駱旗 韓華 龔江濤 王海軍
摘要:
針對(duì)蘊(yùn)含噪聲信息較少的小組合股票市場(chǎng),提出使用蒙特卡羅模擬修正的隨機(jī)矩陣去噪方法。首先通過(guò)數(shù)據(jù)模擬生成隨機(jī)矩陣,然后利用大量的模擬數(shù)據(jù)來(lái)同時(shí)修正噪聲下界和上界,最終對(duì)噪聲范圍進(jìn)行精確測(cè)定。運(yùn)用道瓊斯中國(guó)88指數(shù)和香港恒生50指數(shù)的數(shù)據(jù)進(jìn)行實(shí)證分析,結(jié)果表明,與LCPB法(Laloux LCizeau PPotters MBouchaud J P)、PG+法(Plerou VGopikrishnan P)和KR法(Sharifi SGrane MShamaie A)相比,在特征值、特征向量和反比參率方面, 蒙特卡羅模擬去噪方法修正后噪聲范圍的合理性及有效性得到很大的提升;對(duì)去噪前后的相關(guān)矩陣進(jìn)行投資組合,得知在相同的期望收益率下,蒙特卡羅模擬去噪方法具有最小的風(fēng)險(xiǎn)值,能夠?yàn)橘Y產(chǎn)組合選擇和風(fēng)險(xiǎn)管理等金融應(yīng)用提供一定的參考。
關(guān)鍵詞:
蒙特卡羅模擬;隨機(jī)矩陣?yán)碚摚蝗ピ敕椒?;小組合;投資組合
中圖分類號(hào):
N949
文獻(xiàn)標(biāo)志碼:A
Abstract:
Since the small combined stock market has less noise information, a random matrix denoising method amended by Monte Carlo simulation was proposed. Firstly, random matrix was generated by simulation; secondly, the lower and upper bounds of the noise were corrected simultaneously by using a large number of simulated data; finally, the range of noise was determined precisely. The Dow Jones China 88 Index and the Hang Seng 50 Index were used for empirical analysis. The simulation results show that, compared with LCPB (Laloux LCizeau PPotters MBouchaud JP), PG+(Plerou VGopikrishnan P) and KR (Sharifi SGrane MShamaie ARMT denoising method based on correlation matrix eigenvectors Krzanowski stability) methods, rationality and validity of the noise range corrected by Monte Carlo simulation denoising method are greatly improved in eigenvalue, eigenvector and inverse participation ratio. Investment portfolio of the correlation matrix before and after denoising was given, and the results indicate that the Monte Carlo simulation denoising method has the smallest value at risk under the same expected rate of return, which can provide a certain reference for the portfolio selection, risk management and other financial applications.
英文關(guān)鍵詞Key words:
Monte Carlo simulation; random matrix theory; denoising method; small combination; portfolio
0引言
資產(chǎn)收益之間的相關(guān)矩陣蘊(yùn)含著金融資產(chǎn)間的交互相關(guān)作用,這對(duì)于資產(chǎn)組合選擇和風(fēng)險(xiǎn)管理等重要的金融應(yīng)用都是決定性的[1-2]。實(shí)際上,因時(shí)間序列長(zhǎng)度的限制等原因,使得收益相關(guān)矩陣中含有噪聲[3-4]。研究表明,當(dāng)資產(chǎn)組合數(shù)目較多時(shí),利用隨機(jī)矩陣?yán)碚摚≧andom Matrix Theory, RMT)可對(duì)相關(guān)矩陣中的大部分噪聲進(jìn)行有效去除。Laloux等[5]通過(guò)對(duì)S&P500的406只股票1991—1996年的數(shù)據(jù)進(jìn)行分析從而區(qū)分出經(jīng)驗(yàn)相關(guān)矩陣中的噪聲信息,并認(rèn)為最大特征值代表整個(gè)“市場(chǎng)模式”;Plerou等[6]詳細(xì)研究了1000只美國(guó)證券在1994—1995年的30min收益數(shù)據(jù),定義了反比參率(Inverse Participation Ratio,IPR)來(lái)表示顯著參與某一個(gè)特征向量的公司數(shù)量,得出了特征值譜邊緣的反比參率較大,并對(duì)偏離特征值的意義進(jìn)行了探究;Sharifi等[7]提出了基于RMT和特征向量Krzanowski穩(wěn)定性的KR去噪法,并分析了將該方法用于組合風(fēng)險(xiǎn)優(yōu)化的效果。然而,Utsugi等[8]在對(duì)東京證券交易所研究發(fā)現(xiàn)一些偏離預(yù)測(cè)的小特征值并不能完全由隨機(jī)性進(jìn)行解釋,并表明隨機(jī)性會(huì)對(duì)真實(shí)的相關(guān)性發(fā)生一定的排斥,類似于原子物理學(xué)中的“能級(jí)排斥”;Malevergne等[9]通過(guò)模擬與計(jì)算的對(duì)比分析說(shuō)明了在RMT預(yù)測(cè)的主體特征譜中仍然存在著部分有效的相關(guān)信息;Kwapień等[10]通過(guò)不斷變化100只美國(guó)股票的時(shí)間長(zhǎng)度,發(fā)現(xiàn)當(dāng)選擇的時(shí)間較短時(shí)主體特征譜中并不完全是噪聲信息; Dai等[11]對(duì)71只原油市場(chǎng)股票進(jìn)行分析,研究得知最小特征值具有最大的相關(guān)系數(shù),即表明小于預(yù)測(cè)值的特征值同樣包含部分信息量。由此可知:噪聲將隨著研究資產(chǎn)的減小而下降,噪聲與信息間的界定會(huì)存在一定程度的混淆,且小于預(yù)測(cè)值的特征同樣包含一定的有效信息。本文考慮到蒙特卡羅方法就是結(jié)合實(shí)際情況構(gòu)造與其吻合的統(tǒng)計(jì)實(shí)驗(yàn)概率模型,此過(guò)程包括使用隨機(jī)數(shù)執(zhí)行大量模擬和得到問(wèn)題的近似解[12],為此,構(gòu)建蒙特卡羅模擬修正的隨機(jī)矩陣去噪方法,即利用蒙特卡羅模擬方法精確識(shí)別出小組合投資噪聲特征值的范圍,并將模擬去噪法應(yīng)用于不同股票網(wǎng)絡(luò)進(jìn)行實(shí)證分析,從而驗(yàn)證模擬方法的有效性和優(yōu)越性。
1理論基礎(chǔ)
1.1隨機(jī)矩陣?yán)碚?/p>
記股票i(i=1,2,…,N)的有效交易日價(jià)格序列為{Pi(1),Pi(2),…,Pi(L)},L是股票i的有效交易天數(shù),Pi(t)是股票i在第t個(gè)有效交易日的收盤(pán)價(jià)格,定義股票i的對(duì)數(shù)收益率(Logarithmic Return)如下:
通過(guò)隨機(jī)矩陣?yán)碚摳倪M(jìn)相關(guān)系數(shù)矩陣達(dá)到對(duì)金融系統(tǒng)去噪的RMT去噪方法種類很少,主要包括Laloux等[5]提出的LCPB法將小于λ+的市場(chǎng)特征值作為噪聲,用噪聲特征值的均值來(lái)代替噪聲特征值,并保持新舊相關(guān)矩陣的跡不變;Plerou等[6]提出的PG+法用零替代相關(guān)矩陣的“噪聲”特征值,并確保去噪前后矩陣的跡相等;Sharifi等[7]提出的KR法旨在提高相關(guān)矩陣特征向量的Krzanowski穩(wěn)定性,經(jīng)推算Sharifi等用相等的最大間距的正數(shù)特征值取代噪聲特征值,并使新特征值和噪聲特征值的和相等。上述去噪法的共同點(diǎn)是將小于λ+的特征值看作噪聲,而λ+=1+H-1±2H-1,λ+的取值是N→∞,L→∞,H=L/N(>1)情況下的極限值。
整體而言,隨著期望收益率的增大,風(fēng)險(xiǎn)值也在不斷上升。當(dāng)固定期望收益率時(shí),圖7和圖8都在模擬修正后的隨機(jī)矩陣去噪法下的風(fēng)險(xiǎn)率最小。特別地,圖7未去噪與LCBP法、PG+法、KR法的風(fēng)險(xiǎn)收益基本相同,即這些方法并未達(dá)到去噪的目的;而圖8中未去噪比這三種去噪后的風(fēng)險(xiǎn)率更小,即對(duì)香港恒生50而言這三種方法去噪存在較大程度失真,嚴(yán)重毀壞了整個(gè)市場(chǎng)的有效性,從而使得去噪后的數(shù)據(jù)中包含的信息量太少,最終不能達(dá)到有效去噪的目的。這與市場(chǎng)包含的股票數(shù)目越多則其具有的信息量越豐富的實(shí)際相符,道瓊斯中國(guó)88和香港恒生50分別具有88只股票和49只股票,即道瓊斯中國(guó)88相對(duì)香港恒生50而言本身包含更多的信息,因此,當(dāng)對(duì)這兩個(gè)市場(chǎng)進(jìn)行不合理的去噪時(shí),包含信息量較少的香港恒生50就變得更加敏感,導(dǎo)致其出現(xiàn)未去噪的效果更優(yōu)。然而,當(dāng)對(duì)小組合的市場(chǎng)進(jìn)行合理有效的去噪時(shí),仍可最大化地去除其內(nèi)部的干擾噪聲,從而使得風(fēng)險(xiǎn)最小。
4結(jié)語(yǔ)
本文提出了對(duì)小組合投資更加有效的蒙特卡羅模擬修正的RMT去噪法,即就資產(chǎn)數(shù)目較少的投資而言,小于λ-的特征值也包含著市場(chǎng)的有效信息,故可對(duì)代表噪聲的隨機(jī)矩陣進(jìn)行大量的模擬平均,使得界定的噪聲范圍[λ-,λ+]更加精確,從而盡可能地保持市場(chǎng)信息的完整性與有效性。實(shí)證分析發(fā)現(xiàn),在小組合投資中,模擬修正方法在投資組合方面的確更優(yōu)于其他去噪法。在未來(lái)的研究中,我們計(jì)劃利用復(fù)雜網(wǎng)絡(luò)拓?fù)湫再|(zhì)的一些指標(biāo)來(lái)對(duì)提出的模擬方法進(jìn)行更深一步的研究,使得研究結(jié)果更加全面,更加具有說(shuō)服力。
參考文獻(xiàn):
[1]
羅英,蔡玉梅,崔小梅,等.資產(chǎn)組合協(xié)方差矩陣的信息結(jié)構(gòu)[J].預(yù)測(cè),2013,32(4):26-30.(LUO Y, CAI Y M, CUI X M, et al. The information structure of the covariances between financial returns [J]. Forecasting, 2013,32(4): 26-30.)
[2]
李冰娜,惠曉峰.基于隨機(jī)矩陣?yán)碚撐覈?guó)股票投資組合噪聲分析及風(fēng)險(xiǎn)控制[J].系統(tǒng)工程,2012,30(8):38-44.(LI B N, HUI X F. Study on noise analysis and risk control of portfolios from Chinese stock markets based on random matrix theory[J]. Journal of Systems Engineering, 2012, 30(8): 38-44.)
[3]
KANG W, KIM KK, SHIN H. Denoising Monte Carlo sensitivity estimates [J]. Operations Research Letters, 2012, 40(3):195-202.
[4]
NILANTHA K G D R, RANASINGHE, MALMINI P K C. Eigenvalue density of crosscorrelations in Sri Lankan financial market [J]. Physica A: Statistical Mechanics and its Applications, 2007, 378(2): 345-356.
[5]
LALOUX L, CIZEAU P, POTTERS M, et al. Random matrix theory and financial correlations [J]. International Journal of Theoretical and Applied Finance, 2000, 3(3): 391-397.
[6]
PLEROU V, GOPIKRISHNAN P, ROSENOW B, et al. A random matrix approach to crosscorrelations in financial data [J]. Physical Review E, 2002, 65(6): 066126.
PLEROU V, GOPIKRISHNAN P, ROSENOW B, et al. A random matrix approach to crosscorrelations in financial data [EB/OL]. [20151214]. https://arxiv.org/pdf/condmat/0108023.pdf.
[7]
SHARIFI S, CRANE M, SHAMAIE A, et al. Random matrix theory for portfolio optimization: a stability approach [J]. Physica A: Statistical Mechanics and its Applications, 2004, 335(3/4): 629-643.
[8]
UTSUGI A, INO K, OSHIKAWA M. Random matrix theory analysis of cross correlations in financial markets [J]. Physical Review E, 2004, 70(2): 026110.
[9]
MALEVERGNE Y, SORNETTE D. Collective origin of the coexistence of apparent random matrix theory noise and of factors in large sample correlation matrices [J]. Physica A: Statistical Mechanics and its Applications, 2004, 331(3/4): 660-668.
[10]
KWAPIE J, DROZDZ S, OSWIE P. The bulk of the stock market correlation matrix is not pure noise [J]. Physica A: Statistical Mechanics and its Applications, 2005, 359(1): 589-606.
[11]
DAI YH, XIE WJ, JIANG ZQ, et al. Correlation structure and principal components in the global crude oil market [J/OL]. arXiv.org: arXiv:1405.5000. [20151105]. http://de.arxiv.org/pdf/1405.5000.
[12]
高岳,王家華,楊愛(ài)軍.具有時(shí)變自由度的tcopula蒙特卡羅組合收益風(fēng)險(xiǎn)研究[J].中國(guó)管理科學(xué),2011,19(2):10-15.(GAO Y, WANG J H, YANG A J. Estimation on portfolio risk via timevarying tcopula and MonteCarlo method [J]. Chinese Journal of Management Science, 2011, 19(2): 10-15.)
[13]
POLITI M, SCALAS E, FULGER D, et al. Spectral densities of WishartLévy free stable random matrices [J]. European Physical Journal B, 2010, 73: 13-22.
POLITI M, SCALAS E, FULGER D, et al. Spectral densities of WishartLévy free stable random matrices [EB/OL]. [20151128]. http://discovery.ucl.ac.uk/1407446/1/0903.1629v1.pdf.
http://discovery.ucl.ac.uk/1407446/1/0903.1629v1.pdf
arXiv:0903.1629v1
[14]
ZHANG M, RUBIO F,PALOMAR D P, et al. Finitesample linear filter optimization in wireless communications and financial systems [J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5014-5025.
[15]
李冰娜.基于RMT去噪法股票投資組合風(fēng)險(xiǎn)優(yōu)化研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2013:94-103.(LI B N. Research on stock portfolio risk optimization based on the RMT denoising methods [D]. Harbin: Harbin Institute of Technology, 2013: 94-103.)
[16]
SENSOY A, YUKSEL S, ERTURK M. Analysis of crosscorrelations between financial markets after the 2008 crisis [J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(20): 5027-5045.
[17]
CONLON T, RUSKIN H J, CRANE M. Random matrix theory and fund of funds portfolio optimisation [J]. Physica A: Statistical Mechanics and its Applications, 2007, 382(2): 565-576.