楊大煉 劉義倫 李松柏 陶潔
摘 要:針對非等距GM(1,1)模型中背景值系數(shù)α對模型的預(yù)測能力影響很大而最優(yōu)值難以確定的問題,將細(xì)菌覓食算法與GM(1,1)模型相結(jié)合,提出了BFA-GM(1,1)優(yōu)化模型.以飛機(jī)尾翼疲勞壽命預(yù)測為實(shí)例,分析比較了BFA-GM(1,1)模型、PSO-GM(1,1)模型和GA-GM(1,1)模型的性能.從試驗(yàn)的結(jié)果來看,本文提出的BFA-GM(1,1)模型消耗的時(shí)間少于其他2種模型消耗的時(shí)間,而平均預(yù)測誤差低于其他2種模型的平均預(yù)測誤差,這說明本文提出的BFA-GM(1,1)模型能夠更快速、更準(zhǔn)確地找到最優(yōu)的背景值系數(shù)α,從而提高了“小樣本”“貧信息”條件下的飛機(jī)尾翼疲勞壽命預(yù)測的精度.
關(guān)鍵詞:細(xì)菌覓食算法;非等距GM(1,1)模型;疲勞;壽命預(yù)測;參數(shù)優(yōu)化
中圖分類號:TG146.2 文獻(xiàn)標(biāo)識碼:A
Abstract:The background value coefficient α of the non-equidistant GM (1, 1) model has great influence on the predictive capability, but it is difficult to determine its optimal value. For these problems, the bacterial foraging algorithm and a GM (1, 1) model were combined and the BFA-GM (1, 1) optimization model was proposed. Taking the experiment of empennage fatigue life prediction as an example, the performances of the BFA-GM (1, 1) model, the PSO-GM (1, 1) model and the GA-GM (1, 1) model were analyzed and compared. The results have shown that the BFA-GM (1, 1) model consumes the least time and obtains the lowest average prediction error, and that the BFA-GM (1, 1) model proposed is competent to find the optimal background value coefficient α quickly and accurately, thereby increasing the empennage fatigue life prediction accuracy under the conditions of “small samples” and “poor information”.
Key words:bacterial foraging algorithm (BFA);non-equidistant GM (1,1) model;fatigue; life prediction; parameter optimization
疲勞是航空航天裝備運(yùn)行不可忽視的問題,對結(jié)構(gòu)壽命進(jìn)行準(zhǔn)確預(yù)測能有效避免事故的發(fā)生.傳統(tǒng)的疲勞壽命預(yù)測方法大多建立在確定性理論或者概率統(tǒng)計(jì)基礎(chǔ)之上[1],這需要大量而準(zhǔn)確的試驗(yàn)數(shù)據(jù),從而增加了試驗(yàn)的成本和周期,限制了其應(yīng)用范圍.GM(1,1)模型[2]由于其“小樣本”“貧信息”建模的特點(diǎn)被應(yīng)用于冶金[3]、隧道[4]、軍事[5]、疲勞[6-8]等領(lǐng)域.非等距GM(1,1)模型修正了等距GM(1,1)模型要求數(shù)據(jù)必須是等間隔的局限,是目前研究和應(yīng)用最多的一種.然而,在使用非等距GM(1,1)模型時(shí),其預(yù)測精度受背景值系數(shù)α的影響很大[9],而最優(yōu)α值難以確定,常憑經(jīng)驗(yàn)選取,難以保證模型預(yù)測能力.為此,王國華等[10]、Hsu[11]采用遺傳算法對模型參數(shù)進(jìn)行選?。粍⒑?,于麗亞等[12-13]采用粒子群算法對模型參數(shù)進(jìn)行選取,但由于遺傳算法和粒子群算法本身的局限性,其優(yōu)化的速度和精度不理想.
3.2 BFA-GM(1,1)建模與優(yōu)化分析
為了驗(yàn)證本文方法的有效性,共進(jìn)行了4組試驗(yàn),編號分別為:T1,T2,T3,T4.前3組試驗(yàn)從表2中隨機(jī)選取6組不同編號的樣本作為建模樣本,剩余2組數(shù)據(jù)作為測試樣本,測試樣本的選取分別位于試驗(yàn)數(shù)據(jù)序列的不同位置,以便說明模型的有效性,T4試驗(yàn)中將全部樣本作為建模樣本和測試樣本.試驗(yàn)方案如表3所示.
比較表4中的4組試驗(yàn)的結(jié)果,從終止條件來分析,本文提出的BFA-GM(1,1)模型迭代次數(shù)均沒有達(dá)到設(shè)定的最大次數(shù)Niter=100就使種群滿足ε<10-10,而其他2種模型迭代停止時(shí)達(dá)到了設(shè)定的最大迭代次數(shù),這說明BFA-GM(1,1)模型的收斂速度比后2種模型的收斂速度快.BFA-GM(1,1)模型所需要的時(shí)間少于其他2種方法,依次為T1:1.72 s;T2:1.81 s;T3:1.80 s;T4:1.75 s;PSO-GM(1,1)模型消耗的時(shí)間次之,而GA-GM(1,1)模型消耗的時(shí)間最多,4組試驗(yàn)中最少也需要2.99 s.原因在于粒子群算法中粒子的運(yùn)動特性受多個(gè)參數(shù)的共同控制,在實(shí)際應(yīng)用過程中難以對粒子的尋優(yōu)能力進(jìn)行最優(yōu)控制.遺傳算法一方面需要對解進(jìn)行編碼及解碼操作,而編碼的長度直接影響算法的速度和解的精度,編碼越長,精度越高,但計(jì)算時(shí)間就越長,編碼短,則精度又無法保證;另一方面,遺傳算法需要進(jìn)行交叉、變異等操作,需要消耗很多的時(shí)間,影響了迭代的速度.從表4中的預(yù)測誤差可以看出,本文提出的BFA-GM(1,1)模型的預(yù)測精度比其他2種方法高,依次為8.901 6%,12.868 4%,9.974 9%,8.745 3%,這表明本文提出的BFA-GM(1,1)模型具有優(yōu)越性.
3.3 尾翼壽命預(yù)測結(jié)果分析
為了說明參數(shù)α對預(yù)測結(jié)果的影響,試驗(yàn)選取α=α*,α=rand()和α≠α*時(shí)對測試樣本及建模樣本同時(shí)進(jìn)行預(yù)測.表5為BFA-GM(1,1)模型對所有數(shù)據(jù)樣本進(jìn)行預(yù)測并根據(jù)式(16)還原為尾翼壽命的預(yù)測結(jié)果,其中標(biāo)星號的數(shù)據(jù)為對應(yīng)的測試樣本的預(yù)測結(jié)果,其余為建模樣本的預(yù)測結(jié)果.
從表5中4組試驗(yàn)的預(yù)測結(jié)果可以知道,一方面,背景值系數(shù)α對GM(1,1)模型的預(yù)測結(jié)果影響很大,以T1為例,當(dāng)α 取優(yōu)化解α*=0.472 047時(shí),平均誤差為8.901 6%,遠(yuǎn)小于非優(yōu)化值α=0.147 748時(shí)的預(yù)測平均誤差22.638 4%,這說明對α的值進(jìn)行優(yōu)化選取是十分必要的,通過對參數(shù)α進(jìn)行優(yōu)化選取,能大大降低預(yù)測誤差;另一方面,對于不同的GM(1,1)模型,其最優(yōu)背景值α*是不一樣的,如果通過隨機(jī)選取或憑經(jīng)驗(yàn)選取,無法保證模型的預(yù)測精度.
從4組試驗(yàn)的優(yōu)化預(yù)測結(jié)果來看,T4的平均誤差最小,其次是T1,誤差最大為T2,這說明建模樣本及預(yù)測樣本的數(shù)量和分布對BFA-GM(1,1)模型的性能有一定的影響.一方面,GM(1,1)模型的性能受建模數(shù)據(jù)的光滑程度的影響,若建模數(shù)據(jù)中存在跳躍點(diǎn),模型的性能會下降;另一方面,樣本間距的不均勻性也對模型的性能有一定的影響,從而導(dǎo)致試驗(yàn)中部分點(diǎn)的預(yù)測誤差偏大,這是今后需要繼續(xù)深入研究的.但總體來看,平均預(yù)測誤差分別為8.901 6%,12.868 4%,9.974 9%,8.745 3%是完全可以接受的.
4 結(jié) 論
論文將細(xì)菌覓食算法與非等距GM(1,1)模型相結(jié)合,提出了非等距BFA-GM(1,1)模型,并以飛機(jī)尾翼疲勞壽命預(yù)測為實(shí)例,比較分析了BFA-GM(1,1)、PSO-GM(1,1)和GA-GM(1,1) 3種模型的性能,得出以下結(jié)論:
1)在對非等距GM(1,1)模型背景值系數(shù)α進(jìn)行優(yōu)化時(shí),細(xì)菌覓食算法比粒子群算法和遺傳算法更適合,前者能夠提高優(yōu)化的速度和模型預(yù)測精度.
2)BFA-GM(1,1)優(yōu)化模型適合對飛機(jī)尾翼疲勞壽命進(jìn)行建模及預(yù)測,為壽命預(yù)測提供了一種快速、有效的方法.
參考文獻(xiàn)
[1] 孫玉蘭,王茂廷.基于灰色模型GM(1,1)的疲勞壽命預(yù)測[J].科學(xué)技術(shù)與工程,2011, 11(3):560-562.
SUN Yu-lan,WANG Mao-ting.Prediction for fatigue life based on grey model GM (1, 1)[J]. Science Technology and Engineering, 2011, 11(3): 560-562.(In Chinese)
[2] CHEN C I,HUANG S J.The necessary and sufficient condition for GM (1, 1) grey prediction model[J]. Applied Mathematics and Computation,2013, 219(11): 6152-6162.
[3] 伍鐵斌,陽春華,孫備,等. 灰色模糊LSSVM預(yù)測模型在鋅凈化除鈷中的應(yīng)用[J].中國有色金屬學(xué)報(bào),2012, 22(8): 2382-2386.
WU Tie-bin,YANG Chun-hua,SUN Bei,et al.Grey fuzzy-LSSVM forecasting model and its application in cobalt removal from zinc electrolyte[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8): 2382-2386.(In Chinese)
[4] 郭云開,謝騰,程剛,等.非等時(shí)距灰色預(yù)測模型在連拱隧道監(jiān)測中的應(yīng)用[J]. 現(xiàn)代隧道技術(shù),2013,50(1): 73-79.
GUO Yun-kai,XIE Teng,CHENG Gang,et al.Application of unequal time-interval grey predicting model to multiple-arch tunnel monitoring [J]. Modern Tunneling Technology, 2013,50(1):73-79.(In Chinese)
[5] TONG R,SHEN M X,KANG J S,et al.Gray-markov GM(1, 1) prediction model optimal allocation of equipment maintenance personnel based on difference method[J]. Applied Mechanics and Materials, 2014, 484: 847-852.
[6] NI C C.Prediction of fatigue crack growth of 2024-t351 by grey GM (1, 1) model with rolling check [J]. Advanced Materials Research,2013,690:1779-1783.
[7] 崔建國,鞏俊杰,董世良,等.基于灰色理論的飛機(jī)結(jié)構(gòu)疲勞壽命預(yù)測[J].沈陽航空航天大學(xué)學(xué)報(bào),2011,28(1):23-27.
CUI Jian-guo,GONG Jun-jie,DONG Shi-liang,et al. Fatigue life prediction of aeroplane structures based on grey theory[J]. Journal of Shenyang Aerospace University, 2011, 28(1): 23-27.(In Chinese)
[8] 李曉鋼,王亞輝.利用非等距灰色理論方法判定失效機(jī)理一致性[J].北京航空航天大學(xué)學(xué)報(bào),2014,40(7):899-904.
LI Xiao-gang,WANG Ya-hui.Identification method of failure mechanism consistency by non-equidistance grey theory model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7):899-904.(In Chinese)
[9] 肖新平,毛樹華.灰色預(yù)測與決策方法[M].北京:科學(xué)出版社, 2013: 202-214.
XIAO Xin-ping,MAO Shu-hua.Grey forecasting and decision-making methods[M]. Beijing: Science Press, 2013:202-214.(In Chinese)
[10]王國華,辛江濤,辛敏潔,等.基于遺傳算法的GM(1,1,λ)改進(jìn)模型[J].電子設(shè)計(jì)工程,2014,22(10):38-41.
WANG Guo-hua,XIN Jiang-tao,XIN Min-jie,et al. Improved grey model based on genetic algorithm [J]. Electronic Design Engineering, 2014, 22(10): 38-41.(In Chinese)
[11]HSU L C.Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models[J].Expert Systems with Applications,2009, 36(4):7898-7903.
[12]劉虹, 張岐山.基于微粒群算法的GM(1,1,λ)模型的機(jī)械產(chǎn)品壽命預(yù)測[J].機(jī)械設(shè)計(jì),2007,24(10):4-5.
LIU Hong,ZHANG Qi-shan.Life-span prediction on mechanical products of GM (1, 1, λ) model based on particle swarm algorithm [J]. Journal of Machine Design, 2007, 24(10): 4-5.(In Chinese)
[13]于麗亞,王豐效.基于粒子群算法的非等距GOM(1,1)模型[J]. 純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué), 2011, 27(4): 472-476.
YU Li-ya,WANG Feng-xiao.Non-equidistant GOM (1, 1) model based on particle swarm optimization algorithm [J]. Pure and Applied Mathematics,2011,27(4): 472-476.(In Chinese)
[14]BLUM J,DING M,THAELER A,et al. Handbook of combinatorial optimization[M]. New York: Kluwer Academic Publishers, 2004: 329-369.
[15]KEVIN M P.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine, 2002, 22(3): 52-67.
[16]DEVABALAJI K R, RAVI K, KOTHARI D P. Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm [J]. International Journal of Electrical Power & Energy Systems, 2015, 71: 383-390.
[17]PANDA R, NAIK M K. A novel adaptive crossover bacterial foraging optimization algorithm for linear discriminant analysis based face recognition [J]. Applied Soft Computing, 2015, 30:722-736.
[18]楊大煉, 劉義倫, 李學(xué)軍, 等. 基于細(xì)菌覓食優(yōu)化決策的齒輪箱故障診斷[J]. 中南大學(xué)學(xué)報(bào):自然科學(xué)版, 2015,46(4):1224-1230.
YANG Da-lian,LIU Yi-lun,LI Xue-jun,et al.Gearbox fault diagnosis based on bacterial foraging algorithm optimization decisions[J]. Journal of Central South University:Science and Technology,2015,46(4): 1224-1230.(In Chinese)
[19]曹一家, 曹麗華, 李勇, 等. 改進(jìn)的自適應(yīng)多目標(biāo)粒子群算法[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2014,41(10):84-90.
CAO Yi-jia,CAO Li-hua,LI Yong,et al.Improved adaptive multiobjective particle swarm algorithm[J]. Journal of Hunan University:Natural Sciences, 2014, 41(10): 84- 90.(In Chinese)
[20]鄧元望, 王兵杰, 張上安, 等. 基于混沌遺傳算法的PHEV能量管理策略優(yōu)化[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2013,40(4):42-48.
DENG Yuan-wang,WANG Bing-jie,ZHANG Shang-an,et al. Optimization of energy management strategy of PHEV based on chaos-genetic algorithm [J]. Journal of Hunan University:Natural Sciences, 2013, 40(4):42-48.(In Chinese)