張林友, 劉瓊穎, 何麗娟
1 中國科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國家重點實驗室, 北京 100029 2 中國科學(xué)院大學(xué), 北京 100049
?
華北克拉通熱結(jié)構(gòu)差異性特征及其意義
張林友1,2, 劉瓊穎1,2, 何麗娟1
1 中國科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國家重點實驗室, 北京100029 2 中國科學(xué)院大學(xué), 北京100049
華北克拉通破壞存在空間上的差異性,至今其內(nèi)在的動力學(xué)機制仍存在較大的爭議,這種差異性在巖石圈熱結(jié)構(gòu)上必然有所表現(xiàn).廣義上巖石圈熱結(jié)構(gòu)包括熱流結(jié)構(gòu)、溫度場結(jié)構(gòu)和熱巖石圈厚度,是揭示巖石圈演化及其內(nèi)在動力學(xué)過程的重要基礎(chǔ).基于二維地震剖面和大地?zé)崃鲾?shù)據(jù),建立二維穩(wěn)態(tài)熱傳導(dǎo)有限元模型,對華北克拉通東部巖石圈熱結(jié)構(gòu)進(jìn)行模擬計算并與西部進(jìn)行對比分析,在此基礎(chǔ)上對比熱巖石圈與地震巖石圈厚度差異的變化.結(jié)果顯示,華北克拉通東、西部巖石圈熱結(jié)構(gòu)有著較為明顯的差異,地幔熱流值波動范圍分別在24~44/20.5~24.5 mW·m-2,殼幔比1.61~0.70/1.84~1.51,以1300 ℃等溫線計算得到的熱巖石圈厚度變化范圍在75~139 km/128~162 km.華北克拉通東部相對西部有著較高的深部地幔熱流值和較小的地震/熱巖石圈厚度差異,這可能意味著東部軟流圈地幔有效黏度相比西部低,估算差異可達(dá)2~3個數(shù)量級.
華北克拉通; 巖石圈熱結(jié)構(gòu); 地震巖石圈厚度; 軟流圈黏度
Our model is based on the 2-D steady-state heat conduction equation by using the finite element algorithm in the frame of the space rectangular coordinates system. We obtain the surface heat flow data by Kriging interpolation, and then determine the lithospheric thermal structure by adjusting the mantle heat flow to fit the surface heat flow data until an acceptable solution is found.
Different from the lithospheric thermal structure of the Ordos basin which is located in the western NCC, the mantle heat flow in the eastern NCC is estimated to be 24~44 mW·m-2,Qc/Qmto be 1.61~0.70, which shows an obvious fluctuations and is higher than other cratons all over the world. The thermal lithospheric thickness along the seismic profile turns out to be 75~139 km by defining the base of the thermal lithosphere as the 1300 ℃ isotherm. The thermal lithospheric thickness is thin in the east and becomes thicker to the west with a minimum thickness near the Tanlu fault zone. The temperature at Moho range 560~710 ℃ and has a similar trend as the thermal lithospheric thickness.
Compared with the seismic and thermal lithospheric thickness in NCC, there exist nearly 80~90 km differences in Ordos, 64 km in the Fenwei graben, but only 40 km in the Taihang Mountains and no more than 10 km near the Tanlu fault zone. There are also large differences in conductive heat flow at the base of lithosphere between eastern and western NCC. These huge changes could be attributed to the different viscosity of the asthenosphere. There are probably two to three orders of magnitude differences in the viscosity which could be caused by 11~35 times water content differences if the effects of other factors are ignored.
Differences in the viscosity of the asthenosphere and the lithospheric thermal structure between eastern and western NCC might be one of the reasons why the western NCC is in a relatively stable state but the eastern NCC is destructed. The research on the lithospheric thermal structure provides a clue for studying the evolution of lithosphere and can help us to reveal the thermal regime of thinning and destruction in the craton.
華北克拉通位于歐亞大陸東側(cè)邊緣,包含內(nèi)蒙古南部、渤海灣、黃海北部等地區(qū),是現(xiàn)今最為古老的克拉通之一,可劃分為西部陸塊(Western Block)、中部造山帶(Trans NCO)和東部陸塊(Eastern Block)三部分(Zhao et al., 2001).許多研究表明,相對表現(xiàn)仍較為穩(wěn)定的華北克拉通西部陸塊,其東部陸塊自中生代以來發(fā)生了明顯的破壞,表現(xiàn)在地表熱流相對其他典型穩(wěn)定克拉通明顯偏高,巖石圈厚度強烈減薄,并伴隨有大規(guī)模的巖漿活動和強烈的巖石圈伸展(Menzies et al., 1993; Xu, 2001; Ren et al., 2002; He and Wang, 2003; Wu et al., 2005; Chen, 2010; Qi and Yang, 2010; Windley et al., 2010; 朱日祥等, 2011,2012; Li et al., 2012, 2014; He, 2015).對華北克拉通破壞的機制提出有諸多的假說,但對東部破壞嚴(yán)重而西部卻仍較為穩(wěn)定的原因仍不十分清楚,是目前亟需深入探討的問題(吳福元等, 2008; 朱日祥等, 2011; Tang et al., 2013).其中作為對克拉通的穩(wěn)定/破壞具有重要影響的巖石圈熱結(jié)構(gòu)特征普遍受到人們的關(guān)注,為此結(jié)合不同的方法對此展開了諸多研究(何麗娟等, 2001; 臧紹先和劉永剛, 2002; An and Shi, 2006; Wei et al., 2008; Huang and Xu, 2010; 汪洋和程素華, 2011; Sun et al., 2013; 楊嵩等, 2013).但華北克拉通東部二維精細(xì)巖石圈熱結(jié)構(gòu)的數(shù)據(jù)目前仍相對較少,更缺少對華北克拉通東西陸塊差異性破壞在熱結(jié)構(gòu)特征上表現(xiàn)的對比分析.
本文基于長度約850 km,東西向橫穿整個華北克拉通東部區(qū)域的文登—阿拉善左旗二維地震剖面的寧津—忻州段(Jia et al., 2014; 王帥軍等, 2014; 劉志等, 2015),對華北克拉通東部的巖石圈熱結(jié)構(gòu)進(jìn)行模擬計算,獲得了二維空間上較為精細(xì)的巖石圈熱結(jié)構(gòu)特征,彌補了克拉通東部二維空間上熱模擬的不足,并與西部鄂爾多斯盆地?zé)峤Y(jié)構(gòu)進(jìn)行對比,分析熱巖石圈與地震巖石圈厚度差異變化的特征,探討可能存在的原因及其對華北克拉通差異性破壞的啟示.
空間直角坐標(biāo)系下,二維穩(wěn)態(tài)熱傳導(dǎo)方程表述為:
(1)
k為熱導(dǎo)率(W·m-1·K-1);A為熱源(文中指放射性生熱,μW·m-3);x為橫向距離(km);z為垂直深度(km);T為溫度(K).
邊界條件為:
(2)
z0為模型表面;zm為模型底部;x0為左邊界;x1為右邊界;T0為表面溫度;Qm為底部熱流.
取常年平均表面溫度值T0=15 ℃(http:∥www.ncdc.noaa.gov/)作為上部溫度邊界條件,模型左、右邊界為絕熱邊界條件,底部熱流邊界為Qm.根據(jù)地震剖面,將二維有限元模型劃分為五層,分別為沉積層、上地殼基底、中地殼、下地殼和巖石圈地幔(圖1c),給定初始模型厚度為180 km. 在模擬計算中通過不斷調(diào)整迭代底部熱流Qm來擬合地表熱流值Qc最終得到巖石圈的熱結(jié)構(gòu)特征.
3.1大地?zé)崃?/p>
在模擬計算中,我們僅使用了最新統(tǒng)計可信度較高的A類和B類熱流數(shù)據(jù)(胡圣標(biāo)等, 2001; 王良書等, 2002; 龔育齡等, 2003; 王永新等, 2003)以保證數(shù)據(jù)的可靠性.統(tǒng)計分析顯示華北克拉通地區(qū)熱流值符合正態(tài)分布.整體平均熱流61.9±12.5 mW·m-2,西部61.3±9.4 mW·m-2,東部地表熱流值略微偏高平均63.7±13.4 mW·m-2, 具有自西向東增加的趨勢,與網(wǎng)格加權(quán)等統(tǒng)計方法得到結(jié)果一致(Gong et al., 2011).為了更加直觀地得出熱流的空間變化特征,我們使用具有相對較強保真能力的克里金插值方法對華北克拉通地區(qū)的熱流進(jìn)行插值計算處理,得到了區(qū)域上的熱流變化特征(圖1b).在此基礎(chǔ)上提取地震剖面上的熱流數(shù)據(jù),獲取的地表熱流值變化范圍在56.1~75.0 mW·m-2.如此長距離和大范圍的熱流變化很難用地殼生熱率的變化來解釋,并且華北克拉通東部作為一個獨立完整的陸塊,生熱率結(jié)構(gòu)研究至今沒有發(fā)現(xiàn)明顯的不同(Gao et al., 1998; 遲清華和鄢明才, 1998),故而這種差異性特征應(yīng)該是受到來自深部地幔熱流供應(yīng)差異的影響.
3.2熱物性參數(shù)
巖石熱物性參數(shù)的研究早在20世紀(jì)就已經(jīng)開始(Birch and Clark, 1940; Lachenbruch, 1970; Rybach and Buntebarth, 1984),近年來不斷有新的發(fā)現(xiàn)(Gibert et al.,2003;Pertermann and Hofmeister,2006; Merriman et al., 2013; Miao et al., 2014; Wang et al., 2014).不同的學(xué)者見解不同,采用的熱物性參數(shù)也略有所差異(Artemieva and Mooney, 2001; Merriman et al., 2013; He, 2014; Miao et al., 2014),針對華北克拉通,本文中采用熱物性參數(shù)如表1.
圖1 (a)華北克拉通區(qū)域圖,虛線為克拉通邊界,藍(lán)色和紅色實線分別為克拉通東/西部地震剖面線(據(jù)黃方等, 2015; 劉志等, 2015); (b)華北克拉通大地?zé)崃鞣植继卣? (c)二維巖石圈結(jié)構(gòu)剖面, a中紅線(據(jù)劉志等, 2015)Fig.1 (a) Map of NCC regions. Dashed lines outline the North China Craton (NCC). Solid lines show location of two-dimensional seismic profile (from Liu et al., 2015; Huang et al., 2015). (b) Surface heat flow map in the NCC. (c) Two-dimensional profile of lithospheric structure (from Liu et al., 2015)
表1 模型熱物性參數(shù)及值Table 1 Values of physical properties used in modeling
注:熱導(dǎo)率參考遲清華和鄢明才, 1998;生熱率參考Furlong and Chapman, 2013;Vilà et al., 2010;Liu et al., 2001;遲清華和鄢明才, 1998.
4.1熱流值特征
地表熱流依據(jù)來源主要分為兩部分,一是來自于地殼放射性元素生熱,二是來自于深部地幔的熱通量供給.巖石圈的整體熱狀態(tài)主要由深部熱流值控制,相對地殼淺部生熱元素貢獻(xiàn)的熱通量,深部地幔的熱通量供給大小更能反映出其所在地區(qū)的深部構(gòu)造活動性.一般而言來自于地幔的熱供給比例越大該地區(qū)構(gòu)造就越活躍.擬合結(jié)果顯示沿寧津—忻州剖面自西向東地幔熱流值(Moho面處垂向傳導(dǎo)熱流值)逐漸增大,由西部約24 mW·m-2增大到東部郯廬斷裂帶附近約44 mW·m-2,遠(yuǎn)高于鄂爾多斯盆地(20.5~24.5 mW·m-2)(黃方等, 2015).東部地區(qū)熱流殼幔比值(Qc/Qm)由西側(cè)逐漸向東減小(圖2b)變化范圍在1.61~0.70,明顯不同于西部較高的殼幔比值(1.84~1.51)(黃方等, 2015).相比典型穩(wěn)定克拉通地殼熱流占主導(dǎo)(Qc>Qm)、低地幔熱流值(<25 mW·m-2)的特征(Jaupart et al., 1998; Rudnick et al., 1998; Artemieva and Mooney, 2001; Hasterok and Chapman, 2011; Hacker et al., 2015),華北克拉通東部來自深部地幔熱流的貢獻(xiàn)較大.
4.2溫度場特征
溫度場計算結(jié)果顯示,華北克拉通東部地區(qū)溫度梯度遠(yuǎn)高于南非等典型穩(wěn)定克拉通(對應(yīng)于地表熱流約40 mW·m-2)(圖3)且橫向波動明顯(圖4a).華北克拉通東部Moho面溫度變化范圍在560~710 ℃,同一深度溫度最高值出現(xiàn)在郯廬斷裂帶附近,靠近太行山溫度逐漸降低(圖4a).對比西部鄂爾多斯溫度場結(jié)構(gòu),華北東部同一深度溫度明顯較高,在100 km深度處溫度相差可達(dá)300 ℃以上(圖4). 擬合得到的華北克拉通東部地區(qū)地溫曲線與新生代捕虜體顯示的深度(壓力)-溫度數(shù)據(jù)吻合較好(Huang and Xu, 2010),表明模擬計算結(jié)果的合理性(圖3).
圖2 (a)熱流空間變化特征;(b)熱流殼幔比(WNCC數(shù)據(jù)來自黃方等, 2015).剖面位置見圖1aFig.2 (a) Spatial variation of heat flow; (b) Ratio of heat flow contribution of crust to mantle (data of WNCC come from Huang et al., 2015), profile position as shown in Fig.1a
圖3 華北克拉通東部巖石圈地溫曲線及捕虜體深度-溫度數(shù)據(jù)(捕虜體數(shù)據(jù)參考Huang and Xu, 2010,位置見圖4a)Fig.3 Lithospheric geothermal curve and xenolith P-T data in eastern NCC (xenolith P-T data from Huang and Xu, 2010,position as shown in Fig.4a)
4.3熱巖石圈厚度
在對巖石圈的研究中,其厚度特征一致備受關(guān)注,基于不同的原理與方法提出了不同意義上的巖石圈厚度,如地震、熱、彈性及電性等巖石圈厚度(Artemieva, 2009).實際上定義巖石圈厚度的許多參數(shù)都很大程度上依賴于溫度場變化造成的巖石物性的“突變”,因此熱巖石圈厚度是最直接也是爭議最少的定義方式,并得到了廣泛的應(yīng)用(Pollack and Chapman, 1977; Artemieva, 2009, 2011).地?zé)釋W(xué)上常取到達(dá)特定溫度等溫面(~1200/1300 ℃或0.8倍地幔巖熔點溫度)的深度或地溫梯度線向下延伸與地幔絕熱線交點的深度作為熱巖石圈厚度的底界,溫度范圍一般介于1200~1400 ℃之間.本文中取T=1300 ℃等溫線作為熱巖石圈的底界(Artemieva and Mooney, 2001),得到華北克拉通東部熱巖石圈厚度變化范圍在75~139 km(圖4a),同時以T1=1200+0.5z地幔絕熱線約束得到的熱巖石圈厚度上限為71~133 km,T2=1300+0.4z約束得到的下限為78~149 km.相比于華北克拉通西部鄂爾多斯盆地(圖4b)在128~162 km之間的熱巖石圈厚度變化(黃方等, 2015),華北克拉通東部熱巖石圈厚度明顯較薄.計算結(jié)果與東部新生代玄武巖地幔捕虜體制約的巖石圈厚度(<80 km)(Xu, 2001)吻合較好.對比古生代金伯利巖中地幔包裹體和金剛石中含礦物捕虜體制約的~200 km的巖石圈厚度(Menzies et al., 1993),在東部發(fā)生了>100 km的減薄.
巖石圈熱結(jié)構(gòu)主要受控于深部熱通量特征.造成華北克拉通東、西部巖石圈深部熱通量差異的主要因素是軟流圈地幔有效黏度的差異,軟流圈有效黏度的降低促使地幔對流更為活躍,流變邊界層減薄以提供更多的熱量(He, 2014).通過計算我們得到華北克拉通東部巖石圈底部垂向傳導(dǎo)熱通量為19.3~44.6 mW·m-2,西部約10.1~25.1 mW·m-2, 造成兩者差異需要軟流圈有效黏度變化可能達(dá)2~3個數(shù)量級(He, 2014).同時流變邊界層的存在也是造成地震巖石圈和熱巖石圈厚度差異的主要因素,較小的流變邊界層厚度對應(yīng)著較小的地震/熱巖石圈厚度差異(Artemieva, 2009; Wang, 2010; He, 2014).對比華北克拉通地震巖石圈與熱巖石圈厚度,發(fā)現(xiàn)兩者均呈現(xiàn)出由西向東逐漸減薄的趨勢,但之間的差值存在變化,在鄂爾多斯盆地最大差異可能達(dá)140 km(黃方等, 2015),較小也有80~90 km,西部汾渭地塹差異略有降低約64 km(何麗娟, 2014),而華北克拉通東部兩者差異最大不到40 km,且向東逐漸減小,靠近郯廬斷裂帶附近兩者差異只有不到10 km.利用流變邊界層厚度與軟流圈有效黏度對數(shù)的線性相關(guān)關(guān)系(何麗娟, 2014), 近似估算得到造成華北克拉通東、西陸塊熱/地震巖石圈厚度差異達(dá)數(shù)十千米的變化需要軟流圈上部有效黏度差異達(dá)三個數(shù)量級,與底部熱通量差異估算得到的黏度差異一致.
圖4 (a)寧津—忻州剖面巖石圈溫度場分布,星號和虛線分別為圖3捕虜體和地溫曲線位置;(b)鄂爾多斯剖面巖石圈溫度場分布(黃方等,2015,改).剖面位置見圖1aFig.4 Lithospheric temperature field of (a) Ningjin-Xinzhou and (b) Ordos profiles (modified from Huang et al., 2015). Asterisk and dash line: location of xenolith and geothermal curve as shown in Fig.3, profile position as shown in Fig.1a
通過二維穩(wěn)態(tài)熱模擬研究獲得了華北克拉通東部寧津—忻州二維空間上較為詳細(xì)的巖石圈熱結(jié)構(gòu)特征.對比華北克拉通西部的低地幔熱流值(21.2~24.5 mW·m-2)、高殼幔熱流比(1.51~1.84)以及厚的熱巖石圈厚度(128~164 km),華北克拉通東部呈現(xiàn)出高地幔熱流值(24~44 mW·m-2)、低殼幔熱流比(1.61~0.70)和薄熱巖石圈厚度的熱結(jié)構(gòu)特征,熱巖石圈厚度由西約139 km向東逐漸減薄到郯廬斷裂帶附近約75 km,差異達(dá)64 km.
對比地震巖石圈與熱巖石圈厚度差異,由克拉通西部向東部逐漸降低,這種差異性特征與巖石圈地幔底部垂向傳導(dǎo)熱流的變化趨勢一致,是由于軟流圈黏度變化造成的,初步估算有效黏度的差異達(dá)2~3個數(shù)量級,若僅由水含量的不同來解釋,可能需要11~35倍的差異.考慮到現(xiàn)今的巖石圈熱結(jié)構(gòu)特征,華北克拉通東部可能并不需要巨量的水來降低軟流圈黏度以維持目前較高的地幔熱流和較低的地震/熱巖石圈厚度差異.降低的軟流圈黏度增大了巖石圈底部熱通量的供應(yīng),為克拉通破壞提供了能量來源,可能是華北克拉通東部遭受破壞而西部保持相對穩(wěn)定的原因之一.
致謝感謝審稿專家提出的寶貴意見.
An M J, Shi Y L. 2006. Lithospheric thickness of the Chinese continent.PhysicsoftheEarthandPlanetaryInteriors, 159(3-4): 257-266, doi: 10.1016/j.pepi.2006.08.002.Artemieva I. 2011. The Lithosphere: An Interdisciplinary Approach. New York: Cambridge University Press. Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study.JournalofGeophysicalResearch, 106(B8): 16387-16414, doi: 10.1029/2000jb900439.
Artemieva I M. 2009. The continental lithosphere: Reconciling thermal, seismic, and petrologic data.Lithos, 109(1-2): 23-46, doi: 10.1016/j.lithos.2008.09.015.
Birch A F, Clark H. 1940. The thermal conductivity of rocks and its dependence upon temperature and composition.AmericanJournalofScience, 238(8): 529-558. Burov E B. 2011. Rheology and strength of the lithosphere.MarineandPetroleumGeology, 28(8): 1402-1443, doi: 10.1016/j.marpetgeo.2011.05.008.
Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications.Lithos, 120(1-2): 96-115.
Chi Q H, Yan M C. 1998. Radioactive elements of rocks in North China platform and the thermal structure and temperature distribution of the modern continental lithosphere.ChineseJ.Geophys. (ActaGeophysicaSinica) (in Chinese), 41(1): 38-48. Furlong K P, Chapman D S. 2013. Heat flow, heat generation, and the thermal state of the lithosphere.AnnualReviewofEarthandPlanetarySciences,41(1): 385-410.
Gao S, Luo T C, Zhang B R, et al. 1998. Chemical composition of the continental crust as revealed by studies in East China.GeochimicaetCosmochimicaActa, 62(11): 1959-1975, doi: 10.1016/S0016-7037(98)00121-5.
Gibert B, Seipold U, Tommasi A, et al. 2003. Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation fabric.JournalofGeophysicalResearch:SolidEarth(1978—2012), 108(B8): 2359. Gong Y L, Wang L S, Liu S W, et al. 2003. Heat flow pattern of the Jiyang Depression.ScienceinChina(SeriesD:EarthSciences) (in Chinese), 33(4): 384-391.
Gong Y L, Zhang H, Ye T F. 2011. Heat flow density in Bohai Bay Basin: Data set compilation and interpretation.ProcediaEarthandPlanetaryScience, 2: 212-216, doi: 10.1016/j.proeps.2011.09.034.
Hacker B R, Kelemen P B, Behn M D. 2015. Continental lower crust.AnnualReviewofEarthandPlanetarySciences, 43: 167-205.
Hasterok D, Chapman D S. 2011. Heat production and geotherms for the continental lithosphere.EarthandPlanetaryScienceLetters, 307(1-2): 59-70, doi: 10.1016/j.epsl.2011.04.034.
He L J. 2014. Numerical modeling of convective erosion and peridotite-melt interaction in big mantle wedge: Implications for the destruction of the North China Craton.JournalofGeophysicalResearch:SolidEarth, 119(4): 3662-3677.
He L J. 2014. The Rheological boundary layer and its implications for the difference between the thermal and seismic lithospheric bases of the North China Craton.ChineseJ.Geophys. (in Chinese), 57(1): 53-61, doi: 10.6038/cjg20140106.
He L J. 2015. Thermal regime of the North China Craton: Implications for craton destruction.Earth-ScienceReviews, 140: 14-26, doi: 10.1016/j.earscirev.2014.10.011.
He L J, Hu S B, Wang J Y. 2001. The thermal structure of lithosphere in Eastern China continent.ProgressinNaturalScience(in Chinese), 11(9): 966-969.
He L J, Wang J Y. 2003. Cenozoic thermal history of the Bohai Bay Basin: constraints from heat flow and coupled basin-mountain modeling.PhysicsandChemistryoftheEarth,PartsA/B/C, 28(9-11): 421-429, doi: 10.1016/S1474-7065(03)00062-7. Hu S B, He L J, Wang J Y. 2001. Compilation of heat flow data in the China continental area (3rd edition).ChineseJ.Geophys. (in Chinese), 44(5): 611-626. Huang F, He L J, Wu Q J. 2015. Lithospheric thermal sturcture of the Ordos Basin and its implications to destruction of the North China Craton.ChineseJ.Geophys. (in Chinese), 58(10): 3671-3686, doi: 10.6038/cjg20151020.
Huang X L, Xu Y G. 2010. Thermal state and structure of the lithosphere beneath eastern China: a synthesis on basalt-borne xenoliths.JournalofEarthScience, 21(5): 711-730.
Jaupart C, Mareschal J C, Guillou-Frottier L, et al. 1998. Heat flow and thickness of the lithosphere in the Canadian Shield.JournalofGeophysicalResearch, 103(B7): 15269-15286, doi: 10.1029/98jb01395.
Jia S X, Wang F Y, Tian X F, et al. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile.Tectonophysics, 627: 48-56, doi: 10.1016/j.tecto.2014.04.013.
Karato S I. 2010. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review.Tectonophysics, 481(1): 82-98.
Karato S I, Jung H. 2003. Effects of pressure on high-temperature dislocation creep in olivine.PhilosophicalMagazine, 83(3): 401-414.
Karato S I, Wu P. 1993. Rheology of the upper mantle—A synthesis.Science, 260(5109): 771-778.
Korenaga J, Karato S I. 2008. A new analysis of experimental data on olivine rheology.JournalofGeophysicalResearch:SolidEarth(1978—2012), 113(B2),doi:10.1029/2007JB005100.
Lachenbruch A H. 1970. Crustal temperature and heat production: Implications of the linear heat-flow relation.JournalofGeophysicalResearch, 75(17): 3291-3300.
Li H Y, Huang X L, Guo H. 2014. Geochemistry of Cenozoic basalts from the Bohai Bay Basin: Implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton.Lithos, 196-197: 54-66, doi: 10.1016/j.lithos.2014.02.026. Li S Z, Zhao G C, Dai L M, et al. 2012. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton.JournalofAsianEarthSciences, 47: 64-79, doi: 10.1016/j.jseaes.2011.06.008.
Li Z X A, Lee C T A, Peslier A H, et al. 2008. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere.JournalofGeophysicalResearch:SolidEarth, 113(B9),doi:10.1029/2007JB005540.
Liu Y S, Gao S, Jin S Y, et al. 2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition.GeochimicaetCosmochimicaActa, 65 (15): 2589-2604.
Liu Z, Wang F Y, Zhang X F, et al. 2015. Seismic structure of the lithosphere beneath Eastern North China craton: results from long distance deep seismic sounding.ChineseJ.Geophys. (in Chinese), 58(4): 1145-1157, doi: 10.6038/cjg20150405.
Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China.GeologicalSociety,London,SpecialPublications, 76(1): 71-81.
Merriman J D, Whittington A G, Hofmeister A M, et al. 2013. Thermal transport properties of major Archean rock types to high temperature and implications for cratonic geotherms.PrecambrianResearch, 233: 358-372, doi: 10.1016/j.precamres.2013.05.009. Miao S Q, Li H P, Chen G. 2014. The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere.Geophys.J.Int., 197(2): 900-909, doi: 10.1093/gji/ggu020.
Pertermann M, Hofmeister A M. 2006. Thermal diffusivity of olivine-group minerals at high temperature.Am.Miner., 91(11-12): 1747-1760.
Pollack H N, Chapman D S. 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness.Tectonophysics, 38(3-4): 279-296.
Qi J F, Yang Q. 2010. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China.MarineandPetroleumGeology, 27(4): 757-771.
Ren J Y, Tamaki K, Li S T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas.Tectonophysics, 344(3-4): 175-205.
Rudnick R L, McDonough W F, O′Connell R J. 1998. Thermal structure, thickness and composition of continental lithosphere.ChemicalGeology, 145(3-4): 395-411.
Rybach L, Buntebarth G. 1984. The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere.Tectonophysics, 103(1-4): 335-344.
Sun Y J, Dong S W, Zhang H, et al. 2013. 3D thermal structure of the continental lithosphere beneath China and adjacent regions.JournalofAsianEarthSciences, 62: 697-704, doi: 10.1016/j.jseaes.2012.11.020.
Tang Y J, Zhang H F, Santosh M, et al. 2013. Differential destruction of the North China Craton: A tectonic perspective.JournalofAsianEarthSciences, 78: 71-82, doi: 10.1016/j.jseaes.2012.11.047.
Vilà M, Fernández M, Jiménez-Munt I. 2010. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling.Tectonophysics, 490(3-4): 152-164.Wang C, Yoneda A, Osako M, et al. 2014. Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14 GPa and 1000 K: Implication for the role of eclogite in subduction slab.JournalofGeophysicalResearch:SolidEarth, 119(8): 6277-6287.
Wang L S, Liu S W, Xiao W Y, et al. 2002. The characteristics of terrestrial heat flow in the Bohai Bay Basin.ChineseScienceBulletin(in Chinese), 47(2): 151-155.
Wang Q. 2010. A review of water contents and ductile deformation mechanisms of olivine: implications for the lithosphere-asthenosphere boundary of continents.Lithos, 120(1-2): 30-41. Wang S J, Wang F Y, Zhang J S, et al. 2014. The P-wave velocity structure of the lithosphere of the North China Craton—Results from the Wendeng-Alxa Left Banner deep seismic sounding profile.Sci.ChinaEarthSci., 57(9): 2053-2063, doi: 10.1007/s11430-014-4903-7.
Wang Y, Cheng S H. 2011. Thermal state and rheological strength of the lithosphere beneath the Eastern China.GeotectonicaetMetallogenia(in Chinese), 35(1): 12-23.
Wang Y X, Feng D S, Wang J Y, et al. 2003. Present-day geothermal field and thermal history of eastern subdepression, Liaohe Basin.ChineseJ.Geophys. (in Chinese), 46(2): 197-202.
Wei W B, Ye G F, Jin S, et al. 2008. Geoelectric structure of lithosphere beneath eastern North China: features of thinned lithosphere from magnetotelluric soundings.EarthScienceFrontiers, 15(4): 204-216.
Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction.AmericanJournalofScience, 310(10): 1250-1293.
Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China.EarthandPlanetaryScienceLetters, 233(1-2): 103-119.
Wu F Y, Xu Y G, Gao S, et al. 2008. Lithospheric thinning and destruction of the North China Craton.ActaPetrologicaSinica(in Chinese), 24(6): 1145-1174.
Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism.PhysicsandChemistryoftheEarth,PartA:SolidEarthandGeodesy, 26(9-10): 747-757.
Yang S, Xiong X, Zheng Y, et al. 2013. Upper-mantle temperature and lithospheric thickness of North China.ChineseJ.Geophys. (in Chinese), 56(11): 3855-3867, doi: 10.6038/cjg20131127.
Zhao G C, Wilde S A, Cawood P A, et al. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution.PrecambrianResearch, 107(1-2): 45-73.
Zang S X, Liu Y G, Ning J Y. 2002. Thermal structure of the lithosphere in North China.ChineseJ.Geophys. (in Chinese), 45(1): 56-66.
Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics.ChineseScience Bulletin, 54(19): 3354-3366.
ZhuRX,ChenL,WuFY,etal. 2011.Timing,scaleandmechanismofthedestructionoftheNorthChinaCraton. Sci. China Earth Sci., 54(6): 789-797,doi: 10.1007/s11430-011-4203-4.
ZhuRX,XuYG,ZhuG,etal. 2012.DestructionoftheNorthChinaCraton. Sci. China Earth Sci., 55(10): 1565-1587,doi: 10.1007/s11430-012-4516-y.
附中文參考文獻(xiàn)
遲清華, 鄢明才. 1998. 華北地臺巖石放射性元素與現(xiàn)代大陸巖石圈熱結(jié)構(gòu)和溫度分布. 地球物理學(xué)報, 41(1): 38-48.
龔育齡, 王良書, 劉紹文等. 2003. 濟(jì)陽坳陷大地?zé)崃鞣植继卣? 中國科學(xué)(D輯: 地球科學(xué)), 33(4): 384-391.
何麗娟. 2014. 流變邊界層及其對華北克拉通熱/地震巖石圈底界差異的意義. 地球物理學(xué)報, 57(1): 53-61, doi: 10.6038/cjg20140106.
何麗娟, 胡圣標(biāo), 汪集旸. 2001. 中國東部大陸地區(qū)巖石圈熱結(jié)構(gòu)特征. 自然科學(xué)進(jìn)展, 11(9): 966-969.
胡圣標(biāo), 何麗娟, 汪集旸. 2001. 中國大陸地區(qū)大地?zé)崃鲾?shù)據(jù)匯編(第三版). 地球物理學(xué)報, 44(5): 611-626.
黃方, 何麗娟, 吳慶舉. 2015. 鄂爾多斯盆地深部熱結(jié)構(gòu)特征及其對華北克拉通破壞的啟示. 地球物理學(xué)報, 58(10): 3671-3686, doi: 10.6038/cjg20151020.
劉志, 王夫運, 張先康等. 2015. 華北克拉通東部地殼與地幔蓋層結(jié)構(gòu)——長觀測距深地震測深剖面結(jié)果. 地球物理學(xué)報, 58(4):
1145-1157, doi: 10.6038/cjg20150405. 王良書, 劉紹文, 肖衛(wèi)勇等. 2002. 渤海盆地大地?zé)崃鞣植继卣? 科學(xué)通報, 47(2): 151-155.
王帥軍, 王夫運, 張建獅等. 2014. 華北克拉通巖石圈二維P波速度結(jié)構(gòu)特征——文登-阿拉善左旗深地震測深剖面結(jié)果. 中國科學(xué): 地球科學(xué), 44(12): 2697-2708.
汪洋, 程素華. 2011. 中國東部巖石圈熱狀態(tài)與流變學(xué)強度特征. 大地構(gòu)造與成礦學(xué), 35(1): 12-23.
王永新, 馮殿生, 汪集旸等. 2003. 遼河盆地東部凹陷現(xiàn)今地溫場及熱歷史的研究. 地球物理學(xué)報, 46(2): 197-202.
吳福元, 徐義剛, 高山等. 2008. 華北巖石圈減薄與克拉通破壞研究的主要學(xué)術(shù)爭論. 巖石學(xué)報, 24(6): 1145-1174.
楊嵩, 熊熊, 鄭勇等. 2013. 華北地區(qū)上地幔溫度及巖石圈厚度分布研究. 地球物理學(xué)報, 56(11): 3855-3867, doi: 10.6038/cjg20131127.
臧紹先, 劉永剛. 2002. 華北地區(qū)巖石圈熱結(jié)構(gòu)的研究. 地球物理學(xué)報, 45(1): 56-66.
朱日祥, 陳凌, 吳福元等. 2011. 華北克拉通破壞的時間、范圍與機制. 中國科學(xué): 地球科學(xué), 41(5): 583-592.
朱日祥, 徐義剛, 朱光等. 2012. 華北克拉通破壞. 中國科學(xué): 地球科學(xué), 42(8): 1135-1159.
(本文編輯何燕)
The different lithospheric thermal structure of North China Craton and its implications
ZHANG Lin-You1,2, LIU Qiong-Ying1,2, HE Li-Juan1
1StateKeyLaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2UniversityofChineseAcademyofSciences,Beijing100049,China
Lithospheric thermal structure has important impact on its rheological, physical properties and also the characteristics of crustal deformation, geological evolution and distribution of earthquakes. As one of the most typical cases for relatively complete destruction of its Archean keel since Mesozoic, the lithospheric thermal structure of North China Craton (NCC) should have some change. Therefore, we implement a 2-D thermal modeling based on the surface heat flow and seismic profile data to investigate the thermal structure of NCC.
North China Craton; Lithospheric thermal structure; Seismic lithospheric thickness; Viscosity of the asthenosphere
10.6038/cjg20161009.
國家自然科學(xué)基金(41574075),國家重點研發(fā)計劃項目(2016YFC0601005)聯(lián)合資助.
張林友,男,研究生,主要從事巖石圈構(gòu)造-熱演化數(shù)值模擬研究. E-mail:linyou_zhang@mail.iggcas.ac.cn
10.6038/cjg20161009
P314,P541
2015-12-13,2016-07-22收修定稿
張林友, 劉瓊穎, 何麗娟. 2016. 華北克拉通熱結(jié)構(gòu)差異性特征及其意義. 地球物理學(xué)報,59(10):3618-3626,
Zhang L Y, Liu Q Y, He L J. 2016. The different lithospheric thermal structure of North China Craton and its implications.ChineseJ.Geophys. (in Chinese),59(10):3618-3626,doi:10.6038/cjg20161009.