualization of poly(ADP-ribose)bound to PARG reveals inherent balance between exo-and endo-glycohydrolase activities.Nat Commun 2013;4:2164.

    [28]Jankevicius G,Hassler M,Golia B,Rybin V,Zacharias M,Timinszky G,et al.A family of macrodomain proteins reverses cellularmono-ADP-ribosylation.NatStructMolBiol 2013;20:508-14.

    [29]Rosenthal F,F(xiàn)eijs KL,F(xiàn)rugier E,Bonalli M,F(xiàn)orst AH,Imhof R,et al.Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases.Nat Struct Mol Biol 2013;20:502-7.

    [30]Neuvonen M,Ahola T.Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.J Mol Biol 2009;385:212-25.

    [31]Chen D,Vollmar M,Rossi MN,Phillips C,Kraehenbuehl R,Slade D,et al.Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.J Biol Chem 2011;286:13261-71.

    [32]Wielckens K,Schmidt A,George E,Bredehorst R,Hilz H.DNA fragmentation and NAD depletion.Their relation to the turnover of endogenous mono(ADP-ribosyl)and poly(ADP-ribosyl)proteins.J Biol Chem 1982;257:12872-7.

    [33]Fatokun AA,Dawson VL,Dawson TM.Parthanatos:mitochondrial-linked mechanisms and therapeutic opportunities.Br J Pharmacol 2014;171:2000-16.

    [34]Jiricny J.The multifaceted mismatch-repair system.Nat Rev Mol Cell Biol 2006;7:335-46.

    [35]Caldecott KW.Single-strand break repair and genetic disease. Nat Rev Genet 2008;9:619-31.

    [36]Li M,Yu X.Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation.Cancer Cell 2013;23:693-704.

    [37]Dantzer F,de La Rubia G,Menissier-De Murcia J,Hostomsky Z,de Murcia G,Schreiber V.Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose)polymerase-1.Biochemistry 2000;39:7559-69.

    [38]Noren Hooten N,Kompaniez K,Barnes J,Lohani A,Evans MK. Poly(ADP-ribose)polymerase 1(PARP-1)binds to 8-oxoguanine-DNA glycosylase(OGG1).J Biol Chem 2011;286:44679-90.

    [39]Frouin I,Maga G,Denegri M,Riva F,Savio M,Spadari S,et al. Human proliferating cell nuclear antigen,poly(ADP-ribose)polymerase-1,and p21waf1/cip1.A dynamic exchange of partners.J Biol Chem 2003;278:39265-8.

    [40]Harris JL,Jakob B,Taucher-Scholz G,Dianov GL,Becherel OJ,Lavin MF.Aprataxin,poly-ADP ribose polymerase 1(PARP-1)and apurinic endonuclease 1(APE1)function together to protect thegenomeagainstoxidativedamage.HumMolGenet 2009;18:4102-17.

    [41]Schreiber V,Ame JC,Dolle P,Schultz I,Rinaldi B,F(xiàn)raulob V,et al.Poly(ADP-ribose)polymerase-2(PARP-2)is required for efficient base excision DNA repair in association with PARP-1 and XRCC1.J Biol Chem 2002;277:23028-36.

    [42]Masson M,Niedergang C,Schreiber V,Muller S,Menissier-de Murcia J,de Murcia G.XRCC1 is specifically associated with poly(ADP-ribose)polymerase and negatively regulates its activity following DNA damage.Mol Cell Biol 1998;18:3563-71.

    [43]Ceccaldi R,Rondinelli B,D’Andrea AD.Repair Pathway Choices and Consequences at the Double-Strand Break.Trends Cell Biol 2016;26:52-64.

    [44]Chiruvella KK,Liang Z,Wilson TE.Repair of double-strand breaks by end joining.Cold Spring Harb Perspect Biol 2013;5: a012757.

    [45]Karanam K,Kafri R,Loewer A,Lahav G.Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase.Mol Cell 2012;47:320-9.

    [46]Lieber MR.The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.Annu Rev Biochem 2010;79:181-211.

    [47]Morrison C,Smith GC,Stingl L,Jackson SP,Wagner EF,Wang ZQ.Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis.Nat Genet 1997;17:479-82.

    [48]Ruscetti T,Lehnert BE,Halbrook J,Le Trong H,Hoekstra MF,Chen DJ,et al.Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose)polymerase.J Biol Chem 1998;273:14461-7.[49]Spagnolo L,Barbeau J,Curtin NJ,Morris EP,Pearl LH. Visualization of a DNA-PK/PARP1 complex.Nucleic Acids Res 2012;40:4168-77.

    [50]Li M,Lu LY,Yang CY,Wang S,Yu X.The FHA and BRCT domainsrecognizeADP-ribosylationduringDNAdamage response.Genes Dev 2013;27:1752-68.

    [51]Deriano L,Roth DB.Modernizing the nonhomologous endjoining repertoire:alternative and classical NHEJ share the stage. Annu Rev Genet 2013;47:433-55.

    [52]Iliakis G.Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence.Radiother Oncol 2009;92:310-5.

    [53]Schultz N,Lopez E,Saleh-Gohari N,Helleday T.Poly(ADP-ribose)polymerase(PARP-1)has a controlling role in homologous recombination.Nucleic Acids Res 2003;31:4959-64.

    [54]West SC.Molecular views of recombination proteins and their control.Nat Rev Mol Cell Biol 2003;4:435-45.

    [55]Heyer WD,Ehmsen KT,Liu J.Regulation of homologous recombination in eukaryotes.Annu Rev Genet 2010;44:113-39.

    [56]Haince JF,McDonald D,Rodrigue A,Dery U,Masson JY,Hendzel MJ,et al.PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites.J Biol Chem 2008;283:1197-208.

    [57]Zhang F,Shi J,Bian C,Yu X.Poly(ADP-Ribose)Mediates the BRCA2-Dependent Early DNA Damage Response.Cell Rep 2015;13:678-89.

    [58]Zhang F,Shi J,Chen SH,Bian C,Yu X.The PIN domain of EXO1 recognizes poly(ADP-ribose)in DNA damage response. Nucleic Acids Res 2015;43:10782-94.

    [59]Zaja R,Mikoc A,Barkauskaite E,Ahel I.Molecular Insights into Poly(ADP-ribose)Recognition and Processing.Biomolecules 2012;3:1-17.

    [60]Ahel I,Ahel D,Matsusaka T,Clark AJ,Pines J,Boulton SJ,et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/ checkpoint proteins.Nature 2008;451:81-5.

    [61]Mehrotra PV,Ahel D,Ryan DP,Weston R,Wiechens N,Kraehenbuehl R,et al.DNA repair factor APLF is a histone chaperone.Mol Cell 2011;41:46-55.

    [62]Oberoi J,Richards MW,Crumpler S,Brown N,Blagg J,Bayliss R.Structural basis of poly(ADP-ribose)recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains(CHFR).J Biol Chem 2010;285:39348-58.

    [63]Li GY,McCulloch RD,F(xiàn)enton AL,Cheung M,Meng L,Ikura M,et al.Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response.Proc Natl Acad Sci U S A 2010;107:9129-34.

    [64]Wang Z,Michaud GA,Cheng Z,Zhang Y,Hinds TR,F(xiàn)an E,et al.Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose)by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependentubiquitination.GenesDev 2012;26:235-40.

    [65]Kang HC,Lee YI,Shin JH,Andrabi SA,Chi Z,Gagne JP,et al. Iduna is a poly(ADP-ribose)(PAR)-dependent E3 ubiquitin ligase that regulates DNA damage.Proc Natl Acad Sci U S A 2011;108:14103-8.

    [66]Feijs KL,F(xiàn)orst AH,Verheugd P,Luscher B.Macrodomaincontaining proteins:regulating new intracellular functions of mono(ADP-ribosyl)ation.Nat Rev Mol Cell Biol 2013;14:443-51.

    [67]Timinszky G,Till S,Hassa PO,Hothorn M,Kustatscher G,Nijmeijer B,et al.A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation.Nat Struct Mol Biol 2009;16:923-9.

    [68]Kustatscher G,Hothorn M,Pugieux C,Scheffzek K,Ladurner AG.Splicing regulates NAD metabolite binding to histone macroH2A.Nat Struct Mol Biol 2005;12:624-5.

    [69]Gottschalk AJ,Timinszky G,Kong SE,Jin J,Cai Y,Swanson SK,et al.Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.Proc Natl Acad Sci U S A 2009;106:13770-4.

    [70]Ahel D,Horejsi Z,Wiechens N,Polo SE,Garcia-Wilson E,Ahel I,et al.Poly(ADP-ribose)-dependent regulation of DNA repair by thechromatinremodelingenzymeALC1.Science 2009;325:1240-3.

    [71]Peterson FC,Chen D,Lytle BL,Rossi MN,Ahel I,Denu JM,et al.Orphan macrodomain protein(human C6orf130)is an O-acyl-ADP-ribose deacylase:solution structure and catalytic properties.J Biol Chem 2011;286:35955-65.

    [72]Reinhardt HC,Yaffe MB.Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.Nat Rev Mol Cell Biol 2013;14:563-80.

    [73]DaRosa PA,Wang Z,Jiang X,Pruneda JN,Cong F,Klevit RE,et al.Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal.Nature 2015;517:223-6.

    [74]Arcus VL,McKenzie JL,Robson J,Cook GM.The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Eng Des Sel 2011;24:33-40.

    [75]Arcus VL,Rainey PB,Turner SJ.The PIN-domain toxinantitoxin array in mycobacteria.Trends Microbiol 2005;13:360-5.

    [76]Maris C,Dominguez C,Allain FH.The RNA recognition motif,a plastic RNA-binding platform to regulate post-transcriptional gene expression.FEBS J 2005;272:2118-31.

    [77]Gagne JP,Hunter JM,Labrecque B,Chabot B,Poirier GG.A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins.Biochem J 2003;371:331-40.

    [78]Ji Y,Tulin AV.Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteinsmodulatessplicing.NucleicAcidsRes 2009;37:3501-13.

    [79]Thandapani P,O’Connor TR,Bailey TL,Richard S.Defining the RGG/RG motif.Mol Cell 2013;50:613-23.

    [80]Izhar L,Adamson B,Ciccia A,Lewis J,Pontano-Vaites L,Leng Y,et al.A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.Cell Rep 2015;11:1486-500.

    [81]Altmeyer M,Toledo L,Gudjonsson T,Grofte M,Rask MB,Lukas C,et al.The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling.Mol Cell 2013;52:206-20.

    [82]Mastrocola AS,Kim SH,Trinh AT,Rodenkirch LA,Tibbetts RS.The RNA-binding protein fused in sarcoma(FUS)functions downstream of poly(ADP-ribose)polymerase(PARP)in response to DNA damage.J Biol Chem 2013;288:24731-41.

    [83]Rulten SL,Rotheray A,Green RL,Grundy GJ,Moore DA,Gomez-Herreros F,et al.PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sitesofoxidativeDNAdamage.NucleicAcidsRes 2014;42:307-14.

    [84]Polo SE,Blackford AN,Chapman JR,Baskcomb L,Gravel S,Rusch A,et al.Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair.Mol Cell 2012;45:505-16.

    [85]Hong Z,Jiang J,Ma J,Dai S,Xu T,Li H,et al.The role of hnRPUL1 involved in DNA damage response is related to PARP1.PLoS One 2013;8:e60208.

    [86]Britton S,Dernoncourt E,Delteil C,F(xiàn)roment C,Schiltz O,Salles B,et al.DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014;42:9047-62.

    [87]Weissman AM,Shabek N,Ciechanover A.The predator becomes the prey:regulating the ubiquitin system by ubiquitylation and degradation.Nat Rev Mol Cell Biol 2011;12:605-20.

    [88]Huang SM,Mishina YM,Liu S,Cheung A,Stegmeier F,Michaud GA,et al.Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Nature 2009;461:614-20.

    [89]Levaot N,Voytyuk O,Dimitriou I,Sircoulomb F,Chandrakumar A,Deckert M,et al.Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism.Cell 2011;147:1324-39.

    [90]Guettler S,LaRose J,Petsalaki E,Gish G,Scotter A,Pawson T,et al.Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease.Cell 2011;147:1340-54.

    [91]Crafton SM,Bixel K,Hays JL.PARP inhibition and gynecologic malignancies:a review of current literature and on-going trials. Gynecol Oncol 2016.http://dx.doi.org/10.1016/j.ygyno.2016.05.003.

    [92]Raison N,Elhage O,Dasgupta P.Getting personal with prostate cancer:DNA-repair defects and olaparib in metastatic prostate cancer.BJU Int 2016.http://dx.doi.org/10.1111/bju.13522.

    23 February 2016;revised 29 April 2016;accepted 2 May 2016

    *Corresponding author.

    E-mail:xyu@coh.org(Yu X).aORCID:0000-0003-2711-3868.bORCID:0000-0002-0751-7390.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.05.001

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    中共中央辦公廳下文國務(wù)院辦公廳
    新媒體視野下文創(chuàng)產(chǎn)品的營銷與創(chuàng)新
    中共中央辦公廳國務(wù)院辦公廳印發(fā)《關(guān)于調(diào)整完善土地出讓收入使用范圍優(yōu)先支持鄉(xiāng)村振興的意見》
    推進鄉(xiāng)村治理體系 夯實鄉(xiāng)村振興基礎(chǔ)——中共中央辦公廳 國務(wù)院辦公廳印發(fā)《關(guān)于加強和改進鄉(xiāng)村治理的指導(dǎo)意見》
    國務(wù)院辦公廳關(guān)于促進建筑業(yè)持續(xù)健康發(fā)展的意見 國辦發(fā)〔2017〕19號
    青海政報(2017年4期)2017-07-24 14:04:48
    去古代吃頓飯(上)
    國務(wù)院辦公廳關(guān)于創(chuàng)建“中國制造2025”國家級示范區(qū)的通知
    青海政報(2017年22期)2017-04-09 06:45:55
    國務(wù)院辦公廳關(guān)于推廣支持創(chuàng)新相關(guān)改革舉措的通知
    青海政報(2017年21期)2017-03-16 06:05:09
    國務(wù)院辦公廳關(guān)于加強環(huán)境監(jiān)管執(zhí)法的通知
    天津造紙(2016年2期)2017-01-15 14:03:36
    中共中央辦公廳印發(fā)《科協(xié)系統(tǒng)深化改革實施方案》
    天津造紙(2016年2期)2017-01-15 14:03:32
    水能生火
    一个人观看的视频www高清免费观看| 国产高清视频在线播放一区| 在线免费观看的www视频| 18禁美女被吸乳视频| 亚洲人成电影免费在线| a级一级毛片免费在线观看| 亚洲中文字幕日韩| 久久久成人免费电影| 亚洲av一区综合| 热99re8久久精品国产| av黄色大香蕉| 在线a可以看的网站| 亚洲精品成人久久久久久| 九色成人免费人妻av| 国产精华一区二区三区| 级片在线观看| 国产精品久久久久久久电影 | 一进一出抽搐动态| 日日夜夜操网爽| 亚洲中文字幕一区二区三区有码在线看| 婷婷六月久久综合丁香| 成人无遮挡网站| 国产精品久久电影中文字幕| av福利片在线观看| 91麻豆精品激情在线观看国产| 天美传媒精品一区二区| 精品日产1卡2卡| 国产成+人综合+亚洲专区| 好男人电影高清在线观看| 亚洲精品美女久久久久99蜜臀| 成人无遮挡网站| www.熟女人妻精品国产| 在线天堂最新版资源| 久久婷婷人人爽人人干人人爱| 91在线精品国自产拍蜜月 | 国产高清激情床上av| 91在线精品国自产拍蜜月 | 88av欧美| 在线观看免费午夜福利视频| 国产探花在线观看一区二区| 欧美日韩黄片免| 国产私拍福利视频在线观看| 俺也久久电影网| 亚洲第一电影网av| 亚洲电影在线观看av| 丰满的人妻完整版| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆 | 观看美女的网站| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| 搡老岳熟女国产| 免费观看人在逋| 99久久精品国产亚洲精品| 中文字幕av在线有码专区| 在线观看av片永久免费下载| 十八禁网站免费在线| 久久九九热精品免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区三区四区久久| 黄色片一级片一级黄色片| 丁香六月欧美| 男女午夜视频在线观看| 亚洲av熟女| 色综合欧美亚洲国产小说| 国内精品一区二区在线观看| 欧美午夜高清在线| 国产成人影院久久av| 中文在线观看免费www的网站| 在线观看66精品国产| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 精品国产亚洲在线| 国产精品日韩av在线免费观看| 精品熟女少妇八av免费久了| 国产av麻豆久久久久久久| 久久久久久九九精品二区国产| 国产国拍精品亚洲av在线观看 | 麻豆成人av在线观看| 久久99热这里只有精品18| 色精品久久人妻99蜜桃| 欧美大码av| 日韩中文字幕欧美一区二区| 淫秽高清视频在线观看| 嫩草影院入口| 国产美女午夜福利| 最近视频中文字幕2019在线8| 欧美一区二区国产精品久久精品| 久久久色成人| 亚洲在线观看片| 757午夜福利合集在线观看| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影| 51午夜福利影视在线观看| 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 在线视频色国产色| 欧美性猛交╳xxx乱大交人| 久久性视频一级片| 校园春色视频在线观看| 亚洲欧美日韩高清在线视频| 亚洲国产日韩欧美精品在线观看 | 日韩欧美国产一区二区入口| 黄片小视频在线播放| 欧美日韩乱码在线| 欧美日韩一级在线毛片| 蜜桃久久精品国产亚洲av| 在线十欧美十亚洲十日本专区| 午夜福利高清视频| 色综合亚洲欧美另类图片| 成年女人永久免费观看视频| 最近视频中文字幕2019在线8| 国产欧美日韩一区二区精品| 国产又黄又爽又无遮挡在线| av专区在线播放| 亚洲人成网站高清观看| 小蜜桃在线观看免费完整版高清| 少妇丰满av| 欧美成人一区二区免费高清观看| 99热精品在线国产| 午夜福利18| 91在线精品国自产拍蜜月 | 国产三级黄色录像| 91麻豆av在线| 久久国产精品影院| 久久久精品欧美日韩精品| 91麻豆av在线| 一进一出抽搐gif免费好疼| 午夜福利免费观看在线| 亚洲精品456在线播放app | 首页视频小说图片口味搜索| 少妇高潮的动态图| 在线视频色国产色| 免费搜索国产男女视频| 一级毛片高清免费大全| 久久精品国产自在天天线| 午夜福利在线观看吧| 人妻丰满熟妇av一区二区三区| 又粗又爽又猛毛片免费看| 午夜亚洲福利在线播放| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久一区二区三区 | 99久久精品国产亚洲精品| 亚洲最大成人中文| 国产精品,欧美在线| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美网| 丁香欧美五月| 1024手机看黄色片| www日本在线高清视频| 国产精品久久久久久精品电影| 精品一区二区三区视频在线 | 亚洲精华国产精华精| 国产色婷婷99| 国产精品影院久久| 色精品久久人妻99蜜桃| 国产熟女xx| 午夜a级毛片| 国产欧美日韩一区二区精品| 手机成人av网站| 日韩欧美三级三区| www国产在线视频色| 国产精品1区2区在线观看.| 97超视频在线观看视频| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 亚洲熟妇熟女久久| 精品99又大又爽又粗少妇毛片 | 欧美日韩综合久久久久久 | 国产精品影院久久| 青草久久国产| 日本熟妇午夜| 有码 亚洲区| 老司机午夜福利在线观看视频| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 偷拍熟女少妇极品色| 国产久久久一区二区三区| 老汉色∧v一级毛片| 亚洲av一区综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 啦啦啦免费观看视频1| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 色噜噜av男人的天堂激情| 欧美成狂野欧美在线观看| netflix在线观看网站| 国产精品香港三级国产av潘金莲| 国产中年淑女户外野战色| 成人国产综合亚洲| 久久精品综合一区二区三区| 99久国产av精品| 国产一区二区三区视频了| 欧美性感艳星| 免费观看精品视频网站| 免费av毛片视频| 18禁黄网站禁片午夜丰满| 成年版毛片免费区| 国产国拍精品亚洲av在线观看 | 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 在线播放无遮挡| 亚洲片人在线观看| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 亚洲无线在线观看| 国产高清三级在线| 一a级毛片在线观看| 好男人在线观看高清免费视频| 伊人久久精品亚洲午夜| 麻豆国产97在线/欧美| 99热这里只有精品一区| 国产精品久久久久久亚洲av鲁大| 午夜老司机福利剧场| 久久久久久久久中文| 他把我摸到了高潮在线观看| 老司机午夜十八禁免费视频| 欧美日韩黄片免| 91在线精品国自产拍蜜月 | 亚洲美女视频黄频| 色视频www国产| 国产99白浆流出| 最近最新中文字幕大全免费视频| 色综合婷婷激情| 久久精品国产清高在天天线| 久久久国产成人精品二区| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 高清日韩中文字幕在线| 91麻豆av在线| 国产精品久久久久久亚洲av鲁大| 亚洲国产色片| 小说图片视频综合网站| 亚洲国产精品成人综合色| 午夜视频国产福利| 国产成年人精品一区二区| 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 一区二区三区免费毛片| 国产毛片a区久久久久| 亚洲无线在线观看| 国产精品电影一区二区三区| 深夜精品福利| 亚洲第一电影网av| 最新中文字幕久久久久| 亚洲第一欧美日韩一区二区三区| 男人舔奶头视频| 日本一二三区视频观看| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 一级毛片女人18水好多| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 此物有八面人人有两片| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| 69av精品久久久久久| 色综合婷婷激情| 99热只有精品国产| 国产精品永久免费网站| av欧美777| 亚洲成a人片在线一区二区| 一区二区三区激情视频| 国产精品 国内视频| 亚洲一区二区三区不卡视频| or卡值多少钱| 国产av麻豆久久久久久久| 午夜免费观看网址| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 亚洲人成电影免费在线| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 成人高潮视频无遮挡免费网站| 亚洲无线在线观看| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| 久久伊人香网站| 在线视频色国产色| 欧美丝袜亚洲另类 | 熟女电影av网| 午夜老司机福利剧场| 亚洲国产精品合色在线| 69人妻影院| 亚洲国产欧美网| 免费高清视频大片| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 亚洲人成网站在线播| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 中文字幕久久专区| 日本精品一区二区三区蜜桃| 天堂影院成人在线观看| 精品国产美女av久久久久小说| 色综合欧美亚洲国产小说| 精品人妻1区二区| 1024手机看黄色片| 1000部很黄的大片| 欧美乱妇无乱码| 国产老妇女一区| 夜夜爽天天搞| www日本在线高清视频| 深爱激情五月婷婷| 丁香六月欧美| 丰满乱子伦码专区| 色综合婷婷激情| 有码 亚洲区| 国产在线精品亚洲第一网站| 88av欧美| 人妻丰满熟妇av一区二区三区| 91麻豆精品激情在线观看国产| 亚洲久久久久久中文字幕| 免费看a级黄色片| 精品熟女少妇八av免费久了| 精品电影一区二区在线| 欧美日韩一级在线毛片| 在线观看av片永久免费下载| 国产成人av教育| 国产一级毛片七仙女欲春2| 日本 欧美在线| 在线国产一区二区在线| 国产三级黄色录像| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 欧美最黄视频在线播放免费| 天堂动漫精品| 天堂网av新在线| 久久久久久久久久黄片| 亚洲欧美日韩高清在线视频| 老汉色av国产亚洲站长工具| 99热这里只有是精品50| 美女高潮喷水抽搐中文字幕| 男女那种视频在线观看| 亚洲精品美女久久久久99蜜臀| 男女那种视频在线观看| 十八禁网站免费在线| 亚洲在线自拍视频| 床上黄色一级片| 精品久久久久久久久久免费视频| 色吧在线观看| 真实男女啪啪啪动态图| 日韩欧美三级三区| 脱女人内裤的视频| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 香蕉丝袜av| 国产亚洲精品av在线| 丰满乱子伦码专区| 好看av亚洲va欧美ⅴa在| 欧美性猛交╳xxx乱大交人| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清| 中文资源天堂在线| 国产精品女同一区二区软件 | 真人做人爱边吃奶动态| 亚洲无线在线观看| 国产亚洲精品一区二区www| 叶爱在线成人免费视频播放| 国产精品乱码一区二三区的特点| 两个人视频免费观看高清| 国产成+人综合+亚洲专区| 亚洲av一区综合| 搞女人的毛片| 狠狠狠狠99中文字幕| www日本在线高清视频| av视频在线观看入口| 岛国在线观看网站| 69av精品久久久久久| 亚洲av五月六月丁香网| 日本 欧美在线| 在线a可以看的网站| 最后的刺客免费高清国语| 久久香蕉精品热| 禁无遮挡网站| 国产免费一级a男人的天堂| 久久久国产成人免费| 不卡一级毛片| 成人性生交大片免费视频hd| 女人高潮潮喷娇喘18禁视频| 99久久综合精品五月天人人| 99久久精品热视频| 国产成人a区在线观看| 十八禁网站免费在线| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 18+在线观看网站| 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线 | 天天一区二区日本电影三级| 日韩av在线大香蕉| 小说图片视频综合网站| 99在线视频只有这里精品首页| 一区二区三区高清视频在线| 在线看三级毛片| 国产真实伦视频高清在线观看 | 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| 久久久久久久久大av| av黄色大香蕉| 五月玫瑰六月丁香| 免费一级毛片在线播放高清视频| or卡值多少钱| 国内精品一区二区在线观看| 午夜老司机福利剧场| 999久久久精品免费观看国产| 国产真实乱freesex| 日韩免费av在线播放| 热99re8久久精品国产| 午夜影院日韩av| 精品日产1卡2卡| 久久99热这里只有精品18| 男女那种视频在线观看| 欧美性猛交黑人性爽| 一本综合久久免费| 天天躁日日操中文字幕| 亚洲中文字幕一区二区三区有码在线看| 在线观看日韩欧美| av中文乱码字幕在线| 又爽又黄无遮挡网站| 国内揄拍国产精品人妻在线| 久久久久久久亚洲中文字幕 | 亚洲五月婷婷丁香| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 色噜噜av男人的天堂激情| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 在线观看舔阴道视频| av视频在线观看入口| 又紧又爽又黄一区二区| 久99久视频精品免费| 午夜免费成人在线视频| 亚洲av不卡在线观看| 一区福利在线观看| 真实男女啪啪啪动态图| 一个人免费在线观看的高清视频| 又黄又爽又免费观看的视频| 十八禁人妻一区二区| 国产探花极品一区二区| 99riav亚洲国产免费| 国产亚洲精品久久久久久毛片| 久久午夜亚洲精品久久| 国产乱人视频| 亚洲av不卡在线观看| 国产精品免费一区二区三区在线| 国产激情偷乱视频一区二区| 超碰av人人做人人爽久久 | 淫秽高清视频在线观看| 激情在线观看视频在线高清| 男人和女人高潮做爰伦理| 人人妻,人人澡人人爽秒播| 成熟少妇高潮喷水视频| 亚洲av美国av| 中文字幕高清在线视频| 免费人成视频x8x8入口观看| 精品国产亚洲在线| av片东京热男人的天堂| 精品国产三级普通话版| 精品一区二区三区av网在线观看| 国产精品精品国产色婷婷| 757午夜福利合集在线观看| 黄片大片在线免费观看| 91字幕亚洲| www国产在线视频色| 久久久久久久久大av| 国产精品野战在线观看| 亚洲欧美日韩卡通动漫| 三级国产精品欧美在线观看| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 99精品在免费线老司机午夜| 69人妻影院| 亚洲 欧美 日韩 在线 免费| 亚洲欧美激情综合另类| 国内揄拍国产精品人妻在线| 国产精品电影一区二区三区| 国产高清有码在线观看视频| 不卡一级毛片| 久久精品国产99精品国产亚洲性色| 免费av毛片视频| 真人做人爱边吃奶动态| 色播亚洲综合网| 999久久久精品免费观看国产| 日本撒尿小便嘘嘘汇集6| 在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在 | 女人被狂操c到高潮| 亚洲激情在线av| 免费一级毛片在线播放高清视频| 欧美zozozo另类| 人妻夜夜爽99麻豆av| 少妇的丰满在线观看| 久久久久久久久大av| 午夜免费男女啪啪视频观看 | 精品电影一区二区在线| 婷婷丁香在线五月| 岛国视频午夜一区免费看| 亚洲无线观看免费| 成人无遮挡网站| 男人舔奶头视频| 国产精品 欧美亚洲| 国产一区二区亚洲精品在线观看| 亚洲av五月六月丁香网| 午夜精品在线福利| 亚洲成人中文字幕在线播放| 日韩大尺度精品在线看网址| 日本免费a在线| 成人精品一区二区免费| 18禁美女被吸乳视频| 欧美日韩黄片免| 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 99国产精品一区二区三区| 黄片大片在线免费观看| 无遮挡黄片免费观看| 丰满人妻熟妇乱又伦精品不卡| 色综合站精品国产| 欧美日韩精品网址| 操出白浆在线播放| 草草在线视频免费看| 少妇的逼水好多| 欧美xxxx黑人xx丫x性爽| 日韩人妻高清精品专区| 丰满人妻熟妇乱又伦精品不卡| 90打野战视频偷拍视频| 国产乱人伦免费视频| 三级毛片av免费| 一区福利在线观看| 中文字幕av在线有码专区| 欧美xxxx黑人xx丫x性爽| av天堂在线播放| 黄色丝袜av网址大全| 久久久国产精品麻豆| 国产毛片a区久久久久| 日韩有码中文字幕| 久久99热这里只有精品18| 亚洲午夜理论影院| 男人的好看免费观看在线视频| 色在线成人网| 日韩大尺度精品在线看网址| 亚洲国产精品成人综合色| 伊人久久大香线蕉亚洲五| 高清在线国产一区| 欧美一区二区亚洲| 久久精品91蜜桃| 老司机午夜福利在线观看视频| 国产欧美日韩精品亚洲av| 欧美不卡视频在线免费观看| 可以在线观看的亚洲视频| 久久久成人免费电影| 91九色精品人成在线观看| 亚洲最大成人手机在线| 一a级毛片在线观看| 一区二区三区国产精品乱码| 最近最新免费中文字幕在线| 男女午夜视频在线观看| 天堂网av新在线| 日韩av在线大香蕉| 神马国产精品三级电影在线观看| 久久人妻av系列| 亚洲欧美一区二区三区黑人| 国产午夜福利久久久久久| 成熟少妇高潮喷水视频| 久久久国产精品麻豆| 午夜两性在线视频| 国产精品亚洲av一区麻豆| 深夜精品福利| 欧美不卡视频在线免费观看| 国内精品久久久久久久电影| 美女高潮喷水抽搐中文字幕| 又黄又爽又免费观看的视频| 在线免费观看不下载黄p国产 | 搡女人真爽免费视频火全软件 | 少妇的逼好多水| 亚洲av五月六月丁香网| 老司机午夜十八禁免费视频| 日本精品一区二区三区蜜桃| 白带黄色成豆腐渣| av片东京热男人的天堂| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 女人被狂操c到高潮| 19禁男女啪啪无遮挡网站| 日本成人三级电影网站| 国产97色在线日韩免费| 变态另类丝袜制服| 女同久久另类99精品国产91| 成人性生交大片免费视频hd| 精品国产三级普通话版| 香蕉久久夜色| 在线观看日韩欧美| 高清日韩中文字幕在线| 欧美日韩瑟瑟在线播放| 十八禁人妻一区二区| www日本黄色视频网| 看片在线看免费视频| 国模一区二区三区四区视频| 2021天堂中文幕一二区在线观| 99精品在免费线老司机午夜| 久久久久国内视频|