廖瑞波 閆海潔 劉國華 張 姝 常文環(huán) 黃向陽 劉 偉 常銀蓮 蔡輝益
(中國農(nóng)業(yè)科學院飼料研究所,農(nóng)業(yè)部飼料生物技術(shù)重點開放實驗室,北京100081)
?
不同類型飼糧和添加劑對肉仔雞生長性能、腸道結(jié)構(gòu)和功能的影響
廖瑞波閆海潔劉國華張姝常文環(huán)黃向陽劉偉常銀蓮蔡輝益*
(中國農(nóng)業(yè)科學院飼料研究所,農(nóng)業(yè)部飼料生物技術(shù)重點開放實驗室,北京100081)
本試驗旨在研究不同類型飼糧和添加劑對肉仔雞生長性能、腸道結(jié)構(gòu)和功能的影響。試驗采用4×3兩因子完全隨機設計,4種飼糧分別為抗生素飼糧、無抗生素飼糧、低蛋白質(zhì)飼糧和大麥飼糧,3種添加劑分別為酵母培養(yǎng)物(XPC)、谷氨酰胺(Gln)和大豆異黃酮(ISF)。試驗選用1日齡愛拔益加肉仔雞792只,隨機分為12組,每組6個重復,每個重復11只雞。試驗期42 d。結(jié)果表明:1)不同類型飼糧分別添加XPC、Gln和ISF對42日齡肉仔雞平均日增重(ADG)、平均日采食量(ADFI)、料重比(F/G)及體重(BW)的影響無顯著差異(P>0.05);但對飼糧類型而言,與其他3種飼糧相比,低蛋白質(zhì)飼糧使肉仔雞的BW、ADG和ADFI顯著降低(P<0.05),F(xiàn)/G顯著提高(P<0.05);抗生素飼糧顯著降低肉仔雞的F/G(P<0.05)。飼糧類型與添加劑對肉仔雞生長性能無顯著的互作效應(P>0.05)。2)與添加Gln相比,抗生素飼糧中添加ISF顯著改善19日齡肉仔雞回腸形態(tài)(P<0.05);低蛋白質(zhì)飼糧中添加XPC與添加其他2種添加劑相比對肉仔雞回腸形態(tài)有顯著改善作用(P<0.05);與添加XPC相比,大麥飼糧中添加ISF顯著改善19日齡肉仔雞回腸形態(tài)(P<0.05)。除35日齡肉仔雞回腸隱窩深度外,飼糧類型與添加劑對回腸形態(tài)存在顯著的互作效應(P<0.05)。3)大麥飼糧中添加XPC比添加Gln和ISF顯著提高35日齡肉仔雞回腸干擾素-γ水平(P<0.05);與添加ISF相比,抗生素飼糧中添加XPC可顯著提高19日齡肉仔雞回腸白細胞介素-10(IL-10)和免疫球蛋白A(IgA)水平(P<0.05),添加Gln可顯著提高35日齡肉仔雞回腸IgA水平(P<0.05);低蛋白質(zhì)飼糧中添加XPC比添加其他2種添加劑顯著提高19日齡肉仔雞回腸IgA水平(P<0.05);無抗生素飼糧中添加ISF比添加XPC顯著提高35日齡肉仔雞回腸IL-10和IgA水平(P<0.05);而大麥飼糧中添加ISF比添加XPC顯著降低35日齡肉仔雞回腸IL-10水平(P<0.05)。對于回腸IL-10和IgA水平,飼糧類型與添加劑之間存在顯著互作效應(P<0.05)。4)抗生素飼糧中添加XPC比添加其他2種添加劑顯著降低19日齡肉仔雞糞便中氮和磷殘留率(P<0.05);無抗生素飼糧中添加XPC比添加其他2種添加劑顯著提高19日齡肉仔雞糞便中氮和磷殘留率以及35日齡肉仔雞糞便中磷殘留率(P<0.05);低蛋白質(zhì)飼糧中添加XPC比添加Gln顯著降低19日齡肉仔雞糞便中氮殘留率(P<0.05);大麥飼糧中添加Gln比添加其他2種添加劑顯著降低19日齡肉仔雞糞便中氮和磷殘留率(P<0.05)。對氮、磷殘留率而言,飼糧類型與添加劑之間存在顯著互作效應(P<0.05)。由此可見,4種類型飼糧中添加3種添加劑對1~42日齡肉仔雞生長性能無顯著影響;能氮比固定的低蛋白質(zhì)飼糧降低了肉仔雞的生長性能;低蛋白質(zhì)飼糧中添加XPC可改善回腸形態(tài)結(jié)構(gòu);在不同類型飼糧中添加不同的添加劑具有改善肉仔雞回腸免疫狀態(tài)及降低糞便中氮磷殘留率的趨勢。
肉仔雞;生長性能;腸道;飼糧類型;添加劑
在畜禽生產(chǎn)中,飼糧類型已成為影響肉仔雞消化道結(jié)構(gòu)和功能的因素之一。Miles等[1]發(fā)現(xiàn)與對照飼糧相比,抗生素飼糧使得肉仔雞回腸的黏膜肌層變薄,絨毛表面積變小、高度降低。Kamran等[2]報道,能量與蛋白質(zhì)比例恒定而蛋白質(zhì)水平低的飼糧降低了肉仔雞的生長性能;而Drew等[3]報道,飼糧蛋白質(zhì)水平影響肉仔雞后段消化道中微生物生長,可能因此改變消化道的健康狀態(tài)。與玉米相比,大麥是低質(zhì)量的飼料原料。Jia等[4]比較了玉米飼糧和麥類飼糧對羅斯(Ross)肉仔雞生長性能的影響,發(fā)現(xiàn)麥類飼糧顯著降低了肉仔雞的體重(BW),提高了料重比(F/G);同時大麥中大量的非淀粉多糖[5]或水溶性細胞壁造成腸道黏性增加,并阻止營養(yǎng)物質(zhì)的吸收[6-7],最終可能造成腸道健康狀態(tài)的改變。
除飼糧類型外,飼糧中添加酵母產(chǎn)品[8]、谷氨酰胺(Gln)[9]和大豆異黃酮(ISF)[10]等添加物對腸道健康有積極影響。諸多研究報道表明,上述3種添加劑能夠保護消化道結(jié)構(gòu),促進腸道損傷后修復,改善腸道免疫狀態(tài)。酵母產(chǎn)品在動物中應用已經(jīng)有100多年的歷史,主要包括活酵母、酵母提取物和酵母細胞壁等?;罱湍缚梢员Wo腸道黏膜,預防病原微生物入侵[11];酵母細胞壁成分對消化道健康也有積極作用[8]。Gln雖是非必需氨基酸,但研究表明,動物在應激、感染等特殊狀態(tài)下,該氨基酸的需要不能得到滿足[12];同時Sakamoto等[13]認為Gln可促進損傷后腸道黏膜更好地復原。ISF具備潛在的雌激素活性,染料木黃酮、染料木素和黃豆黃素是ISF中最重要的活性形式[14]。Jiang等[15]報道ISF可顯著提高肉仔雞生長性能,改善組織中抗氧化性能,同時染料木素改善脂多糖應激下肉仔雞的腸道免疫狀態(tài),促進腸道健康[16]。
因此,本研究選用對肉雞消化道有改善作用的酵母培養(yǎng)物(XPC)、Gln和ISF為添加劑,比較三者在不同飼糧類型條件下對肉仔雞生長性能、消化道結(jié)構(gòu)和功能的影響。
1.1試驗材料
XPC來源于美國達農(nóng)威公司,L-Gln來源于北京嘉康源科技發(fā)展有限公司(Gln含量大于98%),ISF來源于北京嘉康源科技發(fā)展有限公司(總黃酮含量為40%)。
1.2試驗動物和飼糧
試驗采用4×3兩因子完全隨機設計,選取健康、體重相近[(37.58±0.55) g]的1日齡愛拔益加肉仔雞公雛792只,分為12個組,每組6個重復,每個重復11只雞。4種飼糧分別為抗生素飼糧(A)、無抗生素飼糧(NA)、能氮比固定的低蛋白質(zhì)飼糧(LP)和大麥飼糧(B)。在4種飼糧中分別添加0.2% XPC、0.6% Gln和10 mg/kg ISF。飼糧配制參照中華人民共和國農(nóng)業(yè)行業(yè)標準(NY/T 33—2004)《雞飼養(yǎng)標準》配制,飼糧組成及營養(yǎng)水平見表1。
表1 飼糧組成及營養(yǎng)水平(風干基礎)
續(xù)表1項目Items1~21日齡1to21daysofageA/NALPB22~42日齡22to42daysofageA/NALPB菜籽粕Rapeseedmeal2.001.10棉籽粕Cottonseedmeal2.001.10干酒糟及其可溶物DDGS8.001.50玉米蛋白粉Cornproteinpowder7.000.109.006.900.109.00豆油Soybeanoil3.800.105.904.800.106.50磷酸氫鈣CaHPO41.951.901.681.851.801.68石粉Limestone1.341.351.521.151.171.23食鹽NaCl0.270.280.270.280.280.28氯化膽堿Cholinechloride0.090.090.150.100.070.09預混料Premix1)0.500.500.500.500.500.50二氧化鈦TiO20.400.400.400.400.400.40DL-蛋氨酸DL?Met0.220.200.220.140.120.15L-賴氨酸鹽酸鹽L?Lys·HCl0.180.090.370.130.040.25添加劑Additives0.601.200.600.600.760.60合計Total100.00100.00100.00100.00100.00100.00營養(yǎng)水平Nutrientlevels2)代謝能ME/(MJ/kg)12.5411.3812.5412.9611.6612.96粗蛋白質(zhì)CP21.5019.5021.5020.0018.0020.00賴氨酸Lys1.151.151.151.001.001.00蛋氨酸Met0.500.500.500.400.400.40鈣Ca1.001.001.000.900.900.90總磷TP0.680.680.680.650.650.65可利用磷AP0.450.450.450.420.420.42
1)預混料為每千克飼糧提供The premix provided the following per kg of diets:VA 10 000 IU,VD33 200 IU,VK33 mg,VB13 mg,VB25.5 mg,VB61 mg,VB120.9 mg,葉酸 folic acid 0.5 mg,生物素 biotin 0.20 mg,煙酸 nicotinic acid 34 mg,D-泛酸D-pantothenic acid 22 mg,Cu (as copper sulfate) 8 mg,F(xiàn)e (as ferrous sulfate) 22.5 mg,Mn (as manganese sulfate) 75 mg,I (as potassium iodide) 0.35 mg,Zn (as zinc sulfate) 48.75 mg,Se (as sodium selenite) 0.1 mg。
2)營養(yǎng)水平為計算值。Nutrient levels were calculated values.
1.3飼養(yǎng)管理
試驗期為42 d,采用層籠飼養(yǎng),全期雞舍內(nèi)溫度嚴格按照《愛拔益加商品代肉仔雞飼養(yǎng)管理手冊》執(zhí)行。試雞自由采食和飲水(乳頭式飲水器),24 h光照。7日齡免疫新支二聯(lián)苗(滴鼻點眼),14日齡免疫法氏囊疫苗(飲水)。隨時觀察、記錄雞只的采食和健康狀況。
1.4樣品的采集和指標測定
1.4.1生長性能指標測定
試驗期間每天記錄觀察雞群健康情況。在肉仔雞42日齡以重復為單位稱量試驗雞空腹重即BW,并計算平均日增重(ADG)、平均日采食量(ADFI)和F/G。
1.4.2回腸形態(tài)結(jié)構(gòu)測定
19日齡和35日齡每重復隨機選取1只雞,空腹稱重,電擊處死,打開腹腔,取2 cm左右的回腸,用生理鹽水沖洗干凈,浸入4%多聚甲醛固定液,制作組織切片。測定絨毛高度、隱窩深度,并計算絨毛高度/隱窩深度(V/C)值。
1.4.3腸道組織免疫炎癥指標檢測
19日齡和35日齡,每個重復取1只雞,電擊處死后,取4 cm的回腸段,用濾紙吸干組織液和血液,放入凍存管置于液氮保存,用于測定組織勻漿液中干擾素-γ(IFN-γ)、白細胞介素-10(IL-10)和免疫球蛋白A(IgA)水平。IFN-γ水平按照放射免疫分析藥盒(HY-156,RIA KIT)操作說明書測定;IL-10水平采用碘[125I]IL-10放射免疫分析藥盒(HY-10107,RIA KIT)測定;IgA水平采用雞IgA測定試劑盒(HY-754,KIT)免疫比濁法測定。
1.4.4糞便氮磷殘留測定
收集17~19日齡和33~35日齡新鮮糞便,并以重復為單位將樣品充分混合均勻,噴灑10%鹽酸溶液用于固氮,-20 ℃冷凍保存。之后,樣品在105 ℃條件下加熱15 min,65 ℃烘干72 h,回潮24 h,粉碎過40目篩,密封保存。采用分光光度計測定飼糧和糞便樣品中二氧化鈦含量[17];采用燃燒法(Dumatherm,Gerhardt,德國)測定飼糧和糞便樣品中粗蛋白質(zhì)含量(氮含量);采用鉬黃比色法測定飼糧和糞便樣品中磷含量。
1.5統(tǒng)計分析
試驗數(shù)據(jù)采用SPSS 19.0(2007,SPSS Inc.,Chicago,IL 60606-6307)統(tǒng)計軟件一般線性模型(GLM)程序進行兩因素方差分析,因子顯著性采用F檢驗。對主效應顯著的指標進行LSD多重比較,顯著性水平設為P<0.05,試驗數(shù)據(jù)以平均值±標準差(mean±SD)表示。
2.1不同類型飼糧和添加劑對肉仔雞生長性能的影響
不同類型飼糧和添加劑對1~42日齡肉仔雞生長性能的影響見表2。由表可知,在4種不同類型的飼糧中分別添加XPC、Gln及ISF,各組間1~42日齡肉仔雞的ADG、ADFI、F/G及BW無顯著差異(P>0.05)。但對于不同類型飼糧而言,與其他3種類型飼糧相比,低蛋白質(zhì)飼糧顯著降低肉仔雞的BW、ADG和ADFI(P<0.05),顯著提高肉仔雞的F/G(P<0.05);抗生素飼糧組的F/G顯著低于其他各組(P<0.05)。而對于3種不同的添加劑而言,1~42日齡肉仔雞的ADG、ADFI、F/G及BW差異不顯著(P>0.05)。飼糧類型與添加劑之間無顯著的互作效應(P>0.05)。所有組試驗雞只健康狀況良好,未觀察到發(fā)病癥狀,飼養(yǎng)周期內(nèi)有極個別雞只死亡現(xiàn)象。
表2 不同類型飼糧和添加劑對1~42日齡肉仔雞生長性能的影響
續(xù)表2飼糧Diets添加劑Additives體重BW/g平均日增重ADG/g平均日采食量ADFI/g料重比F/GP值P?value飼糧Diets<0.01<0.01<0.01<0.01添加劑Additives0.540.580.870.45飼糧×添加劑Diets×additives0.940.980.550.24
同列數(shù)據(jù)肩標無字母或相同小寫字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。下表同。
In the same column, values with no letter or the same small letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05). The same as below.
2.2不同類型飼糧和添加劑對肉仔雞回腸形態(tài)結(jié)構(gòu)的影響
不同類型飼糧和添加劑對19日齡和35日齡肉仔雞回腸形態(tài)結(jié)構(gòu)的影響見表3。由表可知,抗生素飼糧中,與添加Gln和ISF相比,添加XPC顯著提高19日齡肉仔雞回腸絨毛高度(P<0.05);與另外2種添加劑相比,添加ISF顯著降低19日齡肉仔雞回腸隱窩深度(P<0.05),且ISF組的V/C值顯著大于Gln組(P<0.05);與添加ISF相比,添加Gln顯著提高35日齡肉仔雞回腸絨毛高度(P<0.05)。無抗生素飼糧中,與其他2種添加劑相比,添加Gln顯著提高19日齡肉仔雞回腸絨毛高度(P<0.05)。低蛋白質(zhì)飼糧中,與添加ISF相比,添加XPC顯著降低19日齡肉仔雞回腸隱窩深度(P<0.05),顯著提高19日齡和35日齡肉仔雞回腸絨毛高度和V/C值(P<0.05)。大麥飼糧中,除ISF組19日齡肉仔雞回腸V/C值顯著高于XPC組(P<0.05)外,其他各組各指標差異均不顯著(P>0.05)。對于不同類型飼糧而言,與大麥飼糧相比,抗生素飼糧和無抗生素飼糧顯著提高了19日齡肉仔雞回腸絨毛高度(P<0.05);無抗生素飼糧組19日齡肉仔雞回腸V/C值顯著高于大麥飼糧組(P<0.05);與其他3種飼糧相比,低蛋白質(zhì)飼糧顯著提高35日齡肉仔雞回腸絨毛高度(P<0.05),且低蛋白質(zhì)飼糧組35日齡肉仔雞回腸V/C值顯著高于無抗生素飼糧組和大麥飼糧組(P<0.05)。對于3種添加劑而言,與添加XPC相比,添加ISF顯著降低19日齡肉仔雞回腸隱窩深度(P<0.05);與添加Gln和ISF相比,添加XPC顯著提高35日齡肉仔雞回腸絨毛高度(P<0.05)。除35日齡肉仔雞回腸隱窩深度外,不同飼糧類型和添加劑對回腸形態(tài)結(jié)構(gòu)存在顯著的互作效應(P<0.05)。
2.3不同類型飼糧和添加劑對肉仔雞回腸炎癥免疫指標的影響
不同類型飼糧和添加劑對19日齡和35日齡肉仔雞回腸炎癥免疫指標的影響見表4。結(jié)果表明,除大麥飼糧中添加XPC比添加其他2種添加劑顯著提高35日齡肉仔雞回腸IFN-γ水平(P<0.05)外,其他各處理對19日齡和35日齡肉仔雞回腸IFN-γ水平無顯著影響(P>0.05)。抗生素飼糧中添加XPC使19日齡肉仔雞回腸IL-10水平顯著高于添加ISF(P<0.05),且IgA水平顯著高于其他各組(P<0.05)。無抗生素飼糧中,與添加ISF相比,添加XPC和Gln顯著提高19日齡肉仔雞回腸IL-10水平(P<0.05);與添加XPC相比,添加Gln和ISF顯著提高19日齡肉仔雞回腸IgA水平(P<0.05),顯著提高35日齡肉仔雞回腸IL-10水平(P<0.05)。低蛋白質(zhì)飼糧中添加XPC使19日齡肉仔雞回腸IgA水平顯著高于添加Gln和ISF(P<0.05),而其他指標各組間無顯著差異(P>0.05)。大麥飼糧中添加ISF與添加其余2種添加劑相比顯著提高19日齡肉仔雞回腸IL-10水平(P<0.05),而添加XPC比添加ISF顯著提高19日齡肉仔雞回腸IgA水平(P<0.05);與添加ISF相比,添加XPC和Gln顯著提高35日齡肉仔雞回腸IL-10水平(P<0.05)。對不同類型飼糧而言,19日齡時,與低蛋白質(zhì)飼糧和大麥飼糧相比,抗生素飼糧和無抗生素飼糧顯著提高回腸IL-10水平(P<0.05);35日齡時,抗生素飼糧顯著降低回腸IL-10水平(P<0.05),而顯著提高回腸IgA水平(P<0.05);與無抗生素飼糧和低蛋白質(zhì)飼糧相比,大麥飼糧亦顯著提高19日齡和35日齡回腸IgA水平(P<0.05)。對添加劑而言,與添加ISF相比,添加XPC顯著提高19日齡肉仔雞回腸IL-10和IgA水平(P<0.05);添加Gln與添加其他2種添加劑相比,顯著提高35日齡肉仔雞回腸IgA水平(P<0.05)。對于回腸IFN-γ水平,飼糧類型和添加劑無顯著互作效應(P>0.05);而對于回腸IL-10和IgA水平,飼糧類型和添加劑之間存在顯著互作效應(P<0.05)。
表3 不同類型飼糧和添加劑對肉仔雞回腸形態(tài)結(jié)構(gòu)的影響
表4 不同類型飼糧和添加劑對肉仔雞回腸炎癥免疫指標的影響
續(xù)表4飼糧Diets添加劑Additives19日齡19daysofage干擾素-γIFN?γ/(pg/mg)白細胞介素-10IL?10/(pg/mg)免疫球蛋白AIgA/(g/g)35日齡35daysofage干擾素-γIFN?γ/(pg/mg)白細胞介素-10IL?10/(pg/mg)免疫球蛋白AIgA/(g/g)XPC3.46±1.011.11±0.41b0.054±0.010a2.21±0.220.57±0.14a0.047±0.010a無抗生素NAGln2.87±0.261.18±0.25b0.078±0.001b2.56±0.751.36±0.42b0.038±0.010aISF2.48±0.170.52±0.26a0.089±0.020c2.40±0.171.12±0.22b0.067±0.010bXPC3.13±0.500.81±0.180.130±0.027b2.39±0.471.62±0.250.042±0.010低蛋白質(zhì)LPGln2.65±0.300.60±0.160.056±0.007a2.25±0.511.44±0.310.051±0.010ISF3.09±0.260.58±0.040.087±0.023a2.15±0.431.60±0.550.037±0.010XPC3.04±0.610.59±0.05a0.160±0.020b2.84±0.92b1.92±0.26b0.052±0.010大麥BGln2.92±0.280.54±0.13a0.130±0.027ab2.43±0.38a1.82±0.27b0.060±0.020ISF3.16±0.670.89±0.29b0.120±0.021a2.09±0.34a1.48±0.22a0.052±0.020主效應Maineffect飼糧DietsA3.18±0.180.96±0.08b0.080±0.010b2.68±0.180.65±0.08a0.074±0.004cNA2.91±0.190.94±0.08b0.074±0.010a2.39±0.191.02±0.09b0.050±0.004aLP2.96±0.160.67±0.07a0.090±0.010b2.26±0.161.56±0.08c0.043±0.003aB3.04±0.150.67±0.06a0.140±0.010c2.45±0.151.74±0.07c0.058±0.003b添加劑AdditivesXPC3.20±0.130.92±0.05b0.120±0.010b2.44±0.131.20±0.060.053±0.010aGln2.91±0.140.85±0.06ab0.080±0.010a2.46±0.141.32±0.070.060±0.010bISF2.95±0.170.66±0.07a0.090±0.010a2.43±0.161.20±0.080.055±0.010aP值P?value飼糧Diets0.73<0.01<0.010.37<0.01<0.01添加劑Additives0.290.01<0.010.990.350.16飼糧×添加劑Diets×additives0.49<0.01<0.010.23<0.01<0.01
2.4不同類型飼糧和添加劑對肉仔雞糞便中氮、磷殘留率的影響
不同類型飼糧和添加劑對肉仔雞糞便中氮、磷殘留率的影響見表5。結(jié)果表明,抗生素飼糧中添加XPC使19日齡肉仔雞糞便中氮和磷殘留率顯著低于添加Gln和ISF(P<0.05);與添加XPC和Gln相比,抗生素飼糧中添加ISF顯著降低35日齡肉仔雞糞便中氮和磷殘留率(P<0.05)。無抗生素飼糧中添加Gln和ISF與添加XPC相比,顯著降低19日齡肉仔雞糞便中氮和磷殘留率(P<0.05),顯著降低35日齡肉仔雞糞便中磷殘留率(P<0.05)。低蛋白質(zhì)飼糧中添加XPC比添加Gln顯著降低19日齡肉仔雞糞便中氮殘留率(P<0.05)。與添加XPC和ISF相比,大麥飼糧中添加Gln顯著降低19日齡肉仔雞糞便中氮和磷殘留率(P<0.05)。對不同類型飼糧而言,抗生素飼糧比其他3種飼糧顯著降低19日齡肉仔雞糞便中氮和磷殘留率(P<0.05);低蛋白質(zhì)飼糧組35日齡肉仔雞糞便中氮殘留率顯著低于無抗生素飼糧組和大麥飼糧組(P<0.05);大麥飼糧組肉仔雞糞便中磷殘留率顯著高于抗生素飼糧組和無抗生素飼糧組(P<0.05)。對添加劑而言,與添加XPC相比,添加Gln與ISF顯著降低19日齡肉仔雞糞便中磷殘留率(P<0.05);與添加XPC相比,添加ISF顯著降低35日齡肉仔雞糞便中氮和磷殘留率(P<0.05)。對肉仔雞糞便中氮和磷殘留率而言,飼糧類型與添加劑之間存在顯著互作效應(P<0.05)。
3.1不同類型飼糧和添加劑對肉仔雞生長性能的影響
研究表明,飼糧類型、能量與蛋白質(zhì)的比值對肉雞的生長性能起主要作用[18-19]。本研究也表明,飼喂肉仔雞能氮比固定的低蛋白質(zhì)飼糧會降低肉仔雞的生長性能,這與前人的研究結(jié)果一致。Hidalgo等[20]飼喂肉仔雞能量和蛋白質(zhì)水平未達到最佳標準的飼糧后,發(fā)現(xiàn)肉仔雞生長性能降低;Kamran等[2]報道,飼喂肉仔雞低蛋白質(zhì)而能氮比固定的飼糧降低肉仔雞的生長性能。4種飼糧中,抗生素飼糧組肉仔雞的料重比最低。李菊等[21]報道,與無金霉素飼糧相比,含100 mg/kg金霉素的飼糧并未顯著提高0~6周齡肉仔雞的日增重。張日俊等[22]報道,50 mg/kg金霉素組肉仔雞的飼料轉(zhuǎn)化效率比無金霉素組提高了2.49%。
表5 不同類型飼糧和添加劑對肉仔雞糞便中氮、磷殘留率的影響
本試驗條件下3種不同添加劑之間,肉仔雞的ADG、ADFI、F/G及BW差異不顯著,同時對生長性能而言,飼糧類型與添加劑之間無顯著互作效應?;痣u上的試驗結(jié)果表明,XPC并未影響3~15周齡火雞的增重和飼料轉(zhuǎn)換率[23]。Nassiri等[24]報道在玉米-豆粕型飼糧中添加0、0.5%、1.0%和1.5%的Gln,對肉仔雞的ADFI和F/G均無顯著影響。Bregendahl等[25]推測在低蛋白質(zhì)飼糧條件下,內(nèi)源合成足夠的Gln用于維持腸道上皮細胞功能,因此額外補充Gln對低蛋白質(zhì)飼糧導致的肉仔雞生長緩慢、飼料利用率降低并無改善作用。而Payne等[26]也報道低蛋白質(zhì)飼糧中添加ISF,并未改善ADF、ADFI和飼料轉(zhuǎn)化率。
3.2不同類型飼糧和添加劑對肉仔雞回腸形態(tài)結(jié)構(gòu)的影響
絨毛高度、隱窩深度及V/C值常被用于腸道形態(tài)[27],甚至與腸道局部或系統(tǒng)性炎癥相關(guān)[28-29]。本試驗中,肉仔雞19日齡時,低蛋白質(zhì)飼糧中添加XPC與添加ISF相比,顯著提高回腸絨毛高度和V/C值,顯著降低回腸隱窩深度;35日齡時,低蛋白質(zhì)飼糧中添加XPC與添加ISF和Gln相比顯著提高回腸絨毛高度和V/C值。Gao等[30]報道,0.25%的XPC顯著提高21日齡肉仔雞回腸絨毛高度和V/C值。而Jazideh等[31]報道,在熱應激條件下飼糧中添加0.25%、0.50%和1.00%的Gln對肉仔雞回腸結(jié)構(gòu)均無顯著影響。
19日齡時,抗生素飼糧組和大麥飼糧組中添加ISF,肉仔雞回腸V/C值分別顯著高于添加Gln或XPC。Halliwell等[32]認為消化道黏膜持續(xù)暴露于來源于腸腔中氧化劑、誘變劑以及內(nèi)源的活性氧,因此對氧化應激很敏感。而Jiang等[15]證明ISF對肉仔雞表現(xiàn)出抗氧化劑的良好潛力,因此ISF可能作為抗氧化劑起到保護和維持肉仔雞回腸形態(tài)結(jié)構(gòu)的作用。
3.3不同類型飼糧和添加劑對肉仔雞回腸炎癥免疫指標的影響
IFN-γ由抗原遞呈細胞和Th1細胞分泌,會增加緊密連接通路的通透性[33-34]。IL-10可以預防腸道疾病[33],具有降低細胞因子[35]、預防炎癥反應以及抑制IFN-γ產(chǎn)生的作用[36]。IgA有基底膜中的B淋巴細胞分泌,并不斷分泌進入腸腔[37]。
Gao等[30]報道,飼糧中添加0.25%的XPC對21日齡肉仔雞十二指腸中IgA水平無顯著影響;與更高水平XPC組相比,添加0.25%的XPC顯著提高42日齡肉仔雞十二指腸中IgA水平。體外細胞試驗觀察到添加XPC可下調(diào)由白細胞介素-2(IL-2)或植物凝集素(PHA)誘導產(chǎn)生的IFN-γ水平,激活B淋巴細胞以及促進Th2通路[38]。本研究表明,19日齡時抗生素飼糧中添加XPC,與添加ISF相比顯著提高肉仔雞回腸IL-10和IgA水平;低蛋白質(zhì)飼糧和大麥飼糧中添加XPC比添加ISF顯著提高回腸IgA水平。而在35日齡時,大麥飼糧中添加XPC與添加ISF相比并未降低肉仔雞回腸IFN-γ水平。
資料表明,Gln可提高機體應激后食管中的IgA水平[39]。在小鼠上的試驗也表明,Gln具備促進腸道中IgA分泌的作用[40]。0.5%的Gln并未影響血液中IFN-γ的水平[41]。本試驗中,19日齡時,無抗生素飼糧中添加Gln與添加ISF相比顯著提高肉仔雞回腸IL-10水平,而35日齡時顯著降低IgA水平;35日齡時,大麥飼糧中添加Gln比添加XPC顯著降低回腸IFN-γ水平,比添加ISF顯著提高IL-10水平。
消化道中微生物在ISF代謝過程中發(fā)揮重要作用[42]。腸道細胞的研究結(jié)果表明,ISF通過調(diào)節(jié)促炎癥因子——白細胞介素-6(IL-6)發(fā)揮抑制腸道的炎癥反應[10]。前人研究表明,ISF可抑制由脂多糖誘導的呼吸道CD4+T淋巴細胞分泌IFN-γ,也會抑制鼻腔敏感小鼠對卵白蛋白的黏膜免疫反應[43]。ISF通過降低IFN-γ與IL-10的比值,可能使得Th1/Th2平衡傾向于Th2反應[44]。本試驗中,在抗生素飼糧中,與添加XPC或Gln相比,ISF顯著降低了19日齡肉仔雞回腸IL-10和IgA水平以及35日齡的IgA水平;但在無抗生素飼糧中,添加ISF顯著提高了35日齡肉仔雞回腸IL-10和IgA水平,對回腸免疫狀態(tài)有顯著改善作用;19日齡時,無抗生素飼糧中添加ISF顯著提高肉仔雞回腸IgA水平,而顯著降低IL-10水平;大麥飼糧中添加ISF顯著降低了35日齡肉仔雞回腸IFN-γ水平,同時也顯著降低了IL-10水平。這說明不同的添加劑在對不同類型的飼糧中發(fā)揮的免疫作用可能有所不同。
3.4不同類型飼糧和添加劑對肉仔雞糞便中氮、磷殘留率的影響
本研究結(jié)果表明,與添加其他2種添加劑相比,抗生素飼糧中添加XPC顯著降低了19日齡肉仔雞糞便中氮和磷殘留率;與添加Gln相比,低蛋白質(zhì)飼糧中添加XPC顯著降低了19日齡肉仔雞糞便中氮殘留率。Gao等[30]報道,XPC雖并未改善15日齡肉仔雞的磷消化率,但添加0.50%和0.75%的XPC顯著提高了35日齡肉仔雞的磷消化率。李路勝[45]報道,飼糧中添加0.10%、0.15%和0.20%的XPC顯著提高了磷的消化率。本試驗中,大麥飼糧中添加ISF與添加Gln相比顯著提高19日齡肉仔雞糞便中氮和磷殘留率。這與前人的報道不一致,Sahin等[46]報道,熱應激條件下染料木素改善鵪鶉的粗蛋白質(zhì)消化率,降低磷殘留率。無抗生素飼糧中添加Gln、ISF比添加XPC顯著降低19日齡肉仔雞糞便中氮和磷殘留率,顯著降低35日齡肉仔雞糞便中磷殘留率。Vicario等[47]認為Gln可以改善結(jié)腸炎小鼠的屏障功能。仔豬飼糧中添加Gln,斷奶10 d時干物質(zhì)和粗蛋白質(zhì)表觀消化率分別提高9.06%和4.77%;斷奶30 d時,兩者分別提高了5.90%和2.80%[48]。而在肉仔雞上的研究表明,添加1%、2%和3%的Gln盡管數(shù)值顯示降低了21日齡時糞便中的氮殘留率,但顯著不差異[49]。
① 4種類型飼糧中添加3種添加劑對42日齡肉仔雞生長性能無顯著影響;
② 能氮比固定的低蛋白質(zhì)飼糧顯著降低了肉仔雞的生長性能;
③ 低蛋白質(zhì)飼糧中添加XPC可改善回腸形態(tài)結(jié)構(gòu);
④ 在不同類型飼糧中添加不同的添加劑具有改善肉仔雞回腸免疫狀態(tài)及降低糞便中氮、磷殘留率的趨勢。
[1]MILES R D,BUTCHER G D,HENRY P R,et al.Effect of antibiotic growth promoters on broiler performance,intestinal growth parameters,and quantitative morphology[J].Poultry Science,2006,85(3):476-485.
[2]KAMRAN Z,SARWAR M,NISA M,et al.Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age[J].Poultry Science,2008,87(3):468-474.
[3]DREW M D,SYED N A,GOLDADE B G,et al.Effects of dietary protein source and level on intestinal populations ofClostridiumperfringensin broiler chickens[J].Poultry Science,2004,83(3):414-420.
[4]JIA W,SLOMINSKI B A,BRUCE H L,et al.Effects of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinicalClostridiumperfringenschallenge[J].Poultry Science,2009,88(1):132-140.
[5]THEANDER O,WESTERLUND E,?MAN P,et al.Plant cell walls and monogastric diets[J].Animal Feed Science and Technology,1989,23(1/2/3):205-225.
[6]IKEGAMI S,TSUCHIHASHI F,HARADA H,et al.Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats[J].Journal of Nutrition,1990,120(4):353-360.
[7]CHOCT M,HUGHES R J,WANG J,et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J].British Poultry Science,1996,37(3):609-621.
[8]NICOLE R,MASCHING S,SCHATZMAYR G,et al.Efficacy of a yeast derivative on broiler performance,intestinal morphology and blood profile[J].Livestock Science,2012,143(2/3):195-200.
[9]O’KEEFE S J D.Nutrition and gastrointestinal disease[J].Scandinavian Journal of Gastroenterology,1996,31(S220):52-59.
[10]PARADKAR P N,BLUM P S,BERHOW M A,et al.Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine[J].Cancer Letters,2004,215(1):21-28.
[11]AFRC R F.Probiotics in man and animals[J].Journal of Applied Bacteriology,1989,66(5):365-378.
[12]NEWSHOLME P.Why isL-glutamine metabolism important to cells of the immune system in health,postinjury,surgery or infection?[J].The Journal of Nutrition,2001,131(9):2515S-2522S.
[13]SAKAMOTO M I,FARIA D E,NAKAGI V S,et al.Sources of trophic action on performance and intestinal morphometry of broiler chickens vaccinated against coccidiosis[J].Revista Brasileira de Ciência Avícola,2014,16(4):389-396.
[14]VITALE D C,PIAZZA C,MELILLI B,et al.Isoflavones:estrogenic activity,biological effect and bioavailability[J].European Journal of Drug Metabolism and Pharmacokinetics,2013,38(1):15-25.
[15]JIANG Z Y,JIANG S Q,LIN Y C,et al.Effects of soybean isoflavone on growth performance,meat quality,and antioxidation in male broilers[J].Poultry Science,2007,86(7):1356-1362.
[16]KAMBOH A A,ZHU W Y.Individual and combined effects of genistein and hesperidin on immunity and intestinal morphometry in lipopolysacharide-challenged broiler chickens[J].Poultry Science,2014,93(9):2175-2183.
[17]鄧雪娟,劉國華,蔡輝益,等.分光光度計法測定家禽飼料和食糜中二氧化鈦[J].飼料工業(yè),2008,29(2):57-58.
[18]COLLIN A,MALHEIROS R D,MORAES V M B,et al.Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens[J].British Journal of Nutrition,2003,90(2):261-269.
[19]NIETO R,AGUILERA J F,FERNNDEZ-FGARES I,et al.Effect of a low protein diet on the energy metabolism of growing chickens[J].Archiv für Tierernaehrung,1997,50(2):105-119.
[20]HIDALGO M A,DOZIER III W A,DAVIS A J,et al.Live performance and meat yield responses of broilers to progressive concentrations of dietary energy maintained at a constant metabolizable energy-to-crude protein ratio[J].The Journal of Applied Poultry Research,2004,13(2):319-327.
[21]李菊,張日俊.益生素對肉仔雞生長性能、屠體性狀及肉品質(zhì)的影響[J].動物營養(yǎng)學報,2007,19(4):372-378.
[22]張日俊,佟建民,薩仁娜,等.飼用金霉素對肉仔雞免疫系統(tǒng)生長發(fā)育及免疫反應的研究[J].畜牧獸醫(yī)學報,2000,31(3):216-223.
[23]FIRMAN J D,MOORE D,BROOMHEAD J,et al.Effects of dietary inclusion of aSaccharomycescerevisiaefermentation product on performance and gut characteristics of male turkeys to market weight[J].International Journal of Poultry Science,2013,12(3):141-143.
[24]NASSIRI MOGHADDAM H,ALIZADEH-GHAMSARI A H.Improved performance and small intestinal development of broiler chickens by dietaryL-glutamine supplementation[J].Journal of Applied Animal Research,2013,41(1):1-7.
[25]BREGENDAHL K,SELL J L,ZIMMERMAN D R.Effect of low-protein diets on growth performance and body composition of broiler chicks[J].Poultry Science,2002,81(8):1156-1167.
[26]PAYNE R L,BIDNER T D,SOUTHERN L L,et al.Dietary effects of soy isoflavones on growth and carcass traits of commercial broilers[J].Poultry Science,2001,80(8):1201-1207.
[27]JEURISSEN S H M,LEWIS F,VAN DER KLIS J D,et al.Parameters and techniques to determine intestinal health of poultry as constituted by immunity,integrity,and functionality[J].Current Issues in Intestinal Microbiology,2002,3(1):1-14.
[28]JIANG Z Y,SUN L H,LIN Y C,et al.Effects of dietary glycyl-glutamine on growth performance,small intestinal integrity,and immune responses of weaning piglets challenged with lipopolysaccharide[J].Journal of Animal Science,2009,87(12):4050-4056.
[29]LEE K W,LEE S H,LILLEHOJ H S,et al.Effects of direct-fed microbials on growth performance,gut morphometry,and immune characteristics in broiler chickens[J].Poultry Science,2010,89(2):203-216.
[30]GAO J,ZHANG H J,YU S H,et al.Effects of yeast culture in broiler diets on performance and immunomodulatory functions[J].Poultry Science,2008,87(7):1377-1384.
[31]JAZIDEH F,FARHOOMAND P,DANESHYAR M,et al.The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions[J].Turkish Journal of Veterinary & Animal Sciences,2014,38(3):264-270.
[32]HALLIWELL B,ZHAO K,WHITEMAN M.The gastrointestinal tract:a major site of antioxidant action?[J].Free Radical Research,2000,33(6):819-830.
[33]TURNER J R.Intestinal mucosal barrier function in health and disease[J].Nature Reviews Immunology,2009,9(11):799-809.
[34]MADARA J L,STAFFORD J.Interferon-γ directly affects barrier function of cultured intestinal epithelial monolayers[J].Journal of Clinical Investigation,1989,83(2):724-727.
[35]MARSHALL J S,LEAL-BERUMEN I,NIELSEN L,et al.Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells.[J].Journal of Clinical Investigation,1996,97(4):1122-1128.
[36]FIORENTINO D F,BOND M W,MOSMANN T R.Two types of mouse T helper cell.Ⅳ.Th2 clones secrete a factor that inhibits cytokine production by Th1 clones[J].Journal of Experimental Medicine,1989,170(6):2081-2095.
[37]BRANDTZAEG P,PABST R.Let’s go mucosal:communication on slippery ground[J].Trends in Immunology,2004,25(11):570-577.
[38]JENSEN G S,PATTERSON K M,YOON I.Yeast culture has anti-inflammatory effects and specifically activates NK cells[J].Comparative Immunology,Microbiology and Infectious Diseases,2008,31(6):487-500.
[39]許彬東,黃國忠,謝金標,等.谷氨酰胺強化的腸外營養(yǎng)對食管癌病人術(shù)后機體應激反應及免疫功能的影響[J].腸外與腸內(nèi)營養(yǎng),2014,21(5):285-288.
[40]BURKE D J,ALVERDY J C,AOYS E,et al.Glutamine-supplemented total parenteral nutrition improves gut immune function[J].Archives of Surgery,1989,124(12):1396-1399.
[42]YUAN J P,WANG J H,LIU X.Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health[J].Molecular Nutrition & Food Research,2007,51(7):765-781.
[43]WEI J,BHATT S,CHANG L M.,et al.Isoflavones,genistein and daidzein,regulate mucosal immune response by suppressing dendritic cell function[J].PLoS One,2012,7(10):e47979.
[45]李路勝.酵母培養(yǎng)物對肉雞生產(chǎn)性能和飼料利用率的影響[J].飼料工業(yè),2008,29(16):32-34.
[46]SAHIN N,SAHIN K,ONDERCI M,et al.Effects of dietary genistein on nutrient use and mineral status in heat-stressed quails[J].Experimental Animals,2006,55(2):75-82.
[48]肖英平,洪奇華,劉秀婷,等. 谷氨酰胺對斷奶仔豬生長性能、營養(yǎng)物質(zhì)表觀 消化率、空腸堿性磷酸酶活性及與腸道健康相關(guān)因子基因表達的影響[J].動物營養(yǎng)學報,2012,24(8):1438-1446.
[49]KHEMPAKA S,OKRATHOK S,HOKKING L,et al.Influence of supplemental glutamine on nutrient digestibility and utilization,small intestinal morphology and gastrointestinal tract and immune organ developments of broiler chickens[J].World Academy of Science,Engineering and Technology,2011,5(8):497-499.
(責任編輯田艷明)
Effects of Different Types of Diets and Additives on Growth Performance, Gut Structure and Functions of Broilers
LIAO RuiboYAN HaijieLIU GuohuaZHANG ShuCHANG WenhuanHUANG XiangyangLIU WeiCHANG YinlianCAI Huiyi*
(Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China)
This experiment was conducted to study the effects of different types of diets and additives on growth performance, gut structure and functions of broilers. A 4×3 factorial randomized complete block design was used in this experiment. Four diets were antibiotic diet, none antibiotic diet, low protein diet and barely diet, and three additives were yeast culture (XPC), glutamine (Gln), and soybean isoflavone (ISF), respectively. A total of 792 one-day old Arbor Acres broilers were divided into 12 groups with 6 replicates of 11 birds each. The trial lasted for 42 d. The result demonstrated as follows: 1) different diets supplemented with XPC, Gln and ISF did not significantly influence the average daily gain (ADG), average daily feed intake (ADFI), feed/gain (F/G) and body weight (BW) of 42-day-old broilers (P>0.05). However, for the diet types, compared with the other three diets, low protein diet significantly decreased the BW, ADG and ADFI (P<0.05), increased the F/G (P<0.05), and antibiotic diet significantly decreased the F/G of broilers (P<0.05). For the growth performance, there was no significant interaction between diet types and additives (P>0.05). 2) Compared with the addition of Gln, adding ISF in antibiotic diet significantly improved ileum morphology of 19-day-old broilers (P<0.05); adding XPC in low protein diet significantly improved the ileum morphology of broilers compared with adding the other two additives (P<0.05); compared with the addition of XPC, adding ISF in barely diet significantly improved the ileum morphology of 19-day-old broilers (P<0.05). For the ileum morphology, a significant interaction between diet types and additives was observed (P<0.05), except ileum crypt depth of broilers at 35 days of age. 3) Adding XPC in barely diet significantly increased ileum interferon-γ level of broilers at 35 days of age compared with adding Gln and ISF (P<0.05); compared with adding ISF, adding XPC in antibiotic diet significantly increased the levels of ileum interleukin-10 (IL-10) and immunoglobulin A (IgA) of broilers at 19 days of age (P<0.05), while adding Gln significantly increased ileum IgA level of broilers at 35 days of age (P<0.05); low protein diet supplemented with XPC significantly increased the ileum IgA level of broilers at 19 days of age compared with adding the other two additives (P<0.05); adding ISF in none antibiotic diet significantly elevated the levels of ileum IL-10 and IgA of broilers at 35 days of age compared with adding XPC (P<0.05); barely diet with addition of ISF significantly increased ileum IL-10 level of broilers at 35 days of age compared with adding XPC (P<0.05). For the levels of ileum IL-10 and IgA, a significant interaction between diet types and additives was observed (P<0.05). 4) Adding XPC in antibiotic diet significantly decreased fecal nitrogen (N) and phosphorus (P) residual rates of broilers at 19 days of age compared with adding the other two additives (P<0.05); adding XPC in none antibiotic diet significantly increased fecal N and P residual rates of broilers at 19 days of age (P<0.05), and fecal P residual rate of broilers at 35 days of age compared with adding the other two additives (P<0.05); low protein diet supplemented with XPC significantly decreased fecal N residual rate of broilers at 19 days of age compared with adding Gln (P<0.05); barely diet supplemented with Gln significantly decreased fecal N and P residual rates of broilers at 19 days of age compared with adding the other two additives (P<0.05). For N and P residual rates, a significant interaction between diet types and additives was observed (P<0.05). In conclusion, four kinds of diets supplemented with three additives respectively do not significantly affect the growth performance of broilers aged from 1 to 42 days. However, low protein diet with consistent energy to protein ratio significantly decreases the growth performance of broilers, while low protein diet with addition of XPC can improve ileum morphology. And different additives added into different diets can improve the immune states in ileum, and decrease fecal N and P residual rates of broilers in some tendency.[ChineseJournalofAnimalNutrition, 2016, 28(10):3225-3237]
broilers; growth performance; intestine; diet types; additives
, professor, E-mail: caihuiyi@caas.cn
10.3969/j.issn.1006-267x.2016.10.026
2016-04-08
國家肉仔雞產(chǎn)業(yè)技術(shù)體系(CARS-42)
廖瑞波(1986—),男,河南洛陽人,博士研究生,家禽營養(yǎng)與飼料科學專業(yè)。E-mail: liao231@163.com
蔡輝益,研究員,博士生導師,E-mail: caihuiyi@caas.cn
S816
A
1006-267X(2016)10-3225-13