金 愿 程進(jìn)輝 王 坤 安學(xué)會 馬國宏 張 鵬 黎 忠
?
幾種典型熔鹽冷卻劑的熱物性研究
金 愿1,2程進(jìn)輝2王 坤2安學(xué)會2馬國宏1張 鵬2黎 忠2
1(上海大學(xué) 上海 200444)2(中國科學(xué)院上海應(yīng)用物理研究所 嘉定園區(qū) 上海 201800)
熔鹽是一種優(yōu)異的傳熱介質(zhì)。熱物性數(shù)據(jù)是熔鹽傳熱應(yīng)用過程中的關(guān)鍵基礎(chǔ)數(shù)據(jù)。按照制定的樣品制備規(guī)范、樣品測試操作流程和數(shù)據(jù)處理分析方法,采用差示掃描量熱儀(Differential Scanning Calorimetry, DSC)、自主研制的阿基米德法密度儀和旋轉(zhuǎn)柱體式粘度儀、改進(jìn)的激光閃光法導(dǎo)熱儀對FLiNaK、CloKmag和HTS熔鹽的熔點(diǎn)、比熱容、密度、導(dǎo)熱系數(shù)、粘度系數(shù)進(jìn)行了實(shí)驗(yàn)測量和數(shù)據(jù)評估。首次系統(tǒng)地提供了FLiNaK和HTS熔鹽在熔點(diǎn)以上80 K溫區(qū)的粘度系數(shù)、CloKmag鹽的關(guān)鍵熱物性數(shù)據(jù)。為這些熔鹽的熱工水力設(shè)計分析提供了準(zhǔn)確可靠的基礎(chǔ)數(shù)據(jù)。
熱物性,F(xiàn)LiNaK,CloKmag,HTS
熔鹽堆(Molten Salt Reactor, MSR)是第四代核反應(yīng)堆的6種候選堆型之一[1],是以熔鹽作為冷卻劑的先進(jìn)高溫堆。MSR具有高固有安全性、核燃料可循環(huán)、物理防止核擴(kuò)散和更好的經(jīng)濟(jì)性等特點(diǎn)。因其以熔鹽為冷卻劑,還具有常壓工作、無水冷卻,并可建于地下和干旱地區(qū)的優(yōu)點(diǎn)[2]。
熔鹽作為傳熱工質(zhì)的應(yīng)用始于熔鹽堆,是熔鹽堆傳熱系統(tǒng)的關(guān)鍵材料之一,直接影響整個系統(tǒng)的效率與安全。LiF-NaF-KF (FLiNaK, 46.5mol%- 11.5mol%-42mol%)熔鹽和KCl-MgCl2(CloKmag, 66 mol%-34 mol%)熔鹽高溫環(huán)境下化學(xué)性質(zhì)穩(wěn)定,傳熱性能優(yōu)異,是熔鹽堆冷卻劑的候選熔鹽。其中,F(xiàn)LiNaK熔鹽是釷基熔鹽堆(Thorium-based Molten Salt Reactor, TMSR)、先進(jìn)高溫堆(Advance High Temperature Reactor, AHTR)、氚增值熱核聚變的候選冷卻劑[3?5];而CloKmag熔鹽是先進(jìn)高溫堆、超高溫堆(Very High Temperature Reactor System, VHTR)、熔鹽快堆的候選冷卻劑[6?7]。另外,非核領(lǐng)域中,低熔點(diǎn)熔鹽NaNO3-NaNO2-KNO3(HTS, 7mol%-49mol%-44mol%)被成功應(yīng)用于意大利的Eurelios塔式太陽能熱電站、西班牙的CESA-1塔式熱電站、美國的MESS熔鹽發(fā)電試驗(yàn)裝置[8?9]。
除了在熔鹽堆中發(fā)揮著重要的作用,熔鹽本身又可以作為傳熱和蓄熱工質(zhì),實(shí)現(xiàn)發(fā)電和蓄熱系統(tǒng)的有機(jī)耦合。其重要應(yīng)用領(lǐng)域是聚焦型太陽能熱發(fā)電技術(shù)(Concentrating Solar Power, CSP)。CSP是通過大量反射鏡以聚焦的方式將太陽能直射光聚集起來,加熱傳蓄熱工質(zhì),通過熱交換產(chǎn)生高溫高壓的蒸汽/氦氣/空氣,驅(qū)動汽輪機(jī)發(fā)電。早期的CSP電站使用水或者導(dǎo)熱油作為工質(zhì),而熔鹽是一種低成本、長壽命、傳熱蓄熱性能好的高溫、高熱通量和低運(yùn)行壓力的傳熱蓄熱工質(zhì)。采用熔鹽作為光熱發(fā)電的傳熱和蓄熱工質(zhì),可顯著提高光熱發(fā)電系統(tǒng)的熱效率、系統(tǒng)的可靠性和經(jīng)濟(jì)性,幫助光熱發(fā)電站實(shí)現(xiàn)持續(xù)穩(wěn)定運(yùn)行。隨著熔鹽技術(shù)的成熟,其傳蓄熱性能更為優(yōu)異,已經(jīng)逐漸替代現(xiàn)有的水、導(dǎo)熱油工質(zhì),成為目前新建設(shè)的CSP電站的首選。
熔鹽作為傳熱介質(zhì),其熱物性包括熔點(diǎn)、比熱容、密度、粘度、導(dǎo)熱系數(shù)等參數(shù),是衡量其是否滿足熱過程工作需求、對特定的熱過程進(jìn)行基礎(chǔ)研究、分析計算和工程熱設(shè)計的關(guān)鍵基礎(chǔ)參數(shù)。如密度是衡量熔鹽蓄熱能力的重要指標(biāo),決定著熔鹽的用量、系統(tǒng)尺寸以及成本;密度與溫度的關(guān)系可用于評估溫躍層的穩(wěn)定性,在熔化和凝固過程中產(chǎn)生應(yīng)力的大小等。熔化焓和比熱容是衡量熔鹽相變過程的熱效應(yīng)大小及其儲熱能力的重要指標(biāo)。粘度是衡量流體流動性能優(yōu)劣的重要參數(shù),直接影響熔鹽泵功率的選擇與傳熱系統(tǒng)的設(shè)計。導(dǎo)熱系數(shù)是衡量系統(tǒng)傳熱能力和傳熱效率的關(guān)鍵指標(biāo),直接影響蓄熱和放熱的響應(yīng)時間。因而,用于傳熱蓄熱介質(zhì)的熔鹽材料在具有低熔點(diǎn)的同時,還要求具有比熱容大、粘度低、導(dǎo)熱系數(shù)大等特點(diǎn)。
然而,由于熔鹽本身的特點(diǎn),其熱物性測試要求設(shè)備檢測范圍寬,檢測下限低,高溫下靈敏度高;部分熔鹽又具有強(qiáng)腐蝕性、毒性,測試過程中需高溫、密閉環(huán)境,對設(shè)備結(jié)構(gòu)和材料選擇提出了很高的要求,部分關(guān)鍵熱物性參數(shù)的測試商用標(biāo)準(zhǔn)設(shè)備無法滿足要求;另外,不同實(shí)驗(yàn)室之間熔鹽樣品的預(yù)處理和制備過程也存在差異。上述原因?qū)е挛墨I(xiàn)中熔鹽熱物性測試結(jié)果往往存在分歧[7],且很多數(shù)據(jù)未給出誤差。其中,F(xiàn)LiNaK[10?22]和HTS熔 鹽[12,23?34]的熱物性數(shù)據(jù)存在較大差異,CloKmag鹽熱物性參數(shù)的報道很少,為此類熔鹽的應(yīng)用帶來了很大障礙。另外,在熔點(diǎn)以上80 K溫區(qū)熔鹽的熱物性參數(shù)是回路安全性分析、事故再啟動分析不可或缺的,但是受粘度測試方法的限制,F(xiàn)LiNaK、HTS熔鹽此溫區(qū)下的粘度鮮有報道。
本文根據(jù)工程實(shí)際需求,采用自主研制的旋轉(zhuǎn)法高溫粘度儀和高溫熔鹽密度測試儀、改進(jìn)的激光導(dǎo)熱儀等熔鹽熱物性測量設(shè)備,在已建立的熔鹽樣品制備、樣品測試操作和數(shù)據(jù)處理方法等一系列熱物性測量規(guī)范的基礎(chǔ)上,對FLiNaK、CloKmag、HTS熔鹽的熔點(diǎn)、比熱容、密度、導(dǎo)熱系數(shù)、粘度系數(shù)等關(guān)鍵熱物性參數(shù)進(jìn)行了測試與評估,填補(bǔ)了FLiNaK與HTS熔鹽粘度在低溫區(qū)的數(shù)據(jù)空白,首次系統(tǒng)研究了CloKmag熔鹽的熱物性,并給出了相應(yīng)的測試誤差,以期為此類熔鹽的相關(guān)研究提供準(zhǔn)確可靠的基礎(chǔ)數(shù)據(jù)。
制備熔鹽樣品時選用分析純的組分鹽以保證純度,組分鹽稱重配制前應(yīng)做烘干處理,除去結(jié)晶水。熔鹽樣品制備時在采用干燥惰性氣氛保護(hù)的手套箱內(nèi)進(jìn)行以避免與空氣接觸吸收水分,配制好的熔鹽應(yīng)經(jīng)多次熔融、結(jié)晶。
以99.99% LiF、99.99% NaF、99.99% KF為原料,采用H2-HF法進(jìn)行樣品制備[35]。
組分鹽KCl和MgCl2先在真空干燥箱中573 K下干燥24 h除水,在手套箱中按KCl-MgCl2為 66mol%-34mol%的比例稱重。然后將均勻混合的鹽轉(zhuǎn)移至井式高溫爐中,在干燥氬氣氛圍、常壓下,按照給定的加熱程序熔融、結(jié)晶,冷卻至室溫。
實(shí)驗(yàn)中使用的NaNO3、NaNO2、KNO3組分鹽均為分析純原料。先在干燥箱453 K下干燥24 h除水,然后在手套箱中稱重、混勻。將混勻的鹽轉(zhuǎn)移至井式高溫爐中,在干燥氬氣氛圍、常壓下,加熱熔融、結(jié)晶,冷卻至室溫。制備的樣品再轉(zhuǎn)移至手套箱中研碎。
熔點(diǎn)與比熱容的測量采用德國耐馳公司型號為Netzsch DSC 404F3的差示掃描量熱儀。選用經(jīng)過高溫恒重處理的石墨坩堝。實(shí)驗(yàn)條件:升溫速率10K?min?1;Ar氣氛;氣流量50 mL?min?1。本儀器熔點(diǎn)測試誤差為±10 K,比熱容的測試誤差小于5%。
密度測試裝置采用直接阿基米德法,詳見文獻(xiàn)[36]。測試所用重錘和懸絲均為鉑金材質(zhì),懸絲直徑0.2 mm,電子天平稱重精度為0.1 mg。將帶有SiC套管的S型鉑銠熱電偶直接插入熔鹽樣品中測量溫度,保證樣品溫度測定的準(zhǔn)確性,氬氣做保護(hù)氣,測試誤差小于1%。
熔鹽導(dǎo)熱系數(shù)的測量采用激光閃光法,使用了德國林塞斯公司型號為 LFA 1000的激光閃光導(dǎo)熱儀。為滿足熔鹽測量的需要對其進(jìn)行了改進(jìn),研制了適用于高溫下測量熔鹽導(dǎo)熱系數(shù)的特殊結(jié)構(gòu)坩堝,提高了測試精度[37]。測量中采用三樣品支架,高純氦氣作為保護(hù)氣。導(dǎo)熱系數(shù)的測量誤差小于15%。
粘度測量采用自主研制的旋轉(zhuǎn)法熔鹽粘度 儀[38]。該儀器操作簡單,測試范圍為1.6?50 mPa?s,溫度上限可以達(dá)到1273 K,粘度測試誤差小于0.2mPa?s。
氟化鹽熔點(diǎn)高、熔化焓大、粘度低、導(dǎo)熱性好、耐輻照、高溫穩(wěn)定性好,具有優(yōu)異的中子學(xué)性質(zhì),是熔鹽堆冷卻劑的首選,F(xiàn)LiNaK是具有代表性的熔鹽體系之一。但氟化鹽價格昂貴、腐蝕性強(qiáng),對結(jié)構(gòu)材料和熔鹽凈化提出了很高的要求,很難推廣到太陽能熱發(fā)電、大規(guī)模儲能等非核領(lǐng)域。
FLiNaK熔鹽樣品固液轉(zhuǎn)變溫度取DSC曲線的外推起始溫度作為該樣品的熔點(diǎn),測試結(jié)果為729K,和文獻(xiàn)中橡樹嶺國家實(shí)驗(yàn)室(Oak Ridge National Laboratory, ORNL)采用DSC報道的數(shù)據(jù)727K[10,39]吻合。對FLiNaK熔鹽的比熱容在743?1073K溫度區(qū)間內(nèi)進(jìn)行測量。測試結(jié)果顯示,F(xiàn)LiNaK熔鹽的比熱容隨溫度變化不明顯,測試平均值很大程度上集中在1.88 J?g?1?K?1。來自O(shè)RNL的結(jié)果為1.883J?g?1?K?1[40]。
FLiNaK熔鹽密度的測試范圍為738?1053 K。液態(tài)熔鹽的密度與溫度呈線性關(guān)系,實(shí)驗(yàn)結(jié)果采用最小二乘法線性擬合為式(1):
式中:為密度,kg?m?3;為溫度,K。
擬合度為99.99%,可見FLiNaK的密度與溫度呈現(xiàn)良好的線性關(guān)系,且隨著溫度的增大而減小。相對于文獻(xiàn)中ORNL報道的數(shù)據(jù)[40],其最大相對偏差小于1%,如表1所示。
表1 FLiNaK熔鹽密度值 Table 1 Density of FLiNaK.
采用激光閃光法測量FLiNaK熔鹽的熱擴(kuò)散系數(shù),測試范圍743?973 K,導(dǎo)熱系數(shù)由所測熱擴(kuò)散系數(shù)以及比熱容和密度計算得到。FLiNaK的導(dǎo)熱系數(shù)隨溫度的升高略呈上升趨勢,實(shí)驗(yàn)結(jié)果采用最小二乘法線性擬合為式(2):
式中:為導(dǎo)熱系數(shù),W?m?1?K?1;為溫度,K。
FLiNaK熔鹽的導(dǎo)熱系數(shù)有很多報道[10?19],差異很大,如圖1所示。受測試方法限制,前期采用穩(wěn)態(tài)法測試的數(shù)據(jù)[10,11,13]明顯偏大且經(jīng)工程驗(yàn)證并不準(zhǔn)確。隨著瞬態(tài)法中熱線法的發(fā)展,實(shí)驗(yàn)結(jié)果逐漸為工程應(yīng)用所接受,但相關(guān)測試方法依然無法有效消除熔鹽對流等帶來的測試誤差。激光閃光法是一種測量熱擴(kuò)散系數(shù)的國際標(biāo)準(zhǔn)方法,可有效避免熔鹽對流帶來的影響,引入密度與比熱容后,可計算得到樣品的導(dǎo)熱系數(shù)[37],為FLiNaK熔鹽導(dǎo)熱系數(shù)的測試提供了新方法。
圖1 FLiNaK熔鹽導(dǎo)熱系數(shù) Fig.1 Thermal conductivity of FLiNaK.
采用旋轉(zhuǎn)柱體式粘度儀在733?903 K內(nèi)測量了FLiNaK熔鹽的粘度。FLiNaK熔鹽粘度擬合為式(3):
式中:為粘度系數(shù),mPa?s。
如圖2所示,對于FLiNaK,一般使用溫區(qū)(>773K)范圍內(nèi)的粘度數(shù)據(jù)報道較多[7,11?15,20?22],而在此溫區(qū)以下(<773 K)則幾乎沒有報道,唯一一組數(shù)據(jù)也明顯偏低[22]。此前的熔鹽粘度測量多采用毛細(xì)管法和振蕩杯法,更適合于低粘度測量,難以滿足該溫度范圍內(nèi)的粘度測試要求,本文的數(shù)據(jù)彌補(bǔ)了這一空白。
圖2 FLiNaK熔鹽粘度 Fig.2 Viscosity of FLiNaK.
FLiNaK熔鹽各項(xiàng)測試結(jié)果和文獻(xiàn)報道中相應(yīng)的經(jīng)典數(shù)據(jù)吻合較好。綜合分析FLiNaK熔鹽各項(xiàng)熱物性參數(shù)可知,F(xiàn)LiNaK熔鹽的比熱容、導(dǎo)熱系數(shù)受溫度影響不大;溫度的變化,主要影響密度和粘度。
從其一般使用溫區(qū)以下(?773 K)的測量結(jié)果來看,隨著溫度的降低,其密度略微增大,相對密度的增大有益于減小傳熱系統(tǒng)的體積,降低熔鹽傳熱系統(tǒng)的成本。然而,溫度降低,F(xiàn)LiNaK熔鹽的粘度急劇增大。粘度決定了熔鹽流體的速度分布,影響泵功,同時也影響特征數(shù)方程中雷諾數(shù)和普朗特數(shù)的大小。因此,熔鹽堆系統(tǒng)能否通過擴(kuò)展FLiNaK熔鹽運(yùn)行溫區(qū)來提高熱效率,粘度起著制約的作用。本數(shù)據(jù)為熔鹽系統(tǒng)非正常工況下安全性分析、擴(kuò)展運(yùn)行溫區(qū)提供了基本依據(jù)。
基于先進(jìn)熔鹽高溫堆(AHTR,ORNL)、熔鹽超高溫堆(VHTR,威斯康星大學(xué))、熔鹽快堆(泰拉能源公司)系統(tǒng)設(shè)計的需要,ORNL和威斯康星大學(xué)對熔鹽進(jìn)行過探索研究。目前文獻(xiàn)中只有少量來自Williams等[20,40?41]和Janz等[12,42]的數(shù)據(jù),滿足不了熔鹽領(lǐng)域?qū)loKmag熔鹽熱物性參數(shù)的需求。
本文實(shí)驗(yàn)的三次DSC測試結(jié)果,取平均值為698.8 K,和文獻(xiàn)報道的熔點(diǎn)699 K[42]吻合。采用DSC對CloKmag熔鹽的比熱容在733?873 K溫度區(qū)間內(nèi)進(jìn)行測試。實(shí)驗(yàn)結(jié)果采用最小二乘法線性擬合為式(4):
式中:p為比熱容,J?g?1?K?1。
結(jié)果顯示,CloKmag熔鹽比熱容隨溫度變化并不明顯,有略微升高的趨勢。1981年Janz等給出的結(jié)果是0.964 J?g?1?K?1[12];2006年Williams給出了1.155 J?g?1?K?1(973 K)[41]。如圖3所示。
圖3 CloKmag熔鹽密度與比熱容 Fig.3 Density and heat capacity of CloKmag.
CloKmag熔鹽密度測試范圍733?973 K,采用最小二乘法線性擬合為式(5),擬合度為99.99%:
式中:為密度,kg?m?3。
1975年Janz等[42]給出過CloKmag熔鹽高溫區(qū)(1017?1193 K)的密度,兩者擬合公式延長線重合較好,如圖3所示。而文獻(xiàn)[7]認(rèn)為Williams等[20]報道的數(shù)據(jù)過于偏大。
實(shí)驗(yàn)測量CloKmag的導(dǎo)熱系數(shù)時,每個溫度點(diǎn)測試15次取平均值,重復(fù)性小于10%,溫度范圍為723?1073 K。CloKmag熔鹽導(dǎo)熱系數(shù)的測試結(jié)果為(1.1±0.05) W?m?1?K?1。
CloKmag熔鹽導(dǎo)熱系數(shù)的實(shí)驗(yàn)報道很少,Janz等[42]對MgCl2摩爾含量分別為24%、25%、29%、34%、50%、60%、80%的實(shí)驗(yàn)結(jié)果進(jìn)行過報道,如表2所示。Janz的結(jié)果中MgCl2摩爾含量為34%時較本文測試結(jié)果偏小,為0.74 W?m?1?K?1;MgCl2摩爾含量為50%和60%時測試結(jié)果分別為1.18W?m?1?K?1和1.2 W?m?1?K?1。結(jié)合CloKmag熔鹽相圖和物種組分圖,如圖4、5所示,可以發(fā)現(xiàn),隨著MgCl42?離子的增多,CloKmag熔鹽導(dǎo)熱系數(shù)降低;MgCl31?離子的增多,CloKmag熔鹽導(dǎo)熱系數(shù)增大。而MgCl2摩爾含量為80%時Janz報道的數(shù)據(jù)卻為0.59 W?m?1?K?1(MgCl2導(dǎo)熱系數(shù)約為1.3W?m?1?K?1[43])。CloKmag熔鹽導(dǎo)熱系數(shù)是否受MgCl42?、MgCl3?離子組分影響,在今后的工作中我們會做進(jìn)一步探討。
表2 973 K時不同組分下CloKmag熔鹽導(dǎo)熱系數(shù) Table 2 Thermal conductivity of CloKmag at 973 K, mole percent MgCl2.
圖4 CloKmag相圖 Fig.4 Temperature-Composition phase diagram of CloKmag.
圖5 CloKmag物種組分圖 Fig.5 Number of species of CloKmag, mole percent MgCl2.
HTS熔鹽的共晶成分點(diǎn)為NaNO3-NaNO2- KNO3(7 mol%-49 mol%-44 mol%)。該熔鹽由于熔點(diǎn)低、價格便宜,在723 K以下穩(wěn)定不分解,被廣泛應(yīng)用于化工和目前的太陽能光熱發(fā)電領(lǐng)域。但文獻(xiàn)報道的該體系部分熱物性結(jié)果差別較大,因此對該熔鹽熱物性進(jìn)行準(zhǔn)確測量是必要的。
由DSC的兩次測試結(jié)果,取熔融峰的外推起始溫度,可得熔點(diǎn)為414.2 K、415.2 K。對HTS鹽比熱容在423?693 K溫度區(qū)間內(nèi)進(jìn)行測量,測試結(jié)果顯示,其比熱容隨溫度變化并不明顯,測試平均值集中在1.56 J?g?1?K?1,文獻(xiàn)中報道的數(shù)據(jù)結(jié)果為1.42?1.71 J?g?1?K?1 [12,23?27]。
HTS熔鹽密度測試范圍423?723 K,采用最小二乘法線性擬合為式(6),擬合度為99.99%:
文獻(xiàn)中HTS鹽密度測試結(jié)果基本一 致[12,26?27,29],本文測試結(jié)果和以上文獻(xiàn)也一致(最大偏差在0.5%以內(nèi))。
HTS熔鹽導(dǎo)熱系數(shù)的測試方法不盡相同,差異很大[28?30,44?46]。在423?723 K內(nèi)對HTS導(dǎo)熱系數(shù)進(jìn)行了測量,每個溫度點(diǎn)測試15次取平均值,重復(fù)性小于10%。如圖6所示,HTS的導(dǎo)熱系數(shù)隨溫度的升高而略呈下降趨勢,和幾組經(jīng)典數(shù)據(jù)相符[26,29?30]。擬合為式(7):
圖6 HTS熔鹽導(dǎo)熱系數(shù) Fig.6 Thermal conductivity of HTS.
文獻(xiàn)中關(guān)于HTS粘度的報道多采用毛細(xì)管 法[12,31]和振蕩杯法[26,32?33,47]。受測試方法的限制,HTS高粘度區(qū)數(shù)據(jù)鮮有報道,有來自Coastal Chemical Co.[29]的一組數(shù)據(jù)。本文旋轉(zhuǎn)法粘度儀能夠滿足HTS全溫區(qū)測試要求,測試區(qū)間為423?693K,結(jié)果如圖7所示。低粘度區(qū)時HTS粘度結(jié)果和報道數(shù)據(jù)符合較好[12,31?34];高粘度區(qū)時,和Coastal Chemical Co.的數(shù)據(jù)相同。采用最小二乘法線性擬合為式(8):
圖7 HTS熔鹽粘度 Fig.7 Viscosity of HTS.
本文嚴(yán)格按照熔鹽樣品的處理與制備方法,采用課題組自主研制的旋轉(zhuǎn)法高溫粘度儀、熔鹽密度測試儀,改進(jìn)的激光導(dǎo)熱儀以及標(biāo)準(zhǔn)DSC設(shè)備,對FLiNaK、CloKmag、HTS進(jìn)行了系統(tǒng)的測試與評估,給出了測試溫度范圍及數(shù)據(jù)擬合公式,測量精度和誤差均滿足熔鹽傳熱研究的要求,可以為后期的模擬計算、安全性分析等提供數(shù)據(jù)支撐。其熱物性參數(shù)具有以下共性:比熱容和導(dǎo)熱系數(shù)受溫度影響不大,可以認(rèn)為是常量;密度隨溫度的增大線性減小;粘度隨著溫度的增大而降低,并趨于常溫水的粘度,熔鹽在熔點(diǎn)以上80 K溫區(qū)的粘度值隨溫度降低急劇增大。熔點(diǎn)以上80 K溫區(qū)熱物性數(shù)據(jù)的補(bǔ)充可以為熔鹽系統(tǒng)安全性分析、事故后再啟動以及熔鹽冷卻劑使用溫區(qū)的擴(kuò)展提供有效的參考。
1 Abram T, Ion S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323?4330. DOI: 10.1016/j.enpol.2008.09.059
2 江綿恒, 徐洪杰, 戴志敏. 未來先進(jìn)核裂變能——TMSR核能系統(tǒng)[J]. 中國科學(xué)院院刊, 2012, 27(3): 366?374. DOI: 10.3969/j.issn.1000-3045.2012.03.016
JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program-TMSR nuclear energy system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 366?374. DOI: 10.3969/j.issn.1000-3045.2012.03.016
3 鄒欣, 戴志敏, 唐忠鋒. FLiNaK熔鹽高溫試驗(yàn)回路電磁感應(yīng)加熱的數(shù)值模擬[J]. 核技術(shù), 2013, 36(7): 070601. DOI: 10.11889/j.0253-3219.2013.hjs.36.070601
ZOU Xin, DAI Zhimin, TANG Zhongfeng. Numerical simulation of induction heating in FLiNaK molten salt high temperature testing loop[J]. Nuclear Techniques, 2013, 36(7): 070601. DOI: 10.11889/j.0253-3219.2013. hjs.36.070601
4 殷慧琴. 腐蝕產(chǎn)物CrF3對LiF-NaF-KF熔鹽物化性質(zhì)的影響研究[D]. 上海: 中國科學(xué)院上海應(yīng)用物理研究所, 2015
YIN Huiqin. The effect study of corrosion product CrF3on physico-chemical properties of LiF-NaF-KF[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2015
5 程進(jìn)輝. 傳蓄熱熔鹽的熱物性研究[D]. 上海: 中國科學(xué)院上海應(yīng)用物理研究所, 2014
CHENG Jinhui. Study on molten salt thermophysical properties for heat transfer and storage[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2014
6 Piyush S, Matt E, Manohar S,. Molten salts for high temperature reactors: university of wisconsin molten salt corrosion and flow loop experiments-issues identified and path forward[R]. Idaho National Laboratory, INL/EXT-10-18090, 2010
7 Serrano-L R, Fradera J, Cuesta-L P S. Molten salts database for energy applications[J]. Chemical Engineering and Processing: Process Intensification, 2013, 73: 87?102. DOI: 10.1016/j.cep.2013.07.008
8 Mar R W, Bradshaw R W, Carling R W,. Progress report: molten nitrate salt technology development[R]. Sandia National Laboratories, SAND82-8220, 1982
9 Brosseau D, Kelton J W, Ray D,. Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2005, 127(1): 109?116. DOI: 10.1115/ 1.1824107
10 Hoffman H W, Lones J. Fused salt heat transfer Part II: forced convection heat transfer in circular tubes containing NaF-KF-LiF eutectic[R]. Oak Ridge National Laboratory, ORNL-1977, 1955
11 Grele M D, Gedeon L. Forced-convection heat-transfer characteristics of molten FLiNaK flowing in an Inconel X system[M]. United States: National Advisory Committee for Aeronautics, 1954
12 Janz G J, Tomkins R P T. Physical properties data compilations relevant to energy storage IV molten salts: data on additional single and multi-component salt systems[R]. National Standad Reference Data System, No.PB-81-244121, 1981
13 Vriesema B. Aspects of molten fluorides as heat transfer agents for power generation[D]. Netherlands: Delft University of Technology, Department of Mechanical Engineering, 1979
14 Sohal M S, Ebner M A, Sabharwall P,. Engineering database of liquid salt thermophysical and thermochemical properties[R]. Idaho Falls: Idaho National Laboratory, Idaho-83415, 2010
15 Powers W D, Cohen S I, Greene N D. Physical properties of molten reactor fuels and coolants[J]. Nuclear Science and Engineering, 1963, 17(2): 200?211. DOI: 10.13182/ NSE63-5
16 Khokhlov V, Ignatiev V, Afonichkin V. Evaluating physical properties of molten salt reactor fluoride mixtures[J]. Journal of Fluorine Chemistry, 2009, 130(1): 30?37. DOI: 10.1016/j.jfluchem.2008.07.018
17 Kato Y, Furukawa K, Araki N,. Thermal diffusivity measurement of molten salts by use of a simple ceramic cell[J]. High Temperatures-High Pressure, 1983, 15: 191?198
18 Ewing C T, Spann J R, Miller R R. Radiant transfer of heat in molten inorganic compounds at high temperatures[J]. Journal of Chemical and Engineering Data, 1962, 7(2): 246?250. DOI: 10.1021/je60013a028
19 Smirnov M V, Khokhlov V A, Filatov E S. Thermal conductivity of molten alkali halides and their mixtures[J]. Electrochimica Acta, 1987, 32(7): 1019?1026. DOI: 10. 1016/0013-4686(87)90027-2
20 Williams D F. Additional physical property measurements and assessment of salt compositions proposed for the intermediate heat transfer loop[R]. Oak Ridge National Laboratory, ORNL/GEN4/LTR-06-033, 2006
21 Cohen S I, Jones T N. Viscosity measurements on molten fluoride mixtures[R]. Oak Ridge National Laboratory, ORNL-2278, 1957
22 Cibulková J, Chrenková M, Vasiljev R,. Density and viscosity of the (LiF+NaF+KF) eut (1)+K2TaF7(2)+Ta2O5(3) melts[J]. Journal of Chemical and Engineering Data, 2006, 51(3): 984?987. DOI: 10.1021/je050490g
23 Voskresenskaya N K, Yankovskaya G N, Anosov V Y. Teploemkost splavov nitritov i nitratov natriya i kaliya[J]. Zhurnal Prikladnoi Khimii, 1948, 21(1): 18?25
24 Kawakami M, Suzuki K, Yokoyama S,. Heat capacity measurement of molten NaNO3-NaNO2-KNO3by drop calorimetry[C]. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004
25 Janz G J, Truong G N. Melting and premelting properties of the KNO3-NaNO2-NaNO3eutectic system[J]. Journal of Chemical and Engineering Data, 1983, 28(2): 201?202. DOI: 10.1021/je00032a022
26 Wu Y T, Chen C, Liu B,. Investigation on forced convective heat transfer of molten salts in circular tubes[J]. International Communications in Heat and Mass Transfer, 2012, 39(10): 1550–1555. DOI: 10.1016/j. icheatmasstransfer.2012.09.002
27 Boerema N, Morrison G, Taylor R,. Liquid sodium versus hitec as a heat transfer fluid in solar thermal central receiver systems[J]. Solar Energy, 2012, 86(9): 2293?2305. DOI: 10.1016/j.solener.2012.05.001
28 Tufeu R, Petitet J P, Denielou L,. Experimental determination of the thermal conductivity of molten pure salts and salt mixtures[J]. International Journal of Thermophysics, 1985, 6(4): 315?330
29 Yang Z, Garimella S V. Thermal analysis of solar thermal energy storage in a molten-salt thermocline[J]. Solar Energy, 2010, 84(6): 974?985. DOI: 10.1016/j.solener. 2010.03.007
30 Cooke J W, Alexander L G, Hoffman H W. Molten-salt reactor program semiannual progress report for period ending August 31, 1968[R]. Oak Ridge National Laboratory, ORNL-4344, 1968
31 Kirst W E, Nagle W M, Castner J B. A new heat transfer medium for high temperatuers[J]. Transactions of American Institute of Chemical Engineers, 1940, 36(3): 371?394
32 Gaune P G. Viscosity of potassium nitrate-sodium nitrite-sodium nitrate mixtures[J]. Journal of Chemical and Engineering Data, 1982, 27(2): 151?153. DOI: 10.1021/je00028a014
33 Cohen S I, Jones T N. Viscosity measurements on molter fluoride mixtures[R]. Aircraft Reactor Engineering Division, Oak Ridge National Laboratory, No.ORNL-2278, 1957
34 Singh J.[M]. New York: Marcel Dekker, Inc., 1985: 223?240
35 James H S. Preparation and handling of salt mixtures for the molten salt reactor experiment[R]. Oak Ridge National Laboratory, ORNL-4616 UC-80- Reactor Technology, 1971
36 Cheng J H, Zhang P, An X H,. A device for measuring the density and liquidus temperature of molten fluorides for heat transfer and storage[J]. Chinese Physics Letters, 2013, 30(12): 126501. DOI: 10.1088/0256-307X/ 30/12/126501
37 An X H, Cheng J H, Yin H Q,. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique[J]. International Journal of Heat and Mass Transfer, 2015, 90: 872?877. DOI: 10.1016/j. ijheatmasstransfer.2015.07.042
38 程進(jìn)輝, 張鵬, 金愿. 高溫液態(tài)熔鹽旋轉(zhuǎn)式超低粘度計的設(shè)計與測試[R]. 中國科學(xué)院上海應(yīng)用物理研究所, TMSR-MS-MC-2014, 2014
CHENG Jinhui, ZHANG Peng, JIN Yuan. Design of high temperature molten salt viscometer based on rotating cylinder method[R]. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, TMSR-MS-MC-2014, 2014
39 Thoma R E. Phase diagrams of nuclear reactor materials[R]. Oak Ridge National Laboratory, ORNL-2548, 1959
40 Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR)[R]. Oak Ridge National Laboratory, ORNL/TM-2006/12, 2006
41 Williams D F. Assessment of candidate molten saltcoolants for the NGNP/NHI heat-transfer loop[R]. Oak Ridge National Laboratory, ORNL/TM-2006/69, 2006
42 Janz G J, Tomkins R P T, Allen C B,. Molten salts: Part 2 chlorides and mixtures-electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1975, 4(4): 871?1178. DOI: 10.1063/1.555527
43 Janz G J, Allen C B, Bansal N P,. Physical properties data compilations relevant to energy storage II molten salts: data on single and multi-component salt systems[R]. U.S. National Bureau of Standards, NSRDS-NBS-61 (Pt. II), 1979
44 Odawara O, Okada I, Kawamura K. Measurement of the thermal diffusivity of HTS (a mixture of molten sodium nitrate-potassium nitrate-sodium nitrite; 7-44-49 mol%) by optical interferometry[J]. Journal of Chemical and Engineering Data, 1977, 22(2): 222?225. DOI: 10.1021/ je60073a025
45 Santini R, Tadrist L, Pantaloni J,. Measurement of thermal conductivity of molten salts in the range 100–500oC[J]. International Journal of Heat and Mass Transfer, 1984, 27(4): 623?626. DOI: 10.1016/0017- 9310(84)90034-6
46 Omotani T, Nagashima A. Thermal conductivity of molten salts, HTS and the lithium nitrate-sodium nitrate system, using a modified transient hot-wire method[J]. Journal of Chemical and Engineering Data, 1984, 29(1): 1?3. DOI: 10.1021/je00035a001
47 Chen Y C, Wu Y T, Ren N,. Experimental study of viscosity characteristics of high-temperature heat transfer molten salts[J]. Science China Technological Sciences, 2011, 54(11): 3022?3026. DOI:10.1007/s11431-011- 4530-x
中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(No.XD02002400)、國家自然科學(xué)基金(No.21406256)資助
Supported by Strategic Priority Research Program of Chinese Academy of Sciences (No.XD02002400), National Natural Science Foundation of China(No.21406256)
Research on thermo-physical properties of several typical molten salt coolants
JIN Yuan1,2CHENG Jinhui2WANG Kun2AN Xuehui2MA Guohong1ZHANG Peng2LI Zhong2
1(Shanghai University, Shanghai 200444, China)2(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jiading Campus, Shanghai 201800, China)
Background: As an ideal coolant, molten salt has been successfully used in molten salt reactor, and its thermo-physical properties have dramatic impact on heat transfer performances. However, the diversity in molten salt pretreatment and preparation induce discrepancies among the existing data which may cause puzzle in its applications. Purpose: The aim is to systematically investigate and evaluate thermo-physical properties of, especially viscosity in abnormal operation temperature range, and measure thermo-physical properties of CloKmag salt accurately. Methods: Molten salt coolants were prepared normatively, and their thermo-physical properties were systematically measured through testing instruments including the differential scanning calorimetry, self-developed Archimedes density device, improved thermal conductivity meter based on laser flash method, and self-developed rotating viscometer. Results: Through the measurement and analysis above, we have systematically obtained the thermo-physical properties of FLiNaK, CloKmag and HTS accurately, especially viscosity in abnormal operation temperature range. Conclusion: Heat capacity and thermal conductivity of molten salt are almost unaffected by temperature and can be regarded as constants. Viscosity at 80 K above melting point decreases with the increase of temperature and tends to that of room-temperature water in high temperature range. The thermo-physical properties of FLiNaK, CloKmag and HTS can provide accurate and reliable basic data for the application of molten salt.
Thermo-physical properties, FLiNaK, CloKmag, HTS
JIN Yuan, male, born in1989, graduated from Zhengzhou University in 2012, master student, focusing on molten salt thermal-physical properties
ZHANG Peng, E-mail: zhangpeng@sinap.ac.cn
TL343
10.11889/j.0253-3219.2016.hjs.39.050604
金愿,男,1989年出生,2012年畢業(yè)于鄭州大學(xué),現(xiàn)為碩士研究生,從事熔鹽熱物性方面的工作
張鵬,E-mail: zhangpeng@sinap.ac.cn
2015-12-22,
2016-03-30