劉小會(huì) 張路飛 陳世民 嚴(yán)波 張曉艷
摘要: 為了揭示輸電線路舞動(dòng)時(shí)各檔導(dǎo)線之間的相互影響,以絕緣子串及單檔導(dǎo)線為子結(jié)構(gòu),建立了諧波激勵(lì)下連續(xù)檔導(dǎo)線運(yùn)動(dòng)的微分方程。通過(guò)子結(jié)構(gòu)的力和位移連續(xù)條件求解方程,提出了連續(xù)檔輸電線動(dòng)剛度的計(jì)算方法。結(jié)合有限元方法驗(yàn)證了連續(xù)檔輸電線動(dòng)剛度計(jì)算方法的準(zhǔn)確性。結(jié)果表明,當(dāng)動(dòng)剛度出現(xiàn)極大值時(shí),諧波激勵(lì)頻率和該連續(xù)檔導(dǎo)線的自振頻率相同,依據(jù)這一結(jié)論可以獲取連續(xù)檔導(dǎo)線的自振頻率。同時(shí),以此為基礎(chǔ)討論了將連續(xù)檔導(dǎo)線等效為彈簧質(zhì)點(diǎn)的可能性,具體算例表明在保證兩者之間靜剛度和頻率相同時(shí),通過(guò)調(diào)整彈簧剛度比和阻尼可以使兩者之間的動(dòng)剛度曲線一致。關(guān)鍵詞: 輸電線; 舞動(dòng); 動(dòng)剛度; 連續(xù)檔; ABAQUS
中圖分類號(hào): TM752+.5; TB123文獻(xiàn)標(biāo)志碼: A文章編號(hào): 10044523(2016)04072010
DOI:10.16385/j.cnki.issn.10044523.2016.04.020
引言
導(dǎo)線覆冰后在風(fēng)激勵(lì)下會(huì)產(chǎn)生低頻(0.1~3 Hz)和大振幅(約為導(dǎo)線直徑的15~500倍)的自激振動(dòng),即舞動(dòng)。當(dāng)舞動(dòng)持續(xù)時(shí)間較長(zhǎng)時(shí)會(huì)對(duì)高壓輸電線路安全運(yùn)行造成極大的危害,嚴(yán)重時(shí)可導(dǎo)致大面積供電癱瘓。近年受極端天氣影響,中國(guó)西南、華中、華南等地高壓電網(wǎng)均發(fā)生了不同程度的舞動(dòng)。
目前國(guó)內(nèi)外對(duì)輸電線舞動(dòng)的研究主要集中在用非線性動(dòng)力學(xué)理論、有限元理論及實(shí)驗(yàn)的方法研究舞動(dòng)發(fā)生的機(jī)理、結(jié)構(gòu)參數(shù)及氣動(dòng)力參數(shù)對(duì)舞動(dòng)的影響。有限元方法是研究舞動(dòng)的重要手段,建立輸電線舞動(dòng)有限元模型時(shí)均采用等效彈簧作為舞動(dòng)檔導(dǎo)線的約束條件[13],以此來(lái)考慮相鄰檔導(dǎo)線的影響。以彈簧作為導(dǎo)線舞動(dòng)的邊界條件,彈簧剛度對(duì)舞動(dòng)幅值有較為明顯的影響[45]。單檔和多檔的舞動(dòng)數(shù)值研究結(jié)果[6]表明覆冰導(dǎo)線舞動(dòng)時(shí)相鄰檔導(dǎo)線對(duì)舞動(dòng)檔導(dǎo)線的舞動(dòng)幅值影響較為明顯,考慮到高壓輸電線路一般都為連續(xù)檔導(dǎo)線,因此有必要采用等效剛度代替相鄰檔導(dǎo)線的影響。在理論方面,通過(guò)振動(dòng)力學(xué)的定性理論對(duì)覆冰輸電線的氣動(dòng)穩(wěn)定性進(jìn)行判斷時(shí),需要采用等效剛度的方式考慮鄰檔導(dǎo)線的影響[7]。非線性振動(dòng)的近似解析方法也是研究舞動(dòng)另一途徑,A Luongo[8]等首先將單檔導(dǎo)線簡(jiǎn)化為豎向和扭轉(zhuǎn)的兩自由度耦合系統(tǒng),基于多尺度法分析了單檔導(dǎo)線轉(zhuǎn)動(dòng)振動(dòng)對(duì)舞動(dòng)的影響。隨后國(guó)內(nèi)學(xué)者[910]基于兩自由度耦合系統(tǒng)運(yùn)用多尺度法從不同方面分析了覆冰單檔導(dǎo)線內(nèi)共振、分岔等復(fù)雜行為。在此基礎(chǔ)上有學(xué)者[1112]將兩自由度系統(tǒng)擴(kuò)展為三自由度耦合系統(tǒng),研究了內(nèi)共振時(shí)系統(tǒng)的振動(dòng)情況。由于連續(xù)檔導(dǎo)線系統(tǒng)較為復(fù)雜,采用解析方法分析導(dǎo)線舞動(dòng)時(shí)均將其簡(jiǎn)化為單檔導(dǎo)線,因此需要采用等效剛度的方法考慮鄰檔導(dǎo)線的影響。事實(shí)上,和舞動(dòng)檔導(dǎo)線相鄰的導(dǎo)線一般處于運(yùn)動(dòng)狀態(tài),采用等效靜剛度忽略了相鄰檔導(dǎo)線的運(yùn)動(dòng)效應(yīng)。
Abstract: In order to reveal the interaction between each span of conductor galloping, the motion differential equation of continuous spans conductor under the harmonic excitation is established by taking insulator string and singlespan conductor as substructure. Continuous conditions for force and displacement of the substructure are utilized to solve the above equation, and then a calculation method for dynamic stiffness of continuous spans transmission line is presented. The accuracy of calculation method for the dynamic stiffness of continuous spans transmission line is proved with the help of finite element method. The result showed that harmonic excitation frequency equals the natural frequency of continuous spans conductor when the dynamic stiffness reaches its maximum value. Based on this conclusion, the natural frequency of continuous spans conductor can be obtained. Moreover, the possibility of simplifying continuous spans conductor as springparticle is discussed on this basis. A specific example given has shown the dynamic stiffness curve of continuous spans conductor and simplified model are uniform by adjusting the spring stiffness ratio and damping under the premise of the same static stiffness and frequency between them.
Key words: transmission line; galloping; dynamic stiffness; continuous span; ABAQUS