常肖蕊,凌 晨
(杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018)
?
張量廣義高次特征值互補(bǔ)問(wèn)題解的一個(gè)刻劃
常肖蕊,凌晨
(杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018)
提出了一類張量廣義高次特征值互補(bǔ)問(wèn)題與非線性規(guī)劃之間的等價(jià)關(guān)系.進(jìn)一步給出了相應(yīng)非線性規(guī)劃問(wèn)題的穩(wěn)定點(diǎn)是張量廣義高次特征值互補(bǔ)問(wèn)題解的充要條件,最后,在特征值次數(shù)滿足一定條件下,證明了張量廣義高次特征值互補(bǔ)問(wèn)題可被轉(zhuǎn)化為張量高次特征值互補(bǔ)問(wèn)題.
高階張量;高次特征值互補(bǔ)問(wèn)題;非線性規(guī)劃;穩(wěn)定點(diǎn)
矩陣特征值互補(bǔ)問(wèn)題是一類特殊的非線性互補(bǔ)問(wèn)題,它具有廣泛的應(yīng)用背景[1-2].張量特征值互補(bǔ)問(wèn)題是矩陣特征值互補(bǔ)問(wèn)題的推廣,其求解是一個(gè)困難問(wèn)題.通常將張量特征值互補(bǔ)問(wèn)題轉(zhuǎn)化為等價(jià)的非線性規(guī)劃問(wèn)題來(lái)求解[3].本文提出了一類更為一般的張量廣義高次特征值互補(bǔ)問(wèn)題,并刻劃該問(wèn)題解的特征,從而說(shuō)明在一定條件下求解此問(wèn)題可轉(zhuǎn)化成求解一類非線性優(yōu)化問(wèn)題的穩(wěn)定點(diǎn).進(jìn)一步,在若干特殊情形下,張量廣義高次特征值互補(bǔ)問(wèn)題可轉(zhuǎn)化為張量高次特征值互補(bǔ)問(wèn)題.
本文考慮以下形式的張量廣義高次特征值互補(bǔ)問(wèn)題(簡(jiǎn)記TGHDEiCP),存在實(shí)數(shù)λ∈R和向量x∈Rn{0},使得
(1)
若(λ,x)滿足式(1),則稱λ為(A,B,C)的(k,l)次特征值,x為(A,B,C)的屬于λ的特征向量.此時(shí),也稱(λ,x)為(A,B,C)的(k,l)次特征對(duì).這里,m是偶數(shù),而k和l為滿足m≥k>l≥1的自然數(shù).顯然,若m=2,則k=2和l=1,此時(shí)上述問(wèn)題即為矩陣的二次特征值互補(bǔ)問(wèn)題.若A=0,記上述問(wèn)題為張量高次特征值互補(bǔ)問(wèn)題(THDEiCP),它與張量特征值互補(bǔ)問(wèn)題(TEiCP)密切相關(guān),此時(shí)稱(λ,x)為(B,C)的l次特征對(duì).
眾所周知,張量特征值問(wèn)題與多項(xiàng)式優(yōu)化關(guān)系密切.下面,研究TGHDEiCP的非線性規(guī)劃轉(zhuǎn)化形式并以此刻劃TGHDEiCP解的特征.
針對(duì)A,B,C∈Tm,n考慮非線性規(guī)劃
minf(x,y,z,w,λ)
s.t.w-A zm-1-Bym-1-C xm-1=0,
xTe=1,
x≥0,w≥0.
(2)
(3)
稱滿足式(3)的(x,y,z,w,λ)為式(2)的穩(wěn)定點(diǎn),并稱(α,η,δ,β,γ)為相應(yīng)的Lagrange乘子.
(4)
(5)
(6)
下面討論TGHDEiCP與式(2)的解之間的關(guān)系.
定理1設(shè)A, B, C∈Tm,n.則(A, B, C)有(k,l)次特征對(duì),當(dāng)且僅當(dāng)式(2)有目標(biāo)函數(shù)值為0的全局最優(yōu)解.
上述定理表明,求解TGHDEiCP可等價(jià)轉(zhuǎn)化成求解非線性規(guī)劃的全局最優(yōu)解.然而,求解非線性規(guī)劃的全局最優(yōu)解仍是一件困難任務(wù),下面的定理進(jìn)一步建立了全局最優(yōu)解與穩(wěn)定點(diǎn)之間的關(guān)系.
(7)
張量特征值互補(bǔ)問(wèn)題和通常的張量高次特征值互補(bǔ)問(wèn)題都是特殊的互補(bǔ)問(wèn)題,利用投影算法和交替方向算法可分別有效求得它們的解[3,7].下面討論TGHDEiCP與THDEiCP的關(guān)系.
即
(8)
由式(8)知
(9)
進(jìn)一步由式(9)知
(10)
從而由式(10)中第2式知
(11)
本文首先研究了一類張量廣義高次特征值互補(bǔ)問(wèn)題的非線性規(guī)劃轉(zhuǎn)化形式,將所考慮的張量廣義高次特征值互補(bǔ)問(wèn)題的求解轉(zhuǎn)化為相應(yīng)多項(xiàng)式優(yōu)化問(wèn)題的全局最優(yōu)解的求解.進(jìn)一步,刻劃了優(yōu)化問(wèn)題的穩(wěn)定點(diǎn)是張量廣義高次特征值互補(bǔ)問(wèn)題解的充要條件.同時(shí),在特征值次數(shù)滿足k=2l的情形下,本文證明了張量廣義高次特征值互補(bǔ)問(wèn)題可以被轉(zhuǎn)化為相對(duì)較易求解的張量高次特征值互補(bǔ)問(wèn)題.這些結(jié)果均為以后設(shè)計(jì)求解張量廣義高次特征值互補(bǔ)問(wèn)題算法提供了新途徑.
[3]LINGC,HEH,QIL.Ontheconeeigenvaluecomplementarityproblemforhigher-ordertensors[J].ComputationalOptimizationandApplications, 2016, 63(1): 143-168.
[4]COMONP,MOURRAINB.Decompositionofquanticsinsumsofpowersoflinearforms[J].SignalProcessing, 1996, 53(2/3):93-107.
[5]QIL.Eigenvaluesofarealsupersymmetrictensor[J].JournalofSymbolicComputation, 2005, 40(6): 1302-1324.
[6]QIL.Symmetricnonnegativetensorsandcopositivetensors[J].LinearAlgebra&itsApplications, 2013, 439 (1):228-238.
[7]LINGC,HEH,QIL.Higher-degreeeigenvaluecomplementarityproblemsfortensors[J].ComputationalOptimization&Applications,,2016, 64(1):149-176.
A Characterization of Solutions of Tensor Generalized Higher-degree Eigenvalue Complementarity Problem
CHANG Xiaorui, LING Chen
(SchoolofScience,HangzhouDianziUniversity,HangzhouZhejiang310018,China)
This paper proposes an equivalence relation between the considered tensor generalized higher-degree eigenvalue complementarity problem and nonlinear programming problems. Furthermore, a necessary and sufficient condition for the stationary point of the corresponding nonlinear programming problem being the solution of the tensor generalized higher-degree eigenvalue complementarity problem is given. Finally, under the degree of eigenvalues satisfies certain conditions, it is proved that the tensor generalized higher-degree eigenvalue complementarity problem can be transformed into the tensor higher-degree eigenvalue complementary problem.
higher-order tensor; higher-degree eigenvalue complementarity problem; nonlinear programming; stationary point
10.13954/j.cnki.hdu.2016.05.017
2016-03-11
國(guó)家自然科學(xué)基金資助項(xiàng)目(11571087)
常肖蕊(1991-),女,河南濮陽(yáng)人,碩士研究生,非線性優(yōu)化.通信作者:凌晨教授,E-mail:macling@hdu.edu.cn.
O221.2
A
1001-9146(2016)05-0087-05