王并鄉(xiāng),易幼平,崔金棟,黃始全
?
拉壓組合法消減鋁合金環(huán)形件淬火殘余應(yīng)力研究
王并鄉(xiāng),易幼平,崔金棟,黃始全
(中南大學(xué)機(jī)電工程學(xué)院,高性能復(fù)雜制造國(guó)家重點(diǎn)實(shí)驗(yàn)室,湖南長(zhǎng)沙,410083)
針對(duì)環(huán)形件淬火殘余應(yīng)力突出的問(wèn)題,提出一種消減淬火殘余應(yīng)力的新方法即拉壓組合法。該方法通過(guò)沿環(huán)形件內(nèi)側(cè)45°方向施加壓力,同時(shí)產(chǎn)生拉伸和壓縮的效果。利用ABAQUS有限元軟件對(duì)7085鋁合金環(huán)形件淬火殘余應(yīng)力及拉壓組合法進(jìn)行數(shù)值仿真。進(jìn)行拉壓組合法消減鋁合金環(huán)形件淬火殘余應(yīng)力工藝實(shí)驗(yàn),采用環(huán)形件切口法來(lái)表征環(huán)形件應(yīng)力的變化。研究結(jié)果表明:環(huán)形件淬火殘余應(yīng)力主要表現(xiàn)為集中在截面芯部區(qū)域的周向拉應(yīng)力,最大值為46 MPa;當(dāng)高度方向變形量為0.6%時(shí),芯部殘余應(yīng)力降至10 MPa左右;隨著壓下量增加,芯部殘余應(yīng)力由拉應(yīng)力變?yōu)閴簯?yīng)力;施加0.6%變形量的環(huán)件切口由淬火時(shí)內(nèi)縮2.26 mm變?yōu)閺堥_(kāi)0.34 mm,實(shí)驗(yàn)結(jié)果與仿真結(jié)果一致。
環(huán)形件;淬火殘余應(yīng)力;拉壓組合法;環(huán)件切口法
可熱處理強(qiáng)化的高強(qiáng)變形鋁合金被廣泛應(yīng)用于航空航天及軍事領(lǐng)域[1]。這種合金通常需固溶?淬火處理以提高力學(xué)性能,但淬火會(huì)產(chǎn)生較大的淬火殘余應(yīng)力。淬火是一個(gè)復(fù)雜而又非常短促的熱力耦合過(guò)程,對(duì)淬火殘余應(yīng)力進(jìn)行精確測(cè)量和定量描述十分困難,且各種測(cè)量方法均存在一定的局限性和誤差,這更增加了研究難度[2]。環(huán)形件是運(yùn)載火箭關(guān)鍵連接件和飛機(jī)艙關(guān)鍵零件,基于環(huán)形件制造的高精度薄壁異形結(jié)構(gòu)件,對(duì)環(huán)形件的殘余應(yīng)力控制提出了苛刻要求。許多研究者對(duì)鋁合金構(gòu)件的殘余應(yīng)力問(wèn)題進(jìn)行了大量理論與試驗(yàn)研究,但主要是針對(duì)鋁合金厚板淬火工藝及淬火殘余應(yīng)力形成機(jī)制[3?5]以及拉伸法(Txx51)消減鋁合金厚板淬火殘余應(yīng)力[6?8]等方面,而針對(duì)環(huán)形件淬火殘余應(yīng)力及消減工藝的研究較少。國(guó)外航空制造企業(yè)普遍采用模壓法(Txx52)消減模鍛件淬火殘余應(yīng)力[9?10],國(guó)內(nèi)尚未在此領(lǐng)域開(kāi)展深入研究。為此,本文以7085鋁合金環(huán)形件為研究對(duì)象,對(duì)其淬火過(guò)程進(jìn)行數(shù)值模擬,研究環(huán)形件淬火殘余應(yīng)力分布規(guī)律,提出一種沿環(huán)件內(nèi)側(cè)45°方向以拉壓組合(Txx54)的方式消減淬火殘余應(yīng)力的新方法,分析不同變形量對(duì)環(huán)形件淬火殘余應(yīng)力消減效果;在40 MN精密數(shù)控液壓機(jī)上開(kāi)展拉壓組合法消減鋁合金環(huán)形件淬火殘余應(yīng)力工藝實(shí)驗(yàn),沿直徑方向切開(kāi)環(huán)形件,采用環(huán)形件切口法來(lái)表征環(huán)形件應(yīng)力的變化[11?12],以便為高性能、低殘余應(yīng)力鋁合金環(huán)形件的研發(fā)提供參考。
1.1 淬火有限元模擬及結(jié)果分析
有限元仿真的準(zhǔn)確性依賴于材料模型與材料實(shí)際情況的符合程度。為保證仿真的準(zhǔn)確性,需開(kāi)展材料物性參數(shù)的實(shí)驗(yàn)研究,7085鋁合金材料物性參數(shù)測(cè)試結(jié)果[13]如表1和表2所示。
用于制造航空航天關(guān)鍵構(gòu)件的環(huán)形件直徑一般較大,最大可達(dá)9 m。為研究環(huán)形件淬火殘余應(yīng)力分布規(guī)律及其消減工藝,選用外徑為200 mm的7085鋁合金縮比環(huán)形件為研究對(duì)象,結(jié)構(gòu)尺寸如圖1所示。利用ABAQUS有限元平臺(tái)對(duì)環(huán)形件按如下淬火工藝進(jìn)行數(shù)值模擬:固溶溫度為470 ℃,固溶時(shí)間為2 h,轉(zhuǎn)移時(shí)間為10 s,淬火溫度為25 ℃,淬火介質(zhì)為水,淬火方式為浸沒(méi)式入水。
7085鋁合金環(huán)形件淬火過(guò)程仿真結(jié)果表明:環(huán)形件淬火殘余應(yīng)力(采用柱坐標(biāo)描述,表示徑向,表示周向,表示軸向)主要表現(xiàn)為環(huán)形件截面芯部區(qū)域的周向拉應(yīng)力,徑向和軸向殘余應(yīng)力絕對(duì)值較小。環(huán)形件具有對(duì)稱性,取環(huán)向截面進(jìn)行分析(如圖2(a)所示)。圖2(b)所示為截面中間沿徑向淬火殘余應(yīng)力變化規(guī)律,圖2(c)所示為截面中間沿軸向淬火殘余應(yīng)力變化規(guī)律。圖2表明:環(huán)形件淬火殘余應(yīng)力分布呈典型的內(nèi)拉外壓特征,芯部區(qū)域存在較大的周向殘余拉應(yīng)力,最大值達(dá)46 MPa。
1.2 拉壓組合法有限元模擬及結(jié)果分析
由淬火仿真得知,環(huán)形件淬火后芯部區(qū)域存較大的周向拉應(yīng)力,徑向和周向殘余應(yīng)力較小,機(jī)械拉伸法消減殘余應(yīng)力并不適合環(huán)形件,模壓縮法只作用于環(huán)形件軸向。針對(duì)截面為正方形的環(huán)形件,提出一種沿環(huán)件內(nèi)側(cè)45°方向以拉壓組合的方式消減淬火殘余應(yīng)力的新方法,如圖3所示。上模為45°的錐模,下模為平砧,此方法在徑向和周向有拉伸的效果, 在軸向有壓縮的效果,為拉壓組合(Txx54)工藝。對(duì)于截面為矩形的環(huán)形件,可以適當(dāng)調(diào)整壓下角度,或者上、下模具都選用錐模的拉壓組合法來(lái)達(dá)到消減殘余應(yīng)力的效果。在ABAQUS有限元平臺(tái)上建立環(huán)形件拉壓組合有限元模型,下壓過(guò)程中下模固定、上模以0.005 mm/s的速度沿軸向?qū)Νh(huán)形件進(jìn)行冷壓變形。壓下量過(guò)大將可能引起冷作硬化、裂紋和斷裂,過(guò)小則使應(yīng)力消除效果不佳,因此,變形量需要精確控制[14]。環(huán)形件高度為20 mm,設(shè)定0.4%~1.0%壓下量。當(dāng)壓下量為0.4%,0.6%,0.8%和1.0%時(shí),對(duì)應(yīng)的模壓量分別為0.08,0.12,0.16和0.20 mm。
表1 7085鋁合金力學(xué)性能參數(shù)
表2 7085鋁合金導(dǎo)熱系數(shù)及熱膨脹系數(shù)
圖1 環(huán)形件尺寸
(a) 環(huán)向截面;(b) 截面中間沿徑向淬火殘余應(yīng)力變化規(guī)律;(c) 截面中間沿軸向淬火殘余應(yīng)力變化規(guī)律1—徑向殘余應(yīng)力;2—周向殘余應(yīng)力;3—軸向殘余應(yīng)力。
圖3 拉壓組合法有限元模型
仿真結(jié)果表明:拉壓組合方法能有效降低環(huán)形件殘余應(yīng)力特別是芯部區(qū)域的周向拉應(yīng)力。試件芯部殘余應(yīng)力隨壓下量變化曲線如圖4所示,壓下量為0%試件的應(yīng)力即為淬火殘余應(yīng)力。由圖4可知:壓下量為0.6%對(duì)試件殘余應(yīng)力消減效果最好,試件芯部周向殘余應(yīng)力由46 MPa降至10 MPa以下,徑向和軸向應(yīng)力絕對(duì)值較小,可將環(huán)形件最大的殘余應(yīng)力消減70%左右;當(dāng)壓下量小于0.6%時(shí),殘余應(yīng)力消減效果不明顯;當(dāng)壓下量大于0.6%時(shí),芯部殘余應(yīng)力由拉應(yīng)力變?yōu)閴簯?yīng)力,且應(yīng)力隨著壓下量增大而增大。
1—徑向殘余應(yīng)力;2—周向殘余應(yīng)力;3—軸向殘余應(yīng)力。
為進(jìn)一步驗(yàn)證拉壓組合法消減環(huán)形件淬火殘余應(yīng)力的有效性,開(kāi)展環(huán)件淬火及拉壓組合工藝試驗(yàn),試件尺寸如圖1所示。熱處理工藝如下:固溶溫度為 470 ℃,保溫時(shí)間為2 h,然后水淬,淬火時(shí)間不小于10 min。取淬火后的試件進(jìn)行實(shí)驗(yàn),在40 MN精密數(shù)控液壓機(jī)控制下,上錐模沿環(huán)形件試件內(nèi)側(cè)45°方向?qū)υ嚰M(jìn)行下壓(見(jiàn)圖3),模壓速度為0.005 mm/s。將編好號(hào)的試件按表3分別施加0.6%,0.8%和1.0%的變形量,壓下量由液壓控制系統(tǒng)精確控制。
運(yùn)用環(huán)形件切口法測(cè)試和分析環(huán)形件殘余應(yīng)力變化,其原理如圖5所示。實(shí)驗(yàn)后,在試件上端面中間標(biāo)記2個(gè)相距約10 mm的標(biāo)記點(diǎn)1和2(如圖5(a)所示),用數(shù)碼相機(jī)拍照;用線切割(切割絲直徑0.18 mm)在環(huán)形件試件1和2中間沿徑向切開(kāi)(如圖5(b)所示),在同樣的視角拍照。6.0軟件處理切割前后的照片,測(cè)得1和2這2點(diǎn)距離為0,切割后和這2點(diǎn)距離為f,=0?f表示切割前后標(biāo)記點(diǎn)距離變化差。>0表示環(huán)形件沿周向張開(kāi),<0表示環(huán)形件沿周向收縮。
(a) 切口前;(b) 切口后
7085鋁合金環(huán)形件淬火及拉壓組合工藝實(shí)驗(yàn)結(jié)果與數(shù)值模擬結(jié)果如表3所示。假設(shè)原始環(huán)件殘余內(nèi)應(yīng)力為0 N。環(huán)件切開(kāi)后沿周向張開(kāi)的距離較小,僅為0.26 mm;環(huán)形件淬火后,芯部區(qū)域較大的周向殘余拉應(yīng)力導(dǎo)致環(huán)件沿周向向內(nèi)收縮達(dá)2.26 mm。給試樣施加一定量冷變形后,芯部的殘余應(yīng)力減小,當(dāng)變形量為0.6%時(shí),環(huán)形件淬火殘余應(yīng)力降低70%,環(huán)形件沿周向張開(kāi)距離為0.34 mm,與原始試樣沿周向張開(kāi)距離最接近,淬火殘余應(yīng)力消減效果最好,實(shí)驗(yàn)結(jié)果驗(yàn)證了仿真結(jié)果的準(zhǔn)確性。當(dāng)變形量大于0.8%時(shí),試樣芯部殘余拉應(yīng)力變?yōu)闅堄鄩簯?yīng)力,試樣張開(kāi)的距離隨著模壓下增大而增大;仿真結(jié)果與實(shí)驗(yàn)結(jié)果變化規(guī)律趨于一致。
表3 環(huán)形件模壓仿真結(jié)果
1) 建立了7085鋁合金環(huán)形件淬火有限元仿真模型,研究了環(huán)形件淬火工藝參數(shù)對(duì)淬火殘余應(yīng)力的影響。環(huán)形件淬火殘余應(yīng)力集中表現(xiàn)為芯部區(qū)域的周向拉應(yīng)力,最大值為46 MPa。
2) 提出了一種拉壓組合消減淬火殘余應(yīng)力的新方法。采用該方法,沿環(huán)件內(nèi)側(cè)45°方向施加0.6%的變形量可以降低環(huán)形件70%的周向淬火殘余應(yīng)力。隨著變形量增加,芯部殘余應(yīng)力應(yīng)力由拉應(yīng)力變?yōu)閴?應(yīng)力。
3) 采用環(huán)形件切口法分析環(huán)形件殘余應(yīng)力的變化,原始試樣切開(kāi)后沿周向張開(kāi)的距離僅為0.26 mm,沿環(huán)件內(nèi)側(cè)45°方向施加0.6%變形量的試樣切口由淬火時(shí)內(nèi)縮2.26 mm變?yōu)閺堥_(kāi)0.34 mm,張開(kāi)距離與原始試樣張開(kāi)距離最接近,殘余應(yīng)力消減效果最好,仿真結(jié)果與實(shí)驗(yàn)結(jié)果變化規(guī)律趨于一致。
[1] 李大峰, 丁華鋒, 劉立斌,等. 7075鋁合金板淬火殘余應(yīng)力模擬及實(shí)驗(yàn)研究[J]. 機(jī)械研究與應(yīng)用, 2012, 1(3): 292?295. LI Dafeng, DING Huafeng, LIU Libin, et al. Numerical simulation and experimental study of quenching-induced residual stress in 7075 aluminum alloy plates[J]. Mechanical Research & Application, 2012, 1(3): 292?295.
[2] 林高用, 鄭小燕, 馮迪,等. 鋁合金厚板淬火殘余應(yīng)力的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2008, 22(6): 70?73. LIN Gaoyong, ZHENG Xiaoyan, FENG Di, et al. Research development of quenching-induced residual stress of aluminum thick plates[J]. Materials Review, 2008, 22(6): 70?73.
[3] 胡少虬, 張輝, 楊立斌,等. 7075鋁合金厚板淬火溫度場(chǎng)及熱應(yīng)力場(chǎng)的數(shù)值模擬[J]. 湘潭大學(xué)自然科學(xué)學(xué)報(bào), 2004, 26(2): 66?71. HU Shaoqiu, ZHANG Hui, YANG Libin, et al. Numerical analysis of temperature and thermal stresses fields in quenching 7075 aluminum alloy thick plates[J]. Natural Science Journal of Xiangtan University, 2004, 26(2): 66?71.
[4] 龔海, 吳運(yùn)新, 廖凱. 不同淬火工藝對(duì)7075鋁合金厚板殘余應(yīng)力的影響[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 41(4): 1354?1359. GONG Hai, WU Yunxin, LIAO Kai. Influence of different quenching techniques on residual stress of 7075 aluminum alloy thick-plate[J]. Journal of Central South University (Science and Technology), 2010, 41(4): 1354?1359.
[5] 張園園, 吳運(yùn)新, 李麗敏, 等. 7075鋁合金預(yù)拉伸板淬火后殘余應(yīng)力的有限元模擬[J]. 材料熱處理技術(shù), 2008, 37(14): 88?91. ZHANG Yuanyuan, WU Yunxin, LI Limin, et al. Finite element simulation of residual stress in pre-stretching thick-plates of 7075 aluminum alloy after quenching[J]. Material & Heat Treatment, 2008, 37(14): 88?91.
[6] 梁軒, 彭大暑, 張輝. 7075鋁合金預(yù)拉伸板消除殘余應(yīng)力的試驗(yàn)研究[J]. 輕合金加工技術(shù), 2003, 31(1): 15?17. LIANG Xuan, PENG Dashu, ZHANG Hui. Experimental study on reduction of residual stress in quenched thick plate of 7050 aluminum[J]. Light Alloy Fabrication Technology, 2003, 31(1): 15?17.
[7] 吳運(yùn)新, 廖凱. 鋁合金厚板拉伸過(guò)程橫向殘余應(yīng)力消減分析[J]. 材料工程, 2009, 1(10): 45?48. WU Yunxin, LIAO Kai. Research of transverse stress reduction in pre-stretching of aluminum alloy thick plate[J]. Materials Engineering, 2009, 1(10): 45?48.
[8] 廖凱. 鋁合金厚板淬火?預(yù)拉伸內(nèi)應(yīng)力形成機(jī)理及其測(cè)試方法研究[D]. 長(zhǎng)沙: 中南大學(xué)機(jī)電工程學(xué)院, 2010: 21?26. LIAO Kai. Research on mechanism and measurement method of quenching-pre-stretching stress in aluminum alloy thick plate[D]. Changsha: Central South University. School of Mechanical and Electrical Engineering, 2010: 21?26.
[9] Muammer Koc, John Culp, Taylan Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174(1/3): 342?354.
[10] ROBINSON J S, HOSSAIN S, TRUMAN C E, et al. Residual stress in 7449 aluminum alloy forgings[J]. Materials Science and Engineering A, 2010, 527(10/11): 2603?2612.
[11] PARKA J W, FERRACANE J L. Measuring the residual stress in dental composites using a ring slitting method[J]. Dental Materials, 2005, 21(9): 882?889.
[12] SEIF M A, SHORT S R. Determination of residual stresses in thin-walled composite cylinders[J]. Exp Techniques, 2002, 26(2): 43?46.
[13] 王少輝, 易幼平, 黃始全, 等. 大型鋁合金框梁結(jié)構(gòu)航空模鍛件淬火殘余應(yīng)力分析[J]. 宇航材料工藝, 2011, 1(4): 84?88. WANG Shaohui, YI Youping, HUANG Shiquan, et al. Analysis of quenching residual stress for large- size aluminum alloy aircraft forging with frame and beam structure[J]. Aerospace Materials & Technology, 2011, 1(4): 84?88.
[14] 王秋成, 柯映林. 航空高強(qiáng)度鋁合金殘余應(yīng)力的抑制與消除[J]. 航空材料學(xué)報(bào), 2002, 22(3): 59?62. WANG Qiucheng, HE Yinglin. Control and relief of residual stresses in high-strength aluminum alloy parts for aerospace industry[J]. Journal of Aeronautical Materials, 2002, 22(3): 59?62.
(編輯 陳燦華)
Research on reduction of quenching residual stress for aluminum alloy ring by combination of tension and compression method
WANG Bingxiang, YI Youping, CUI Jindong, HUANG Shiquan
(State Key Laboratory of High Performance Complex Manufacturing,School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China)
Aiming at the prominent issue of quenching residual stress in ring, a new method for reduction of residual stress named combination of tension and compression method was proposed. The method produced tension and compression through exerting pressure along the inside of the ring in the direction of 45°. ABAQUS finite element software was used to predict quenching residual stresses of 7085 aluminum alloy ring and combination of tension and compression method for the numerical simulation. The experiments of quenching and combination of tension and compression processes for aluminum alloy ring were performed and the ring slitting method was used to test and analyze the residual stress. The results show that the residual stresses of the ring are mainly on the center of cross section with the maximum value 46 MPa. On the condition of 0.6% deformation on the height direction, the residual stress residual stress deceases to about 10 MPa. Residual stresses convert from compress-stresses to tension-stresses with the increase of deformation. The change in the distance between the scribed points is ?2.26 mm after quenching, while it is 0.34 mm with 0.6% deformation. The experimental results agree well with the simulation results.
ring; quenching residual stress; combination of tension and compression method; ring slitting method
10.11817/j.issn.1672-7207.2016.10.014
TB31
A
1672?7207(2016)10?3381?05
2015?11?12;
2016?01?22
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目 (2012CB619504);國(guó)家重點(diǎn)實(shí)驗(yàn)室基金資助項(xiàng)目(zzyjkt2014-02) (Project(2012CB619504) supported by the National Basic Research Development Program (973 Program) of China; Project(zzyjkt2014-02) supported by the State Key Laboratory Foundation)
易幼平,博士,教授,從事航空鍛件制造工藝與組織性能控制技術(shù)研究;E-mail:yyp@csu.edu.cn