李天杰,曹延祥,金小虎,3,4,趙紅翠,3,4,于洋,3,4△,喬杰,3,4
實(shí)驗(yàn)研究
原核移植技術(shù)對(duì)子代小鼠腦組織mRNA表達(dá)譜的影響
李天杰1,曹延祥2,金小虎1,3,4,趙紅翠1,3,4,于洋1,3,4△,喬杰1,3,4
目的探討原核移植(PNT)技術(shù)對(duì)子代小鼠腦組織mRNA表達(dá)譜的影響。方法將SPF級(jí)ICR(CD-1)雌鼠超促排卵并與雄鼠交配受精后,收集雌鼠受精卵進(jìn)行原核移植,獲得重構(gòu)胚胎,將其移植到假孕小鼠輸卵管內(nèi)獲得原核移植子代小鼠(PNT組),未經(jīng)原核移植操作的受精卵經(jīng)過(guò)胚胎移植后獲得子代小鼠(對(duì)照組)。提取2組小鼠腦組織RNA,逆轉(zhuǎn)錄為cDNA后熒光染料標(biāo)記,利用Agilent小鼠mRNA芯片檢測(cè)2組mRNA表達(dá)譜差異,篩選差異表達(dá)的mRNA并進(jìn)行GO和信號(hào)通路分析。結(jié)果PNT組與對(duì)照組表達(dá)差異倍數(shù)在2倍以上的mRNAs有392個(gè),占所有mRNAs的1.7%,其中366個(gè)表達(dá)升高,26個(gè)表達(dá)降低;表達(dá)差異倍數(shù)在4倍以上的共11個(gè)。上述差異表達(dá)的mRNAs經(jīng)GO分析結(jié)果顯示靶基因富集于mRNA可變剪接、小GTP酶介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)、胰島素受體信號(hào)通路調(diào)節(jié)等生物學(xué)過(guò)程以及水解酶活性、跨膜轉(zhuǎn)運(yùn)蛋白活性、焦磷酸酶活性等分子功能。信號(hào)通路富集分析結(jié)果顯示靶基因集中在離子通道轉(zhuǎn)運(yùn)、脂肪酸代謝、丁酸甲酯代謝、三酰甘油和酮體代謝等信號(hào)通路。結(jié)論原核移植可能會(huì)對(duì)小鼠腦組織一些關(guān)鍵代謝過(guò)程產(chǎn)生影響。
核移植技術(shù);胚胎移植;腦;RNA,信使;基因表達(dá)譜;計(jì)算生物學(xué);原核移植
線粒體是細(xì)胞內(nèi)進(jìn)行氧化磷酸化生成三磷酸腺苷(ATP)的主要場(chǎng)所。作為一種半自主性的細(xì)胞器,線粒體具有相對(duì)獨(dú)立的復(fù)制、轉(zhuǎn)錄和翻譯系統(tǒng)[1]。線粒體DNA(mtDNA)可以發(fā)生突變,當(dāng)突變達(dá)到一定閾值時(shí)會(huì)導(dǎo)致線粒體疾病的發(fā)生。mtDNA突變主要影響能量代謝比較旺盛的器官,包括腦、心臟、肝臟和肌肉等[2]。原核移植(pronuclear transfer,PNT)技術(shù)是一種核質(zhì)置換技術(shù),是指卵母細(xì)胞受精形成原核后,將雌雄原核共同取出并移植進(jìn)入新胞質(zhì)的過(guò)程。PNT在線粒體疾病的治療中具有潛在的臨床應(yīng)用價(jià)值,但該技術(shù)對(duì)子代的長(zhǎng)期影響還不得而知。本文旨在通過(guò)構(gòu)建PNT小鼠模型,研究PNT對(duì)子代小鼠腦組織mRNA表達(dá)譜的影響,為進(jìn)一步評(píng)估該技術(shù)的風(fēng)險(xiǎn)和長(zhǎng)期應(yīng)用的安全性提供參考。
1.1 實(shí)驗(yàn)動(dòng)物SPF級(jí)ICR(CD-1)小鼠,雌性35只,雄性20只,8~10周齡,體質(zhì)量27~33 g,購(gòu)自北京大學(xué)醫(yī)學(xué)部動(dòng)物中心。飼養(yǎng)環(huán)境為30%~60%濕度,21~24℃,光照時(shí)間為每天5:00—19:00,無(wú)限制獲取食物和水。本實(shí)驗(yàn)通過(guò)北京大學(xué)醫(yī)學(xué)部動(dòng)物倫理委員會(huì)批準(zhǔn),所有操作嚴(yán)格遵守相關(guān)法律法規(guī)。
1.2 主要試劑和儀器卵子處理液G-MOPS和HSA購(gòu)自美國(guó)Vitrolife公司。KSOM小鼠胚胎培養(yǎng)液購(gòu)自德國(guó)Merck Millipore公司。孕馬血清促性腺激素(pregnant mare serum gonadotropin,PMSG)購(gòu)自寧波第二激素廠。人絨毛膜促性腺激素(hCG)購(gòu)自麗珠集團(tuán)麗珠制藥廠,使用前用生理鹽水稀釋至所需濃度。TRIzol購(gòu)自美國(guó)Invitrogen公司。Nucleospin?ExtractⅡ試劑盒購(gòu)自德國(guó)MN公司。細(xì)胞松弛素B購(gòu)自美國(guó)Sigma公司。顯微操作系統(tǒng)購(gòu)自日本Narishige公司。倒置和體式鏡購(gòu)自日本尼康公司。電融合儀購(gòu)自美國(guó)BTX公司。
1.3 雌鼠受精卵收集雌性CD-1小鼠腹腔注射10 IU PMSG,48 h后注射10 IU hCG誘導(dǎo)超排。將超排雌鼠與雄鼠按照1∶1合籠,次日上午檢查陰道栓,有陰道栓者認(rèn)為交配成功[默認(rèn)雄鼠在黑暗期的中點(diǎn)前后(約24:00)與超排雌鼠交配]。交配后第2天中午前收集受精卵。采用斷椎法處死小鼠,打開腹腔,截取輸卵管壺腹部,放入G-MOPS液中。在體視顯微鏡下,用1 mL注射器的針尖劃破壺腹部,釋放出含有卵丘細(xì)胞-卵母細(xì)胞復(fù)合體(cumulus-oocyte complexes,COCs)的白色卵團(tuán)。將卵團(tuán)移入0.2%透明質(zhì)酸酶中,反復(fù)吹打去除顆粒細(xì)胞。在倒置顯微鏡下觀察卵母細(xì)胞受精情況,排出第二極體或形成雙原核(2PN)的卵母細(xì)胞認(rèn)為受精成功。將受精卵移入預(yù)先平衡好的KSOM培養(yǎng)液中,放置于培養(yǎng)箱中37℃,5%CO2,95%濕度孵育。
1.4 PNT將受精卵在含有5 mg/L細(xì)胞松弛素B的操作液中孵育5 min。用持卵針將受精卵固定于適當(dāng)位置,使用去核針在piezo壓電脈沖的輔助下,去除部分透明帶,去核針經(jīng)透明帶切口小心吸出受精卵內(nèi)雌原核和雄原核,注意盡量少帶原核周圍的胞漿。將雌雄原核注入另外已經(jīng)去掉雙原核合子的卵周隙后,將其移入KSOM培養(yǎng)液中繼續(xù)孵育1 h。之后將重構(gòu)胚胎移入電融合儀電極間的融合液中,注意使待融合的兩質(zhì)膜平面與電場(chǎng)方向垂直,融合時(shí)采用直流電壓1 000 V/cm作用10 μs,給予2次脈沖。融合結(jié)束后將重構(gòu)胚胎用KSOM培養(yǎng)液清洗3遍,繼續(xù)培養(yǎng)1 h并觀察融合情況。成功融合的重構(gòu)胚胎移入新的培養(yǎng)液中培養(yǎng)。
1.5 胚胎移植取動(dòng)情期雌鼠,與輸精管結(jié)扎的雄鼠進(jìn)行交配,次日上午檢查陰道栓,有陰道栓者被認(rèn)為假孕成功。將體外培養(yǎng)至2-細(xì)胞期的重構(gòu)胚胎移植入假孕0.5 d雌鼠的輸卵管內(nèi),孕19.5 d自然生產(chǎn)可得到PNT仔鼠,記為PNT組。未經(jīng)PNT操作的受精卵,體外培養(yǎng)到2-細(xì)胞期,作為對(duì)照組進(jìn)行胚胎移植,所得仔鼠記為對(duì)照組。分別記錄2組胚胎移植和產(chǎn)仔情況。
1.6 樣本處理及雜交生長(zhǎng)至成年的2組小鼠每組各取3只雌鼠,采用斷椎法處死,小心取下腦組織,-80℃冰箱凍存。Trizol法提取腦組織中的總RNA,純化后采用分光光度計(jì)對(duì)總RNA進(jìn)行定量(A260/280),1.3%甲醛變性凝膠電泳檢測(cè)RNA質(zhì)量。將RNA逆轉(zhuǎn)錄成cDNA后,用Cy3-dCTP(綠色)熒光染料標(biāo)記PNT組和對(duì)照組cDNA,并對(duì)標(biāo)記后的cDNA進(jìn)行純化,紫外分光光度計(jì)對(duì)純化后的熒光標(biāo)記產(chǎn)物進(jìn)行熒光摻入量和核酸定量。每個(gè)樣本取110 pmol標(biāo)記產(chǎn)物與芯片上機(jī)于45℃雜交過(guò)夜。芯片采用Agilent公司的小鼠mRNA芯片V1.0,芯片格式為4×180K,可檢測(cè)39 027個(gè)小鼠mRNA。這些mRNA靶序列可以與眾多數(shù)據(jù)庫(kù)包括NCBI、RefSeq、Ensembl、UCSC等互相兼容。
1.7 圖像采集和數(shù)據(jù)分析使用Agilent Feature Extraction(v10.7)軟件對(duì)雜交圖片進(jìn)行分析并提取數(shù)據(jù)。然后使用Agilent GeneSpring軟件對(duì)數(shù)據(jù)進(jìn)行歸一化和差異分析,計(jì)算表達(dá)差異和統(tǒng)計(jì)學(xué)P值。應(yīng)用Cluster 3.0軟件進(jìn)行聚類分析。使用基于京都基因與基因組百科全書的直系同源注釋系統(tǒng)(KEGG Orthology Based Annotation System,KOBAS)軟件同時(shí)進(jìn)行通路和功能分析,包括7個(gè)通路數(shù)據(jù)庫(kù)(KEGG PATHWAY、PID Curated、PID BioCarta、PID Reactome、BioCyc、Reactome和Panther)和1個(gè)功能數(shù)據(jù)庫(kù)(Gene Ontology)。統(tǒng)計(jì)學(xué)處理采用SPSS 20.0軟件包完成,計(jì)數(shù)資料以例(%)表示,組間比較采用χ2檢驗(yàn)或Fisher確切概率法,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 胚胎移植和產(chǎn)仔情況將發(fā)育至2-細(xì)胞階段的2組胚胎移植到假孕母鼠體內(nèi),共移植3次,每次各移植12枚。結(jié)果顯示,PNT組產(chǎn)仔率低于對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。而2組子代存活率差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),見(jiàn)表1。
2.2 RNA質(zhì)量分析樣品總RNA A260/280在2.03~2.17之間,RNA濃度在0.457~1.359 μg/μL之間,RNA基本完好,未發(fā)現(xiàn)降解。甲醛變性膠電泳顯示樣品18 S和28 S呈現(xiàn)兩條清晰條帶,質(zhì)量符合表達(dá)譜芯片的實(shí)驗(yàn)要求,見(jiàn)圖1。
Tab.1The embryo transfer and number of pups in two groups表1 2組胚胎移植和產(chǎn)仔情況
Fig.1RNA integrity test by denaturing agarose gel electrophoresis圖1 樣品總RNA電泳圖
2.3 芯片雜交結(jié)果2組芯片雜交共檢測(cè)出23 336個(gè)mRNAs,其中以2組比較有2倍以上變化且差異有統(tǒng)計(jì)學(xué)意義的mRNA確定為差異表達(dá)的mRNAs。本實(shí)驗(yàn)中差異表達(dá)的mRNAs有392個(gè),占所有mRNAs的1.7%。其中有366個(gè)表達(dá)升高,26個(gè)表達(dá)降低,見(jiàn)圖2。差異表達(dá)倍數(shù)在4倍以上的mRNAs共11個(gè),見(jiàn)表2。聚類分析顯示PNT組和對(duì)照組基因表達(dá)具有顯著差異,見(jiàn)圖3。
Tab.2The differentially expressed mRNAs that fold change>4.0表2 4倍以上差異性表達(dá)的mRNAs
2.4 GO(Gene Ontology,基因本體)分析和信號(hào)通路分析對(duì)上述差異表達(dá)基因進(jìn)一步行GO和信號(hào)通路分析。GO包括基因的生物學(xué)過(guò)程(biological process,BP)、細(xì)胞組分(cellular component,CC)以及分子功能(molecular functions,MF)。GO功能注釋顯示,在BP中顯著富集到的GO功能包括mRNA可變剪接、小分子鳥苷三磷酸酶(小GTP酶)介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)、胰島素受體信號(hào)通路調(diào)節(jié)等;MF包括水解酶活性、跨膜轉(zhuǎn)運(yùn)蛋白活性、焦磷酸酶活性等,見(jiàn)圖4。差異基因的信號(hào)通路富集分析結(jié)果表明,顯著富集的通路包括離子通道轉(zhuǎn)運(yùn)、Bcl-xl/Bcl-2相關(guān)死亡促進(jìn)因子(BAD)激活并向線粒體遷移、脂肪酸代謝、丁酸甲酯代謝、三酰甘油和酮體代謝等,見(jiàn)圖5,這些通路都與代謝密切相關(guān)。
線粒體是細(xì)胞的能量供給中心,其突變可以導(dǎo)致多種細(xì)胞、組織和器官的功能障礙,且目前尚無(wú)較好的治療手段。mtDNA遵循母系遺傳,即受精卵中幾乎所有的mtDNA均來(lái)源于卵細(xì)胞[3-4]。既往患有線粒體疾病的女性患者生育只能依賴于胚胎植入前遺傳學(xué)診斷(PGD)和產(chǎn)前診斷技術(shù)獲得攜帶突變基因但是不發(fā)病的患兒,但是這兩種干預(yù)方式都比較被動(dòng)[5-7]。核質(zhì)置換技術(shù)的出現(xiàn)為線粒體疾病的治療提供了新的思路。目前的核質(zhì)置換技術(shù)包括極體移植(polar body transfer,PBT)、生發(fā)泡移植(germinal vesicle transfer,GVT)、紡錘體移植(spindle transfer,ST)以及PNT[6-7]。目前人群中尚無(wú)PBT應(yīng)用。GVT涉及的卵母細(xì)胞體外成熟可能會(huì)影響卵母細(xì)胞發(fā)育潛能。ST雖然在非人靈長(zhǎng)類動(dòng)物身上取得了成功[8],但是由于紡錘體對(duì)機(jī)械刺激比較敏感,并且缺乏核膜包繞,可能會(huì)影響紡錘體排列。因此,PNT更能體現(xiàn)潛在的臨床應(yīng)用價(jià)值。
大腦是中樞神經(jīng)系統(tǒng)最重要的組成部分,也是能量代謝最為旺盛的器官之一。本研究利用mRNA表達(dá)譜芯片分析PNT小鼠腦組織mRNA表達(dá)譜的變化,從而評(píng)估PNT對(duì)小鼠腦組織關(guān)鍵基因表達(dá)譜的影響。392個(gè)差異表達(dá)基因結(jié)果提示,PNT對(duì)子代腦組織的基因表達(dá)會(huì)造成一定的影響,并且這些基因中,一些已經(jīng)被證明與疾病相關(guān)。如Klhl2(kelch-like 2)與神經(jīng)退行性疾病相關(guān)[9],Pdyn(prodynorphin)突變可以引起脊髓小腦共濟(jì)失調(diào)23型[10],并且與阿爾茨海默病和年齡相關(guān)的認(rèn)知缺陷存在一定相關(guān)性[11]。
GO分析結(jié)果顯示,這些差異表達(dá)的mRNAs與一些細(xì)胞內(nèi)物質(zhì)和能量代謝過(guò)程相關(guān),包括小GTP酶介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)、胰島素受體信號(hào)通路等。小GTP酶是廣泛存在于真核生物中的單體GTP結(jié)合蛋白,在神經(jīng)發(fā)育[12]、血細(xì)胞功能[13]、癌癥發(fā)生[14]以及細(xì)胞自噬[15]等方面都有非常密切的調(diào)控作用。胰島素受體信號(hào)調(diào)節(jié)通路與2型糖尿病的發(fā)生發(fā)展密切相關(guān)[16]。信號(hào)通路分析結(jié)果表明,這些差異mRNAs與離子通道轉(zhuǎn)運(yùn)、BAD激活并向線粒體遷移、脂肪酸代謝、丁酸甲酯代謝、三酰甘油和酮體代謝等過(guò)程密切相關(guān),提示PNT對(duì)代謝過(guò)程可能會(huì)造成一定影響。細(xì)胞離子通道的結(jié)構(gòu)和功能是維持正常生命活動(dòng)的基礎(chǔ),離子通道功能障礙與神經(jīng)退化性疾病在內(nèi)的許多疾病密切相關(guān)[17-20]。酮體代謝對(duì)于許多退行性神經(jīng)疾病具有神經(jīng)保護(hù)作用[21-22]。
PNT應(yīng)用過(guò)程中的關(guān)鍵問(wèn)題之一是其應(yīng)用的安全性。其操作過(guò)程包括供體細(xì)胞雌雄原核的共同取出,以及雌雄原核共同移植進(jìn)入去核受體細(xì)胞胞質(zhì),因此,供體和受體的線粒體均有存留的可能。另外,有研究表明,組織相容性復(fù)合物可能會(huì)經(jīng)過(guò)線粒體進(jìn)行轉(zhuǎn)移[23],這些都可能對(duì)PNT技術(shù)在臨床中的應(yīng)用提出挑戰(zhàn)。因此,隨著研究的不斷深入,期望在不久的將來(lái),能將PNT技術(shù)真正用于臨床。
(圖2~5見(jiàn)插頁(yè))
[1]Chinnery PF,Schon EA.Mitochondria[J].J Neurol Neurosurg Psychiatry,2003,74(9):1188-1199.
[2]Taylor RW,Turnbull DM.Mitochondrial DNA mutations in human disease[J].Nat Rev Genet,2005,6(5):389-402.doi: 10.1038/nrg1606.
[3]Hutchison CA 3rd,Newbold JE,Potter SS,et al.Maternal inheritance of mammalian mitochondrial DNA[J].Nature,1974,251(5475):536-538.
[4]Schon EA,Dimauro S,Hirano M.Human mitochondrial DNA:roles of inherited and somatic mutations[J].Nat Rev Genet,2012,13(12):878-890.doi:10.1038/nrg3275.
[5]Smeets HJ,Sallevelt SC,Dreesen JC,et al.Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis[J].Ann N Y Acad Sci,2015,1350:29-36.doi:10.1111/nyas.12866.
[6]Richardson J,Irving L,Hyslop LA,et al.Concise reviews:Assisted reproductive technologies to prevent transmission of mitochondrial DNA disease[J].Stem Cells,2015,33(3):639-645.doi:10.1002/ stem.1887.
[7]Thorburn DR,Dahl HH.Mitochondrial disorders:genetics,counseling,prenatal diagnosis and reproductive options[J].Am J Med Genet,2001,106(1):102-114.doi:10.1002/ajmg.1380.
[8]Tachibana M,Sparman M,Sritanaudomchai H,et al.Mitochondrial gene replacement in primate offspring and embryonic stem cells[J]. Nature,2009,461(7262):367-372.doi:10.1038/nature08368.
[9]Tseng LA,Bixby JL.Interaction of an intracellular pentraxin with a BTB-Kelch protein is associated with ubiquitylation,aggregation and neuronal apoptosis[J].Mol Cell Neurosci,2011,47(4):254-264.doi:10.1016/j.mcn.2011.04.005.
[10]Smeets CJ,Jezierska J,Watanabe H,et al.Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23[J].Brain,2015,138(Pt9):2537-2552.doi:10.1093/brain/awv195.
[11]Menard C,Herzog H,Schwarzer C,et al.Possible role of dynorphins in Alzheimer's disease and age-related cognitive deficits[J].Neurodegener Dis,2014,13(2/3):82-85.doi:10.1159/ 000353848.
[12]Shah B,Puschel AW.Regulation of Rap GTPases in mammalian neurons[J].Biol Chem,2016 Jun 21.doi:10.1515/hsz-2016-0165.[Epub ahead of print]
[13]Lagarrigue F,Kim C,Ginsberg MH.The Rap1-RIAM-talin axis of integrin activation and blood cell function[J].Blood,2016,128(4):479-487.doi:10.1182/blood-2015-12-638700.
[14]Porter AP,Papaioannou A,Malliri A.Deregulation of Rho GTPases in cancer[J].Small GTPases,2016,7(3):123-138.doi:10.1080/ 21541248.2016.1173767.
[15]Lopez De Armentia MM,Amaya C,Colombo MI.Rab GTPases and the autophagy pathway:bacterial targets for a suitable biogenesis and trafficking of their own vacuoles[J].Cells,2016,5(1):11.doi: 10.3390/cells5010011.
[16]Permatasari GW,Utomo DH,Widodo.Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus[J].Comput Biol Chem,2016,64:107-112. doi:10.1016/j.compbiolchem.2016.05.005.
[17]Imbrici P,Liantonio A,Camerino GM,et al.Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery[J].Front Pharmacol,2016,7:121.doi:10.3389/fphar.2016.00121.
[18]Moutal A,Dustrude ET,Khanna R.Sensitization of ion channels contributestocentralandperipheraldysfunctionin neurofibromatosis type 1[J].Mol Neurobiol,2016 May 11.doi: 10.1007/s12035-016-9907-1.[Epubaheadofprint]
[19]Sesti F.Oxidation of K(+)channels in aging and neurodegeneration[J].AgingDis,2016,7(2):130-135.doi:10.14336/ AD.2015.0901.
[20]Lan YL,Zou S,Chen JJ,et al.The neuroprotective effect of the association of Aquaporin-4/Glutamate Transporter-1 against Alzheimer's Disease[J].Neural Plast,2016,2016:4626593.doi: 10.1155/2016/4626593.
[21]Stafstrom CE,Rho JM.The ketogenic diet as a treatment paradigm for diverse neurological disorders[J].Front Pharmacol,2012,3:59. doi:10.3389/fphar.2012.00059.
[22]Zupec-Kania BA,Spellman E.An overview of the ketogenic diet for pediatric epilepsy[J].Nutr Clin Pract,2008,23(6):589-596. doi:10.1177/0884533608326138.
[23]Semple JI,Ribas G,Hillyard G,et al.A novel gene encoding a coiled-coil mitochondrial protein located at the telomeric end of the human MHC Class III region[J].Gene,2003,314:41-54.
(2016-07-27收稿2016-08-15修回)
(本文編輯胡小寧)
Study on expression profile of mRNA in brain of pronuclear transfer mice
LI Tianjie1,CAO Yanxiang2,JIN Xiaohu1,3,4,ZHAO Hongcui1,3,4,YU Yang1,3,4△,QIAO Jie1,3,4
1 Center of Reproductive Medicine,Department of Obstetrics and Gynecology,Peking University Third Hospital,Beijing 100191,China;2 Chinese PLA Medical School;3 Key Laboratory of Assisted Reproduction,Ministry of Education;4 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology△
ObjectiveTo investigate the expression profile of mRNAs in brain samples collected from pronuclear transfer(PNT)mice.MethodsFemale CD-1 mice were superovulated,and zygotes were collected after mating with adult male mice.Zygotes with two pronuclei were selected for pronuclear transfer manipulation,and then the reconstructed zygotes were transferred into the oviduct of pseudopregnant female mice.The infant mice obtained from pronuclear transfer were called PNT group,while the embryoes that were not performed pronuclear transfer was regarded as control group.Total RNA were extracted from brain samples of both PNT and control mice,and cDNA were labeled with fluorescent dye.Genes that were differentially expressed were identified using the Agilent mouse mRNA array.Gene ontology analysis and pathway analysis were also completed.ResultsCompared with control group,392 mRNAs were expressed differentially,which showed more than 2.0 times variation and statistical significance,accounting for 1.7%of all mRNAs.Among those 366 mRNAs were up-regulated and 26 mRNAs were down-regulated.Eleven mRNAs came to 4.0 times variation in total.Gene ontology analysis indicated that differentially expressed genes were significantly enriched in alternative mRNA splicing,small GTPase mediated signal transduction,regulation of insulin receptor signaling pathway,hydrolase activity,transmembrane transporter activity and pyrophosphatase activity.Significant enriched pathway terms contained ion channel transport,fatty acid metabolism,butanoate metabolism,triacylglycerol and ketone body metabolism.Conclusion Pronuclear transfer might influence some key metabolism process in mouse brain.
nuclear transfer techniques;embryo transfer;brain;RNA,messenger;gene expression profiling;computational biology;pronuclear transfer
R394.3
A
10.11958/20160746
國(guó)家自然科學(xué)基金資助項(xiàng)目(31371521);生殖內(nèi)分泌與輔助生殖技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室2015年度科技創(chuàng)新基地培育與發(fā)展專項(xiàng)項(xiàng)目(Z151100001615023)
1北京大學(xué)第三醫(yī)院婦產(chǎn)科生殖醫(yī)學(xué)中心(郵編100191);2解放軍醫(yī)學(xué)院;3教育部輔助生殖重點(diǎn)實(shí)驗(yàn)室;4北京市生殖內(nèi)分泌與輔助生殖重點(diǎn)實(shí)驗(yàn)室
李天杰(1992),女,碩士在讀,主要從事生殖內(nèi)分泌與輔助生殖技術(shù)的研究
△通訊作者E-mail:yuyang5012@hotmail.com