賈曉飛,孫召勃,李云鵬,王公昌,張國(guó)浩
(中海石油(中國(guó))有限公司 天津分公司,天津 300452)
?
普通稠油油藏五點(diǎn)井網(wǎng)非活塞水驅(qū)平面波及系數(shù)計(jì)算方法
賈曉飛,孫召勃,李云鵬,王公昌,張國(guó)浩
(中海石油(中國(guó))有限公司 天津分公司,天津 300452)
目前利用三角擬流管法計(jì)算面積井網(wǎng)水驅(qū)平面波及系數(shù)時(shí)未考慮非活塞驅(qū)替的問(wèn)題,而普通稠油油藏水驅(qū)開(kāi)發(fā)時(shí)存在啟動(dòng)壓力梯度和強(qiáng)非活塞性的特征。利用物質(zhì)平衡原理和貝克萊-列維爾特非活塞驅(qū)油理論,建立了一套普通稠油油藏五點(diǎn)井網(wǎng)非活塞水驅(qū)平面波及系數(shù)計(jì)算方法。該方法考慮了水驅(qū)稠油的非活塞性,可以計(jì)算動(dòng)態(tài)含水率、產(chǎn)量、采出程度隨時(shí)間的變化規(guī)律。以渤海某水驅(qū)稠油油田為例,分析了井距、啟動(dòng)壓力梯度、流度、注采壓差等參數(shù)對(duì)水驅(qū)稠油平面波及系數(shù)的影響。結(jié)果表明,油相流度越小,啟動(dòng)壓力梯度越大,水驅(qū)波及帶的寬度越小,水驅(qū)前緣推進(jìn)越慢,平面波及程度也越低??梢酝ㄟ^(guò)優(yōu)化井網(wǎng)井距、注采參數(shù)或小井距加密等方式,增加平面波及程度,改善水驅(qū)效果。
平面波及系數(shù);非活塞驅(qū)替;稠油油藏;五點(diǎn)井網(wǎng);啟動(dòng)壓力梯度
賈曉飛,孫召勃,李云鵬,等.普通稠油油藏五點(diǎn)井網(wǎng)非活塞水驅(qū)平面波及系數(shù)計(jì)算方法[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,31(5):53-59.
JIA Xiaofei,SUN Zhaobo,LI Yunpeng,et al.Calculation method of areal sweep coefficient of non-piston water flooding for five-spot pattern in general heavy oil reservoirs[J].Journal of Xi'an Shiyou University (Natural Science Edition),2016,31(5):53-59.
目前渤海油田動(dòng)用的稠油油藏以常規(guī)面積井網(wǎng)注水為主要開(kāi)發(fā)方式[1-3],準(zhǔn)確計(jì)算水驅(qū)平面波及系數(shù)對(duì)評(píng)價(jià)水驅(qū)稠油平面動(dòng)用程度及開(kāi)發(fā)效果意義重大。
大量實(shí)驗(yàn)表明稠油油藏的滲流特征表現(xiàn)為非達(dá)西類(lèi)型,存在啟動(dòng)壓力梯度[4-6];同時(shí),隨著稠油黏度的增加,兩相區(qū)范圍增大,非活塞驅(qū)替也越嚴(yán)重。在計(jì)算水驅(qū)稠油平面波及系數(shù)時(shí)必須予以考慮[7-9]。
許多專(zhuān)家學(xué)者對(duì)平面波及系數(shù)進(jìn)行了理論研究,并不斷完善改進(jìn)。計(jì)秉玉等[10-11]在研究低滲透油藏非達(dá)西滲流面積井網(wǎng)產(chǎn)油量計(jì)算方法時(shí),提出了啟動(dòng)角和啟動(dòng)系數(shù)的概念,用來(lái)定量表征儲(chǔ)層的動(dòng)用情況;何英等[12-14]在計(jì)秉玉等研究的基礎(chǔ)上,利用擬流管法計(jì)算了低滲透油藏穩(wěn)定活塞驅(qū)替時(shí)的有效動(dòng)用情況;郭粉轉(zhuǎn)等[15-17]在前人研究的基礎(chǔ)上對(duì)不同注采井網(wǎng)進(jìn)行了不穩(wěn)定活塞驅(qū)替時(shí)的平面波及效率的計(jì)算;劉義坤等[18]基于郭粉轉(zhuǎn)等人的研究,采用數(shù)據(jù)歸一化和多元回歸法進(jìn)行了簡(jiǎn)化,能夠快速計(jì)算五點(diǎn)井網(wǎng)不穩(wěn)定活塞驅(qū)替時(shí)的平面波及效率;何聰鴿等[19]在郭粉轉(zhuǎn)等人研究的基礎(chǔ)上,考慮儲(chǔ)層各向異性計(jì)算了特低滲透油藏的平面波及系數(shù)。
總結(jié)前人研究成果發(fā)現(xiàn),在計(jì)算面積井網(wǎng)平面波及系數(shù)時(shí),都沒(méi)有考慮水驅(qū)油的非活塞性,雖然文獻(xiàn)[15-19]在模型中涉及到了貝克萊-列維爾特非活塞驅(qū)油理論[20],然而只是用它來(lái)確定水驅(qū)前緣,實(shí)際上在確定水驅(qū)前緣后的計(jì)算中,并未考慮油水兩相區(qū)的存在,依然采用的是活塞水驅(qū)油理論。因此現(xiàn)有方法都不能準(zhǔn)確計(jì)算稠油油藏面積井網(wǎng)非活塞水驅(qū)平面波及系數(shù)。針對(duì)這一問(wèn)題,本文以五點(diǎn)井網(wǎng)為例,考慮水驅(qū)稠油時(shí)存在啟動(dòng)壓力梯度和強(qiáng)非活塞性的特征,利用物質(zhì)平衡原理和貝克萊-列維爾特非活塞驅(qū)油理論,建立了一套普通稠油油藏五點(diǎn)井網(wǎng)非活塞水驅(qū)平面波及系數(shù)計(jì)算方法。
1.1油藏模型
建立普通稠油油藏五點(diǎn)井網(wǎng)非活塞水驅(qū)數(shù)學(xué)模型,如圖1所示 。
圖1 普通稠油油藏五點(diǎn)井網(wǎng)模型Fig.1 Five-spot well pattern model of general heavy oil reservoir
模型基本假設(shè)條件如下:①油藏為均質(zhì)、等厚、單一儲(chǔ)層;②油藏內(nèi)只存在油水兩相,水相流動(dòng)符合達(dá)西滲流公式,油相流動(dòng)符合非達(dá)西滲流公式,忽略重力和毛管力的影響;③驅(qū)替為非活塞性驅(qū)替,水驅(qū)前緣之前為油相流動(dòng),前緣之后為油水兩相流動(dòng)。
1.2單元模型
考慮五點(diǎn)注采井網(wǎng)水驅(qū)特征,可以將其劃分為8個(gè)滲流規(guī)律相同的三角形滲流單元(圖2中黃色三角)進(jìn)行分析。因此,本文取五點(diǎn)井網(wǎng)的1/8單元為研究對(duì)象。將計(jì)算的三角單元可以剖分為一系列的三角擬流管。
圖2 擬流管示意圖Fig.2 Schematic diagram of five-spot pattern flow tube
1.3擬流管模型
將選取的三角計(jì)算單元剖分為N根三角擬流管(圖2)。
1.3.1擬流管注入量的確定水驅(qū)稠油油藏油相滲流方程為
(1)
水相滲流方程為
(2)
式中: qw為水相流量;μw為水相黏度;Krw為水相相對(duì)滲透率。
對(duì)于油水兩相混合區(qū),有
q=qo+qw。
(3)
式中: q為總的流體流量。
對(duì)于第i根擬流管,有
(4)
沿第i根擬流管中線路徑積分,可得注采壓差
(5)
式中: ξfi為第i根擬流管的水驅(qū)前緣;Δp為注采壓差。
定義滲流阻力如下:
(6)
(7)
式中:RDi為第i根擬流管中常規(guī)意義上的滲流阻力項(xiàng);RGi為第i根擬流管中由于存在啟動(dòng)壓力梯度而引起的滲流阻力項(xiàng)。
式(5)簡(jiǎn)化為
Δp=qiRDi+RGi,
(8)
式(8)變形得到
(9)
疊加所有擬流管可得
(10)
則注入量生產(chǎn)時(shí)注采壓差
(11)
而定壓差生產(chǎn)時(shí),注采壓差
Δp=pinj-ppro。
(12)
式中:pinj、ppro分別為注入井和生產(chǎn)井的井底壓力。
注采壓差越大,注入量越大;滲流阻力越大,相應(yīng)的注入量越小。當(dāng)?shù)趇根擬流管的注采壓差小于啟動(dòng)壓力引起的滲流阻力時(shí),該擬流管不參與流動(dòng),因此第i根擬流管的劈分系數(shù)為
(13)
式中:αi為第i根擬流管的劈分系數(shù)。
第i根擬流管的注入量
qi=αiq。
(14)
1.3.2單擬流管等飽和度面運(yùn)動(dòng)方程當(dāng)某時(shí)刻擬流管的注入量確定以后,基于物質(zhì)平衡原理和貝克萊-列維爾特油水兩相驅(qū)油理論,第i根擬流管某個(gè)微元內(nèi),單位時(shí)間微元內(nèi)水相體積的變化等于該微元內(nèi)流入、流出的水相體積差,即存在關(guān)系
(15)
式中:φ為地層孔隙度;Sw為含水飽和度;fw為含水率。兩邊取積分,得
(16)
由相對(duì)滲透率曲線和分流量曲線,可計(jì)算出含水率,結(jié)合式(16)可求出Sw-ξ關(guān)系,即從注入端到水驅(qū)前緣處的含水飽和度分布,再利用式(6)與式(7)可以計(jì)算出不同時(shí)刻每根擬流管的滲流阻力。
2.1計(jì)算方法
計(jì)算單元由一系列擬流管構(gòu)成,由各擬流管的指標(biāo)求和可得到單元指標(biāo)。
見(jiàn)水時(shí)間tf由主流線油水前緣突破時(shí)間確定,即
(17)
產(chǎn)液量、產(chǎn)油量和產(chǎn)水量分別為
(18)
(19)
Qw=Q-Qo。
(20)
含水率
(21)
采出程度
(22)
根據(jù)第i根擬流管的水驅(qū)前緣,可以計(jì)算出第i根擬流管的水驅(qū)波及面積
(23)
式中:Aspi為第i根擬流管的水驅(qū)波及面積。
將所有擬流管的波及面積進(jìn)行求和,可以得到整個(gè)單元的水驅(qū)波及面積
(24)
從而計(jì)算出面積波及系數(shù)
(25)
2.2計(jì)算步驟
(1)初始時(shí)刻t=0,每根擬流管內(nèi)均為油,驅(qū)替前緣位置為ξfi=0,由式(6)與式(7)計(jì)算每根擬流管的滲流阻力,由式(14)對(duì)注入量進(jìn)行劈分,求得每根擬流管的初始注入量。
(2)注入過(guò)程中,對(duì)于t時(shí)刻,利用式(16)求出每根擬流管水驅(qū)前緣位置ξfi,并計(jì)算出油水兩相區(qū)內(nèi)含油飽和度的分布規(guī)律,即不同含水飽和度所對(duì)應(yīng)的驅(qū)替位置,由式(6)與式(7)計(jì)算每根擬流管的滲流阻力,其中油水兩相區(qū)的滲流阻力計(jì)算采用數(shù)值積分的方法,再利用式(14)對(duì)注入量進(jìn)行劈分,計(jì)算每根擬流管和整體注入量、累計(jì)注入量、產(chǎn)液量、累計(jì)產(chǎn)液量、產(chǎn)油量、累計(jì)產(chǎn)油量、出口端含水率以及面積波及系數(shù)和采出程度等注采指標(biāo)參數(shù)。
(3)令t=t+Δt,轉(zhuǎn)至步驟(2)進(jìn)行計(jì)算,直至出口端含水率大于98%終止計(jì)算。
3.1油相流度與啟動(dòng)壓力梯度
利用上述模型模擬計(jì)算10 a,得到平面波及系數(shù)和采出程度隨時(shí)間的變化情況(圖3、圖4),同時(shí)由于考慮了水驅(qū)油的活塞性,可以得到含水率和產(chǎn)油量隨時(shí)間的變化情況(圖5、圖6)。由圖3和圖4可以看出,開(kāi)采10 a后,平面波及系數(shù)分別為0.245、0.999和0.999,對(duì)于物性較好的儲(chǔ)層,啟動(dòng)壓力梯度較小,水驅(qū)平面波及系數(shù)也越大,采出程度也越高;結(jié)合圖5和圖6,發(fā)現(xiàn)第一種情況下產(chǎn)量始終低于10 m3/d,也始終未見(jiàn)水,平面波及系數(shù)遠(yuǎn)低于中好儲(chǔ)層的0.999,開(kāi)發(fā)中應(yīng)適當(dāng)提高注采壓差或減小井距,提高波及程度;對(duì)于后兩種情況,見(jiàn)水時(shí),平面波及系數(shù)分別為0.683、0.721,見(jiàn)水前平面波及系數(shù)隨時(shí)間增加較快,近似線性,見(jiàn)水后變緩,最后趨于定值;第三種情況見(jiàn)水最快為615 d,延長(zhǎng)第一種情況的計(jì)算時(shí)間,繪制出3種情況下見(jiàn)水前的水驅(qū)前緣圖(圖7),可以非常直觀地看出啟動(dòng)壓力梯度越小,平面波及區(qū)域的寬度也越大,平面波及系數(shù)也越大。
圖3 平面波及系數(shù)隨時(shí)間變化曲線Fig.3 Varying curve of areal sweep coefficient with time
圖4 采出程度隨時(shí)間變化曲線Fig.4 Varying curve of recovery percentage with time
圖5 含水率隨時(shí)間變化曲線Fig.5 Varying curve of water cut with time
圖6 產(chǎn)油量隨時(shí)間變化曲線Fig.6 Varying curve of oil production with time
圖7 3種情況見(jiàn)水前的水驅(qū)前緣Fig.7 Water drive front before water breakthrough in three cases
3.2注采壓差與井距
模擬計(jì)算5a,分析結(jié)果圖8可得:①注采壓差增大,平面波及系數(shù)增大,但增加幅度變小。當(dāng)注采井距L=350m時(shí),注采壓差保持在14~16MPa,可以保證較大的平面波及程度。②注采井距減小,平面波及系數(shù)增大,但增加幅度變小。當(dāng)注采壓差△p=12MPa時(shí),注采井距L=300m左右,可以保證較大的平面波及程度。③增大注采壓差或減小注采井距都能增大驅(qū)替壓力梯度,擴(kuò)大平面波及范圍,減小死油區(qū),同時(shí)可以提高采油速度。所以,在海上稠油油田開(kāi)發(fā)中應(yīng)該注意優(yōu)化合理的注采井距和注采壓差,盡可能提高平面波及系數(shù),減少死油區(qū)存在,實(shí)現(xiàn)油田高效高速開(kāi)發(fā)。
圖8 平面波及系數(shù)隨時(shí)間變化曲線Fig.8 Varying curves of areal sweep coefficient with time under different well spacing
(1)建立了考慮啟動(dòng)壓力梯度和非活塞驅(qū)替的普通稠油油藏平面波及系數(shù)計(jì)算方法,克服了現(xiàn)有模型未充分考慮非活塞性的缺陷,完善了計(jì)算平面波及系數(shù)的理論方法。
(2)利用實(shí)例分析了啟動(dòng)壓力梯度、注采壓差和注采井距對(duì)平面波及系數(shù)的影響,合理優(yōu)化注采參數(shù),減少死油區(qū),有利于高效高速開(kāi)發(fā)海上稠油油田。
(3)該方法既可以用來(lái)評(píng)價(jià)稠油油藏的平面波及情況,也可以預(yù)測(cè)稠油油藏注水開(kāi)發(fā)的各項(xiàng)指標(biāo)。
[1]郭太現(xiàn),蘇彥春.渤海油田稠油油藏開(kāi)發(fā)現(xiàn)狀和技術(shù)發(fā)展方向[J].中國(guó)海上油氣,2013,25(4):26-30.
GUO Taixian,SU Yanchun.Current status and technical development direction in heavy oil reservoir development in Bohai oilfields[J].China Offshore Oil and Gas,2013,25(4):26-30.
[2]柴世超,楊慶紅,葛麗珍,等.秦皇島32-6稠油油田注水效果分析[J].中國(guó)海上油氣,2006,18(4):251-254.
CHAI Shichao,YANG Qinghong,GE Lizhen,et al.An analysis of waterflood effect in QHD 32-6 heavy oilfield[J].China Offshore Oil and Gas,2006,18(4):251-254.
[3]周守為.海上油田高效開(kāi)發(fā)新模式探索與實(shí)踐[M].北京:石油工業(yè)出版社,2007.
ZHOU Shouwei.Explorationand Practice of Offshore Oil Field Effection Development Pattern[M].Beijing:Petroleum Industry Press,2007.
[4]羅憲波,李波,劉英,等.存在啟動(dòng)壓力梯度時(shí)儲(chǔ)層動(dòng)用半徑的確定[J].中國(guó)海上油氣,2009,21(4):248-250.
LUO Xianbo,LI Bo,LIU Ying,et al.The determination of drainage radius for reservoirs with a start-up pressure gradient[J].China Offshore Oil and Gas,2009,21(4):248-250.
[5]石立華,喻高明,袁芳政,等.海上稠油砂巖油藏啟動(dòng)壓力梯度測(cè)定方法及應(yīng)用:以秦皇島32-6油田為例[J].油氣地質(zhì)與采收率,2014,21(3):82-85.
SHI Lihua,YU Gaoming,YUAN Fangzheng,et al.Method and application of starting pressure gradient in offshore heavy oil sandstone reservoir[J].Petroleum Geology and Recovery Efficiency,2014,21(3):82-85.
[6]張運(yùn)軍.海上常規(guī)稠油滲流特征及影響因素[D].北京:中國(guó)石油大學(xué),2011.
ZHANG Yunjun.Offshore Convention Heavy Oil Flow Characteristics and Factors[D].Beijing:China University of Petroleum,2011.
[7]柯文麗.稠油非線性滲流規(guī)律研究[D].武漢:長(zhǎng)江大學(xué),2013.
KE Wenli.Research on Nonlinear Percolation Law of Heavy Oil[D].Wuhan:Yangtze University,2013.
[8]張旭.水驅(qū)稠油非線性滲流數(shù)值模擬研究與應(yīng)用[D].武漢:長(zhǎng)江大學(xué),2015.
ZHANG Xu.A Research and Application on Nonlinear Seepage Numerical Simulation of Waterflooding Heavy Oil Reservoir[D].Wuhan:Yangtze University,2015.
[9]牛剛,周體堯,李秀生,等.常規(guī)稠油水驅(qū)低速非達(dá)西滲流實(shí)驗(yàn)研究[J].鉆采工藝,2010,33(3):57-60.
NIU Gang,ZHOU Tiyao,LI Xiusheng,et al.Experimental study on low velocity non-darcy flow of conventional heavy oil reservoir by waterflooding process[J].Drilling & Production Technology,2010,33(3):57-60.
[10] 計(jì)秉玉,李莉,王春艷.低滲透油藏非達(dá)西滲流面積井網(wǎng)產(chǎn)油量計(jì)算方法[J].石油學(xué)報(bào),2008,29(2):256-261.
JI Bingyu,LI Li,WANG Chunyan.Oil production calculation for areal well pattern of low-permeability reservoir with non-Darcy seepage flow[J].Acta Petrolei Sinica,2008,29(2):256-261.
[11] 計(jì)秉玉,戰(zhàn)劍飛.油井見(jiàn)效時(shí)間和見(jiàn)水時(shí)間計(jì)算公式[J].大慶石油地質(zhì)與開(kāi)發(fā),2000,19(5):24-26.
JI Bingyu,ZHAN Jianfei.A calculation formula of responding and water breakthrough time of wells after water flooding[J].Petroleum Geology & Oilfield Development in Daqing,2008,19(5):24-26.
[12] 何英,楊正明,熊生春.低滲透油藏矩形井網(wǎng)產(chǎn)能計(jì)算研究[J].鉆采工藝,2009,32(1):46-48.
HE Ying,YANG Zhengming,XIONG Shengchun.Study on calculation of productivity for rectangular pattern in low permeability reservoir[J].Drilling & Production Technology,2009,32(1):46-48.
[13] 齊亞?wèn)|,雷群,楊正明,等.特低滲透斷塊油藏不規(guī)則三角形井網(wǎng)有效動(dòng)用系數(shù)計(jì)算及應(yīng)用[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,43(3):1066-1071.
QI Yadong,LEI Qun,YANG Zhengming,et al.Calculation and application of effective development coefficient for irregular triangular patterns in extra-low permeability fault block oil reservoirs[J].Journal of Central South University(Science and Technology),2012,43(3):1066-1071.
[14] 何英.低滲透油藏井網(wǎng)部署的油藏工程方法研究[D].廊坊:中國(guó)科學(xué)院研究生院(滲流流體力學(xué)研究所),2009.
HE Ying.Study on Well Pattern Arrangement of Low Permeability Reservoir by Reservoir Engineering Methods[D].Langfang:Chinese Academy of Science,2009.
[15] 郭粉轉(zhuǎn),唐海,呂棟梁,等.低滲透油藏非達(dá)西滲流面積井網(wǎng)見(jiàn)水時(shí)間計(jì)算[J].東北石油大學(xué)學(xué)報(bào),2011,35(1):42-45.
GUO Fenzhuan,TANG Hai,LYU Dongliang,et al.Calculation of water breakthrough time in non-Darcy seepage flow well pattern of low permeability reservoirs[J].Journal of Northeast Petroleum University,2011,35(1):42-45.
[16] 郭粉轉(zhuǎn),唐海,呂棟梁,等.滲流啟動(dòng)壓力梯度對(duì)低滲透油田四點(diǎn)井網(wǎng)面積波及效率影響[J].東北石油大學(xué)學(xué)報(bào),2010,34(1):33-38.
GUO Fenzhuan,TANG Hai,LYU Dongliang,et al.Effects of seepage threshold pressure gradient on areal sweep efficiency for 4-spot pattern of low permeability reservoirs[J].Journal of Northeast Petroleum University,2010,34(1):33-38.
[17] 郭粉轉(zhuǎn),唐海,呂棟梁,等.滲流啟動(dòng)壓力梯度對(duì)低滲透油田五點(diǎn)井網(wǎng)面積波及效率影響[J].東北石油大學(xué)學(xué)報(bào),2010,34(3):65-68.
GUO Fenzhuan,TANG Hai,LYU Dongliang,et al.Effects of seepage threshold pressure gradient on areal sweep efficiency for five-spot pattern of low permeability reservoirs[J].Journal of Northeast Petroleum University,2010,34(3):65-68.
[18] 劉義坤,唐慧敏,梁爽,等.五點(diǎn)法面積波及效率的簡(jiǎn)化計(jì)算模型[J].大慶石油地質(zhì)與開(kāi)發(fā),2014,33(2):49-53.
LIU Yikun,TANG Huimin,LIANG Shuang,et al.Simplified calculating model of the areal sweep efficiency in five-spot well pattern[J].Petroleum Geology & Oilfield Development in Daqing,2014,33(2):49-53.
[19] 何聰鴿,范子菲,方思冬,等.特低滲透各向異性油藏平面波及系數(shù)計(jì)算方法[J].油氣地質(zhì)與采收率,2015,22(3):77-83.
HE Congge,FAN Zifei,FANG Sidong,et al.Calculation of areal sweep efficiency for extra-low permeability anisotropy reservoir[J].Petroleum Geology and Recovery Efficiency,2015,22(3):77-83.
[20] BUCKLEY S E,LEVERETT M C.Mechanism of fluid displacement in sands[J].Transactions of the Aime,1942,14(16):107-116.
責(zé)任編輯:賀元旦
Calculation Method of Areal Sweep Coefficient of Non-piston Water Flooding for Five-spot Pattern in General Heavy Oil Reservoirs
JIA Xiaofei,SUN Zhaobo,LI Yunpeng,WANG Gongchang,ZHANG Guohao
(Tianjin Branch,China National Offshore Oil Corporation(CNOOC) Limited,Tianjin 300452,China)
Considering the existence of threshold pressure gradient and obvious non piston feature in the water flooding development of general heavy oil reservoirs,a method for calculating the areal sweep coefficient of non-piston water flooding for five-spot pattern in general heavy oil reservoirs is established based on the material balance principle and Buckley-Leverett non-piston water oil displacement theory.Due to considering the non piston characteristic in water driving heavy oil,this method can also dynamically calculate the variation rules of water cut,heavy oil yield and oil recovery percent with time.Taking a heavy oil reservoir in Bohai as an example,the influences of well spacing,starting pressure gradient,mobility and injection-production pressure difference on the areal sweep efficiency are analyzed.The results show that while the mobility of oil phase becomes small and the starting pressure gradient increases,the width of water sweep zone and the speed of water flooding front reduce,and therefore the areal sweep coefficient decreases.The areal sweep coefficient and the water flooding effect can be improved by optimizing well spacing,injection and production parameters or thickening well pattern.
areal sweep efficiency;non-piston displacement;heavy oil reservoir;five-spot pattern;threshold pressure gradient
2016-05-20
國(guó)家重大專(zhuān)項(xiàng)子課題“海上油田叢式井井網(wǎng)整體加密及綜合調(diào)整油藏工程技術(shù)應(yīng)用研究”(編號(hào):2011ZX05024-002)
賈曉飛(1984-),男,碩士,工程師,主要從事海上油氣田開(kāi)發(fā)方面的研究。E-mail:jiaxf@cnooc.com.cn
10.3969/j.issn.1673-064X.2016.05.008
TE357.6
1673-064X(2016)05-0053-07
A